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Abstract

Description of the spatial characteristics of viral dispersal is important in understanding the

history of infections. Nine hepatitis B virus (HBV) genotypes (A-I), and a putative 10th geno-

type (J), with distinct geographical distribution, are recognized. In sub-Saharan Africa (sub)-

genotypes A1, D3 and E circulate, with E predominating in western Africa (WA), where HBV

is hyperendemic. The low genetic diversity of genotype E (HBV/E) suggests its recent emer-

gence. Our aim was to study the dispersal of HBV/E using full-length, non-redundant and

non-recombinant sequences available in public databases. HBV/E was confirmed, and the

phylogeny reconstruction performed using maximum likelihood (ML) with bootstrapping.

Phylogeographic analysis was conducted by reconstruction of ancestral states using the cri-

terion of parsimony on the estimated ML phylogeny. 46.5% of HBV/E sequences were

found within monophyletic clusters. Country-wise analysis revealed the existence of 50

regional clusters. Sequences from WA were located close to the root of the tree, indicating

this region as the most probable origin of the HBV/E epidemic and expanded to other geo-

graphical regions, within and outside of Africa. A localized dispersal was observed with

sequences from Nigeria and Guinea as compared to other WA countries. Based on the

sequences available in the databases, the phylogenetic results suggest that European

strains originated primarily from WA whereas a majority of American strains originated in

Western Central Africa. The differences in regional dispersal patterns of HBV/E suggest lim-

ited cross-border transmissions because of restricted population movements.

Introduction

Hepatitis B virus (HBV) is a common cause of liver disease and the prototype member of the

family Hepadnaviridae [1]. Despite the availability of an effective vaccine, HBV infections con-

tinue to be a public health problem [2, 3]. In 2015, the World Health Organization (WHO)
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estimated that over 257 million people are chronically infected with HBV [4–6]. Globally,

HBV infections account for an estimated 887,000 deaths mostly from cirrhosis and hepatocel-

lular carcinoma [4–8], with at least 250,000 of these recorded in Africa [7–9]. National and

regional prevalence of HBV ranges from over 6% in Western Pacific and Africa, [5, 6, 10] with

West Africa being the most affected, to under 0.7% in the United States and Northern Europe

[5, 6, 10].

The unusual mechanism of HBV replication by reverse transcription and the lack of proof-

reading ability of an RNA intermediate result in sequence heterogeneity [11, 12]. HBV is clas-

sified into at least 9 genotypes; A to I and a putative tenth genotype (J). Genotypes A–D, F, H

and I are further classified into at least 35 subgenotypes [13].

Most HBV genotypes and subgenotypes have a distinct geographical distribution [13–15].

In sub-Saharan Africa, (comprising Eastern Africa, Central Africa, Southern Africa and West-

ern Africa), HBV genotypes A, D and E circulate, with genotype A predominating in southern

and eastern parts of the continent, while genotype D is found in the northern regions [16].

West Africa is the only major region in the world where HBV is still hyperendemic—[> 8% of

hepatitis B surface antigen (HBsAg) chronic carriers]. HBV/E, which was first described in

1992 [15, 17] is the predominant genotype prevailing in this region [18].

The prevalence of HBV/E decreases in proportions towards Eastern Africa, where, with the

exception of Madagascar (genotype E), mainly genotype A has been found [19]. HBV/E is

rarely found outside Africa except in individuals of African descent [20], with sporadic cases

reported in the Americas, [20–22] Northern Europe [23], including Belgium [24] and the

Netherlands [25]. Despite the wide geographical distribution and dominance in sub-Saharan

Africa, HBV/E has a very low genetic diversity ranging between 1.2% and 1.75% [16, 18, 26,

27]. This has led to the suggestion that this genotype was recently introduced into the human

population ~300–6,000 years ago [28, 29] though, its high prevalence throughout the genotype

E crescent is difficult to comprehend. HBV genotype A was the initial ancestral genotype in

West Africa, which, in some areas, co-circulates with HBV/E [30, 31].

Previous studies have shown that the heterogeneity in the global distribution of the HBV

genotypes may be responsible for the differences in the natural history of chronic HBV infec-

tions, clinical consequences, as well as the response to antiviral treatment [15, 16, 32, 33].

HBV/E has clinically been characterized, with significantly high viral loads and patients

infected with this genotype are more likely to be hepatitis B e antigen (HBeAg)-positive than

the patients infected with genotype D [14, 34, 35]. A higher HBeAg-positivity of this genotype

has been shown to confer tolerance with a milder clinical manifestation [36, 37]. In addition,

infection with HBV/E has previously been linked to higher chronicity rates than other geno-

types [14, 34, 35].

Although significant differences in the patterns of dispersal of genotypes D and A have

been shown, [29, 38] the dispersal patterns of the predominant genotype in West and Central

Africa, HBV/E, is yet to be unraveled. The main aim of this study was to use all the available

full-length sequences of this genotype, to estimate the levels of its regional dispersal and to

shed light on geographical dissemination of genotype E.

Materials and methods

DNA sequence alignment, genotyping and recombination analysis

A total of 636 full-length sequences of HBV/E available in the public repositories; NCBI

(http://www.ncbi.nlm.nih.gov) [39] and the Hepatitis B virus database (HBVdb; https://hbvdb.

lyon.inserm.fr/HBVdb/) [40] were downloaded, including the geographic area of sampling. It

should be noted that all genotype E sequences sampled from Europe and Americas may have
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been derived from HBV carriers of African origin regardless of their country of residence

since genotype E is rarely found outside Africa. All sequences present in the databases as of

August 2020 have been accessed. Duplicate sequences (N = 253) from the two public reposito-

ries identified by their identical accession number were removed from the analyses in addition

to the sequences lacking the metadata (N = 42). Simplot v3.5 [41, 42] and RDP4 v4.36 [43] pro-

grams were used to detect the possible recombinant forms of the virus [42] and removed from

the downstream analysis. Of the 636 downloaded sequences, 318 full-length non-recombinant

and non-redundant sequences of HBV/E were used in the analyses.

The alignment of the full-length HBV/E sequences to representative complete genome

sequences of the nine HBV genotypes A to J was performed by MUSCLE algorithm as imple-

mented in MEGA v10 [44]. HBV genotyping was performed by the Oxford HBV Automated

Subtyping Tool v1.0 [45]. Conserved signature motifs in the PreS1 [Leu3SerTrpThrValProLeu-

GluTrp11, His15, Thr18, Arg38, His44, Thr52, Met83, Lys85 and Thr108], specific for genotype E

were confirmed [18]. In addition, all genotype E sequences had Arg122, Lys160 and Leu127

amino acid residues within the S gene and a Met164 amino acid substitution in the reverse tran-

scriptase [18]. Furthermore, the spacer region contained eight amino acids residues unique to

the genotype E: Met64, Glu16, His21, Arg52, Asp55, Lys88, Asn110 and His111. In order to deter-

mine diversity in the sequences from diverse geographical regions, nucleotide sequence diver-

gence was performed on the complete nucleotide sequences using the divergence tool

described by Bell and colleagues [46, 47].

Country grouping, phylogenetic and phylogeographic analysis

The available HBV/E sequences from different countries (N = 318) were classified into geo-

graphical regions according to the Global Burden of Disease classification system (http://www.

who.int) [48]. The global distribution of these sequences per country as shown in Fig 1 was

plotted using ArcGIS1 software version 10.5 [49]. Phylogenetic analysis with bootstrap evalu-

ation was performed using the maximum likelihood method with the Generalized Time

Reversible (GTR+G) model of nucleotide substitution as implemented in RAxML v8.0.20 [50].

Monophyletic clusters were defined as those having bootstrap values higher than 70%, within

which 70% of HBV/E strains share the same geographic area of sampling (country or region).

Trees were converted to midpoint rooted by using the FigTree v1.4.3 program (http://tree.bio.

ed.ac.uk/software/figtree/) [51]. The origin of genotypes E was inferred by character recon-

struction using the criterion of parsimony on the estimated ML phylogeny using Mesquite

v3.2 [52]. We conducted two kinds of phylogeographic analyses: one grouping sequences

according to the country of sampling and another, grouping them according to the geographic

regions as defined by the Global Burden of Disease classification system [48].

Results

We studied 318 complete genome sequences sampled from 29 countries around the world,

which showed a mean nucleotide diversity of 1.95% ranging between 0% and 3% (S1A Table).

Nearly 93% of all sampled sequences were collected in Africa. Specifically, 54.5% of the HBV

sequences were isolated from four African countries, namely Guinea (24.5%), Nigeria (16%),

Cameroon (9.1%) and Central African Republic (9.1%) (Table 1, Fig 1). However, the highest

mean nucleotide diversity of ~3% was observed for sequences sampled from United Kingdom

and Belgium (S1B Table). In addition, the highest intergroup sequence divergence of ~3%

between the countries was observed for Central African Republic and United Kingdom, Cen-

tral African Republic and Belgium and United Kingdom and Belgium (S1C Table).
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After the classification of countries into geographic regions, the distribution of HBV/E

sequences per region was as follows: West Africa: 216 (67.9%), Central Africa: 51 (16%), East

Africa: 18 (5.7%), Europe: 11 (3.5%), Americas: 8 (2.5%), Southern Africa: 8 (2.5%), North

Africa/Middle East: 5 (1.6%) and Asia: 1 (0.3%). The sequences sampled from these geographi-

cal regions showed no statistically significant differences in the nucleotide diversity ranging

between 0.7% and 2% (S2A and S2B Table) with West and Central Africa having the highest

diversity.

Phylogeographic analysis of the HBV/E sequences grouped in geographic regions revealed

the existence of local dispersal in Africa (Fig 2). In addition, sequences from West Africa were

located close to the root of the ML tree indicating that the HBV/E epidemic probably origi-

nated in West Africa and expanded to other geographical regions, within and outside of Africa

(Fig 2). There are also some indications that the European strains originated primarily from

West Africa whereas Western Central Africa was the source of the majority of viral strains dis-

persed to the Americas (Fig 2).

Country-wise phylogeographic analysis suggests that 46.5% (148) of the total number of

HBV/E sequences (N = 318) were found within 50 monophyletic clusters (Table 1). The analy-

sis showed that HBV/E sequences form regional clusters at different percentages according to

their geographic origin (Table 1). Specifically, all the sequences sampled from Democratic

Republic of the Congo form a single monophyletic cluster. The same pattern was observed for

Fig 1. Global distribution of HBV/E sequences. Global map representing the distribution of available HBV/E full-length sequences by country of sampling for 29

countries around the world. Map was plotted using ArcGIS1 software version 10.5 [49].

https://doi.org/10.1371/journal.pone.0240375.g001
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Colombia, Egypt and South Africa. High levels of local dispersal, where> 50% of sequences

showed monophyletic clustering, were found for Cameroon, Ghana, Liberia, Namibia, Nigeria,

Sudan, and United Kingdom (Table 1).

A number of sequences from Guinea and Nigeria formed 14 and 9 monophyletic clusters,

respectively whereas for Belgium, Cameroon, Central African Republic, Colombia, Demo-

cratic Republic of Congo, Egypt, Ghana, Liberia, Namibia, Niger, South Africa, Sudan and

United Kingdom, a limited number of clusters were detected ranging from one to six

(Table 1). The sequences sampled from two semi-isolated rural communities in North and

Central Nigeria clustered in a single, separate clade indicative of localized intra-country dis-

persal. The <50% monophyletic clustering of sequences from Belgium, Central African

Republic, Guinea and Niger revealed the lowest regional dispersal. None of the sequences

from Angola, Argentina, Benin, Burkina Faso, Cape Verde, Cuba, Ethiopia, Japan,

Table 1. Sampling of HBV/E sequences from different countries and percentages of clustering.

Country of Sampling Number of sequences Number of clustered sequences Number of monophyletic clusters Percentage of clustering (%)

Angola 18 - - -

Argentina 2 - - -

Belgium 6 2 1 33.3

Benin 4 - - -

Burkina Faso 10 - - -

Cameroon 29 23 4 79.3

Cape Verde 7 - - -

Central African Republic 29 14 6 48.3

Colombia 2 2 1 100.0

Cuba 2 - - -

Democratic Republic of the Congo 4 4 1 100.0

Egypt 2 2 1 100.0

Ethiopia 1 - - -

Ghana 15 9 4 60.0

Guinea 78 37 14 47.4

Japan 1 - - -

Liberia 6 4 2 66.7

Madagascar 1 - - -

Martinique 1 - - -

Mexico 1 - - -

Namibia 6 4 1 66.7

Niger 15 5 2 33.3

Nigeria 51 27 9 52.9

Saudi Arabia 3 - - -

Senegal 1 - - -

Somalia 1 - - -

South Africa 2 2 1 100.0

Sudan 15 10 2 66.7

United Kingdom 5 3 1 60.0

Total 318 148 50 46.5

The table shows the different countries of sampling of HBV/E sequences, the number of sequences sampled from each one of the countries, the number of samples that

clustered and the corresponding number of sequences that clustered for each country as a percentage.

https://doi.org/10.1371/journal.pone.0240375.t001
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Madagascar, Martinique, Mexico, Saudi Arabia, Senegal and Somalia formed monophyletic

clusters (Table 1).

Discussion

Wide-range full-genome phylogenetic and phylogeographic analyses of the dispersal patterns

of HBV/E were performed. As HBV/E is predominantly found in West Africa, there was an

over-representation of some countries/geographical regions, probably introducing a sampling

bias that cannot be avoided. Nonetheless, despite the limitations under these assumptions, the

full-length HBV/E sequences analyzed showed a conspicuous low genetic diversity of 1.95%

similar to earlier studies that reported an intragenotypic nucleotide divergence of 1.73% [15,

18, 26]. The low nucleotide diversity suggests its relative recent introduction into the popula-

tion [26]. This coincides with reports that concluded that the recent origin and wide

Fig 2. Global dispersal of HBV/E strains between the geographical regions. A midpoint rooted phylogeographic tree estimated by RAxML v8.0.20. HBV/E sequences

(N = 318) used in the analysis are categorized according to the geographic region of sampling.

https://doi.org/10.1371/journal.pone.0240375.g002
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distribution of HBV/E in the West African crescent suggests a rapid population expansion of

HBV/E infections [53].

The present analyses of the limited number of sequences available in the databases, suggest

that HBV/E sequences found in the European region and in the Americas were disseminated

mostly from West African region. Considering HBV/E is only intermittently found in the

Americas and rarely found outside Africa except in individuals of African descent, [20] this

analysis is based on a small number of sequences thus limiting our ability to reach firm conclu-

sions or make a strong statement.

Various times from the most recent common ancestor (tMRCA) of HBV/E have been calcu-

lated using Bayesian inference, with a median time from tMRCA of 130 years [28] whereas in

Nigeria, a more recent tMRCA was estimated to be year 1948 (95% HPD: 1924–1966), with an

increase of HBV/E-infected population over the last ~40 to 50 years [53]. These times differ

from the estimated tMRCA of 6,000 years [29]. However, as previously suggested HBV/E may

have existed in indigenous African populations and recently re-introduced [15]. HBV/E has

previously been isolated in individuals from Colombia [54], India [55], Pygmies [56] and the

Khoi San (Kramvis, unpublished data), with no history of travel to or from Africa. Nonethe-

less, resolution of the variance of the estimated age of HBV/E will be difficult without the accu-

rate determination of the nucleotide substitution rate of HBV [13]. In contrast, the presence of

subgenotype A1 in Brazil and Haiti [27, 57], coincides with the present dominance of this sub-

genotype in southeast Africa, which was the source of the ~ 400, 000 captives taken to south

and Central America in the middle of the 19th century. The fact that HBV/E did not cause an

epidemic in the Americas could be because of the absence of HBV/E infection in the founding

population of slaves or the limited secondary onward transmission within this population.

The observed pattern of regional dispersal for sequences sampled from Nigeria and Guinea

(Fig 3) suggests limited population movements associated with cross-border transmissions. In

addition, the sequences sampled from Nigeria clustering in a separate clade supports the lim-

ited cross border transmission. The rapid spread of HBV/E within a short period that was

observed in large parts of Africa can be associated with a sudden change in the route of trans-

mission. It is plausible that a sudden change in the route of transmission [20] such contami-

nated vaccine preparations [27] may be responsible for the spread. Furthermore, numerous

mass injection campaigns against small pox, yaws [27, 58, 59] and sleeping sickness [60], using

multiple injections with same needles, were undertaken in the West African region. In addi-

tion, socio-cultural practices like facial or body scarification, traditional birth attendance and

shaving by local barbers using unsterilized sharp instruments are alternative routes of trans-

mission of blood-borne pathogens [61, 62]. A study conducted in Egypt linked the transmis-

sion of HCV to unsafe mass injection campaign against schistosomiasis until the 1980’s [63].

Therefore, because HBV is more transmissible than HCV, [64] it may partly explain the rapid

spread of the HBV/E in West Africa [63]. The big puzzle to be solved is the reason HBV/E rap-

idly spread in West Africa and predominated over genotype A, which was dispersed from

Africa by slave trade to the Americas [14, 65].

Perinatal transmission is possibly another mode of HBV transmission that might have led

to the rapid spread of HBV/E in sub-Saharan Africa. HBeAg easily crosses the placenta to

infants born to HBeAg-positive mothers infected with HBV/E (vertical) [66]. This can lead to

HBe/HBcAg tolerance in utero and perinatally [37] thus there is a high probability of chronic

carrier status later in life [14, 26, 34, 35, 37, 67, 68]. In addition, community based transmission

(horizontal) caused by children coming to contact with open wounds including behavioral fac-

tors (biting of fingernails and scratching the back of the carriers), sharing of bath towel and

dental cleaning materials [69, 70] is another mode of transmission. Extensive studies have

been done to further identify the factors that influence perinatal transmission but with limited
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focus on West Africa. Although perinatal HBV transmission may explain, in part, the explosive

spread of virtually identical viruses within a community, it is critical to understand whether it

also explains the similarity of viruses across the vast expanses of the HBV/E crescent.

A study, conducted by Jayaraman and colleagues, linked the rapid spread of HBV and HIV

infection in sub-Saharan Africa to the risky practices including blood transfusion and socio-

cultural practices [64]. Most of the sequences sampled from the different geographical regions

were obtained from asymptomatic carriers, blood donors or ESLD patients infected with

HBV/E. The progression of chronic HBV to cirrhosis, end stage liver disease (ESLD) and hepa-

tocellular carcinoma (HCC) is more rapid in HIV-positive individuals than those with HBV

alone [71]. The onset of the HIV epidemic in the 1950’s might have played a role in the explo-

sive transmission and dispersal of HBV/E in West Africa [72] with a high frequency of HBV/

HIV co-infection [73].

Fig 3. Country-wise dispersal of HBV/E strains. A midpoint rooted phylogeographic tree estimated by RAxML v8.0.20. HBV/E sequences (N = 318) used in the analysis

are categorized according to the country of sampling. Monophyletic clusters are indicated as solid triangles.

https://doi.org/10.1371/journal.pone.0240375.g003
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Conclusion

Taken together, our findings suggest considerable differences in the pattern of HBV/E regional

dispersal, with the HBV/E epidemic probably originating in the West Africa and expanding to

other regions, within and outside Africa. The observed strong patterns of regional and local-

ized dispersal suggest that the population movements associated with cross-border transmis-

sions were limited and this could be explained by the late introduction of HBV/E into the

population as well as a sudden change in the route of transmission such as extensive use of

unsafe needles in mass immunization campaigns and socio-cultural practices. In addition, the

onset of the HIV epidemic in the 1950’s might have played a role in the explosive transmission

and dispersal of HBV/E in West Africa, where HBV/HIV co-infection rate is high.
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