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ABSTRACT

The frequency by which genes are studied corre-
lates with the prior knowledge accumulated about
them. This leads to an imbalance in research atten-
tion where some genes are highly investigated while
others are ignored. Geneshot is a search engine de-
veloped to illuminate this gap and to promote atten-
tion to the under-studied genome. Through a simple
web interface, Geneshot enables researchers to en-
ter arbitrary search terms, to receive ranked lists of
genes relevant to the search terms. Returned ranked
gene lists contain genes that were previously pub-
lished in association with the search terms, as well
as genes predicted to be associated with the terms
based on data integration from multiple sources. The
search results are presented with interactive visu-
alizations. To predict gene function, Geneshot uti-
lizes gene–gene similarity matrices from processed
RNA-seq data, or from gene–gene co-occurrence
data obtained from multiple sources. In addition,
Geneshot can be used to analyze the novelty of gene
sets and augment gene sets with additional relevant
genes. The Geneshot web-server and API are freely
and openly available from https://amp.pharm.mssm.
edu/geneshot.

INTRODUCTION

Biomedical researchers that explore the molecular com-
position of the human cell rely heavily on search engines
that retrieve relevant documents from massive corpora of
biomedical text such as PubMed. In this way, researchers
integrate knowledge about genes and proteins to form new
hypotheses that are ultimately tested in controlled bench
experiments. This approach for performing research has
some drawbacks, for example: (i) Research that describes
the functions and interactions of genes and proteins has
strong biases toward studying popular genes while ignor-

ing most others (1,2); (ii) It is also common that researchers
are overwhelmed with the growing volume of publications,
and this leads to pursuing hypotheses that are not fully
informed by prior published studies. To mitigate the lat-
ter, text mining approaches have been widely applied to
biomedical text to help researchers obtain an overview of
the information embedded within thousands of related doc-
uments (3). Methods such as word2vec (4) and other recent
named entity recognition (NER) methods (5) such as Tag-
ger (6) have been increasingly effective in detecting differ-
ent types of relevant biomedical terms embedded within ab-
stracts and full-text research papers. Gene names are one
of those key entity terms that such text mining methods
can commonly and effectively detect. Systems that attempt
to build networks of genes based on their co-occurrence
in publications have been widely applied and used (7). Be-
yond constructing networks of genes based on their co-
occurrence in publications, text mining methods that de-
tect gene names in biomedical documents can be utilized to
generate annotated gene sets. Reanalysis and integration of
themed collections of gene sets from past studies can pro-
duce new insights and lead investigators toward the most
promising direction of new biomedical research. For exam-
ple, curated gene sets can serve as a database for matching
user submitted gene sets with annotated and curated gene
sets, which are organized into gene set libraries for gene set
enrichment analysis (8–10). Several tools have been devel-
oped to identify gene sets given arbitrary PubMed search
terms. For example, the tool Gene List Automatically De-
rived for You (GLAD4U) (11) uses the PubMed API to re-
turn a ranked list of genes based on any PubMed search.
Another related tool, PALM-IST (12), builds protein inter-
action networks and pathways based on free text searches.
Similarly, FACTA+ (13) is a search engine that returns
genes, drugs, diseases, symptoms, enzymes and compounds
for any search term. In addition, MyGeneFriends (14) is an
interesting application that connects investigators to genes
and diseases based on social media interactions. These are
only representative examples out of a sea of related tools.
With some similarity to these previously published tools,
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Geneshot converts PubMed identifiers (PMIDs) returned
for arbitrary search terms to ranked lists of genes using
gene-publication associations such as those encoded within
Gene References into Function (GeneRIF) (15), a manu-
ally curated resource maintained by the National Center
for Biotechnology Information (NCBI). As an alternative
to GeneRIF, Geneshot also utilizes an automated method
to associate genes with publications that we termed Au-
toRIF. AutoRIF simply harvests all PMIDs returned from
searches of gene names while removing entries for genes
with ambiguous names. A third resource to associate genes
with PMIDs is created with Tagger (6), an NER tool that
scans full-text articles. However, Geneshot takes the ap-
proach of converting search terms to gene sets a step fur-
ther by utilizing the genes identified in the original PubMed
search, as well as gene–gene similarity matrices created from
these three sources and other sources, to produce predicted
gene sets. Gene–gene co-expression data from the ARCHS4
RNA-seq resource (16) and gene–gene co-occurrence from
Enrichr queries (9,10) are used to assess the relevancy of the
supplementary genes. In addition, Geneshot supports sys-
tematic gene function predictions with the aforementioned
resources as well as gene set augmentation and novelty as-
sessment. We benchmarked the different five resources to
evaluate the quality of their ability to predict gene func-
tion and demonstrate how the Geneshot approach can be
used to generate many novel types of annotated gene sets.
In addition, Geneshot provides gene set novelty assessment
and gene set augmentation by proposing additional genes
that are likely relevant to the user input gene set. These are
just few implementations that demonstrate how Geneshot
opens the door to many creative applications that can fa-
cilitate automated hypothesis generation for biomedical re-
search.

MATERIALS AND METHODS

Mining gene–publication associations

Gene–publication associations are encoded within the
GeneRIF resource (15). We processed the GeneRIF file
available on the NCBI Gene database FTP site. From this
file, only the human and mouse gene–PMID associations
were obtained. One drawback with GeneRIF is that it is
incomplete. GeneRIF only covers a small fraction of gene
mentions in publications listed on PubMed. For human and
mouse genes, there are currently (April 2019) 1 015 165
gene–PMID entries. Each entry in GeneRIF is marked
with a date when the gene–PMID pair was entered into
the GeneRIF database. We updated these dates with the
date of the publication using the PubMed API. By plot-
ting the cumulative counts of PMID dates for individual
genes, we observed that during certain time intervals there
are missing entries (Supplementary Figure S1). The cause
of these gaps is unclear. To compensate with the incom-
pleteness of GeneRIF, we built an initial alternative ver-
sion of a dataset that associates genes with publications.
We termed this new resource AutoRIF. To compile Au-
toRIF, we queried PubMed with all human gene symbols
using the PubMed API. For each human gene (Ensembl
genome annotation 87), all PMIDs were retrieved with the
corresponding publication dates. This procedure yielded

8 097 696 PMID–gene pairs for 5 127 253 unique PMIDs.
About 1 579 304 PMIDs match more than one gene symbol.
About 677 175 PMIDs share more than two gene symbols.
To further improve the accuracy of automatically match-
ing genes with publications, we downloaded the data pro-
duced by Tagger (6) available from the Jensen Lab web-
site. Tagger was applied to identify genes in PubMed ab-
stracts and full-length open publications with an NER algo-
rithm. Tagger uses official gene symbols as well as their syn-
onyms as the background dictionary. The Tagger file con-
tains 9 353 632 gene–publication pairs. The entries in the
Tagger output contain Ensembl IDs. For converting these
Ensembl IDs to gene names, BioMart (17), circBase (18)
and HUGO Gene Nomenclature Committee (HGNC) (19)
resources were used. Ensembl stable protein IDs were con-
verted into gene names using BioMart. circRNAs names
were converted into circRNAs IDs using the circBase ID
cross-reference file for humans (hg19 circID to name.txt)
and then converted into gene names using the circBase
all Homo sapiens circRNAs file (hsa hg19 circRNA.txt).
All gene names were then cross-referenced with HGNC-
approved symbols and any gene synonyms were converted
into approved symbols. Only entries that converted into
HGNC-approved symbols were included in the final Tagger
processed file. Next, we calculated the intersection between
Tagger and AutoRIF. The intersection set has 2 918 803
gene–publication pairs. This intersection is used in the in-
terface as the AutoRIF option in the toggle switch between
GeneRIF and AutoRIF. While this approach may con-
tain some false positives, it results in a collection of gene–
publication pairs with fewer false negatives while containing
seven times more associations than GeneRIF.

Preparing the gene–gene co-occurrence and co-expression
matrices

Co-occurrence matrices were created from the Tagger out-
put, AutoRIF and GeneRIF files. The GeneRIF data
were filtered to include 1 015 165 gene–publication pairs
for 647 803 publications and 16 729 genes. The consoli-
dated AutoRIF dataset contains 14 979 unique genes from
1 784 274 publications. All the retained genes are protein
coding genes. The reason we do not have all genes are due to
ambiguous names of genes, for example, genes with names
such as KIT or ITCH, or genes with few or no publication
mentions in abstracts on PubMed. These datasets were con-
verted to a co-occurrence matrix by calculating the observed
versus expected ratio as follows:

C
(
genei , gene j

) = P
(
genei ∩gen e j

)
P (genei ) P

(
gene j

) (1)

Similarly, gene–gene co-expression correlations were cal-
culated from the processed data provided by the ARCHS4
resource (16). ARCHS4 contains processed gene expression
data derived from RNA-seq experiments deposited in the
Gene Expression Omnibus (GEO) (20). For constructing
the gene–gene co-expression network, we selected a random
set of 4000 human samples across a variety of different tis-
sues and cell types. Next, we quantile normalized the gene
counts and calculated the Pearson correlation for all pair-
wise genes as previously described (16).
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To prepare the co-occurance gene-gene similar matrix
from Enrichr queries, 1 097 157 unique user-submitted gene
sets to the Enrichr tool were dumped from the Enrichr
database on 27 October 2017. Lists used for internal testing,
lists with >2000 genes, lists with <2 genes and lists from
IP addresses that submitted >1000 lists were discarded.
Co-occurrence analysis was performed on the remaining
293 747 lists with (Equation 1).

Predicting gene function

By combining annotated gene sets with gene–gene similar-
ity matrices, we can predict novel gene functions. Specifi-
cally, we can predict gene functions by combining a gene–
gene similarity matrix G with a gene set library GF. The pre-
dicted gene set library G̃ F contains scores that quantify the
predicted membership of a gene to be part of a gene func-
tion. GF can be also considered a bipartite graph with two
types of nodes: genes and functions. Functions can be, for
example, membership in a pathway, GO term, or member-
ship in a protein complex. This bipartite graph can also be
represented as a binary matrix where the rows are the genes,
and the columns are the gene functions. The task then is
to enhance the edges in GF, by using information from the
matrix G, to produce G̃ F (Equation 2). In our case, we can
construct multiple versions for such a G̃ F by utilizing the
Gs created from AutoRIF, GeneRIF, Tagger, Enrichr co-
occurrence or ARCHS4 co-expression. The selection of the
matrix GF directs the domain of the predictions that will be
performed. The Geneshot website supports gene function
prediction from the gene–gene similarity matrices derived
from GeneRIF, AutoRIF, Tagger, Enrichr co-occurrence
and ARCHS4 co-expression.

G̃ F (gα, px) =
∑N

i=1,i �=α G (gα, gi ) × G F (gi , px)∑N
i=1,i �=α G (gi , px)

(2)

Benchmarking the gene function predictions

The ability of gene–gene similarity matrices to predict rele-
vant genes for biological terms was benchmarked using 16
gene set libraries downloaded from Enrichr (9,10). For each
gene set in each library, the average similarity between each
gene and each gene set was calculated and used to rank
genes based on their likelihood to be associated with the
gene sets (Equation 2). The average area under the curve
(AUC) for each gene set library was then calculated by
comparing the known gene–term associations with the pre-
dicted gene–term associations for each gene set in each li-
brary.

Constructing the PI–gene–award association network

A list containing principal investigators (PIs), their respec-
tive institutions and the total of NIH funding for 2017 was
downloaded from the Blue Ridge Institute for Medical Re-
search (BRIMR) site. Using the PubMed API, the name
of each PI was used to query PubMed and the associated
PMIDs were collected. The PMIDs for each PI were then
converted into genes using Geneshot. Gene sets were then

created for each PI. PIs with gene sets >100 genes were trun-
cated at 100 to only include the 100 most occurring genes.
PIs with no associated genes and PIs listed under more than
one institution were removed to avoid the inclusion of PIs
with the same name. The overall NIH award for each gene
was calculated by summing up the funding associated with
each gene–PI association. A list of dark kinases, dark ion
channels and dark GPCRs was obtained from the NIH
RFA IDG program announcement RFA-RM-18-021.

Developing the Geneshot web server application

Geneshot is written in Java and is running on a Tomcat
9 server. The interactive front-end elements of Geneshot
such as the scatter plot and the histograms are generated
using the JavaScript library D3.JS (21). The web applica-
tion is running in a Docker container (22) and the Docker
image is deposited in Docker Hub. Data files are deposited
in the AWS S3 cloud storage and loaded during startup of
the service. All the functions of Geneshot are also accessible
via REST-Endpoint API. The results from the API are re-
turned in JavaScript Object Notation (JSON) format. The
site was tested on Chrome, Firefox and Safari on a Mac OS.

RESULTS

Interacting with the Geneshot user interface

The Geneshot user interface for PubMed querying is di-
vided into three parts (Figure 1). The first section contains
the user input form. It enables the construction of arbitrary
search terms by combining elementary terms with AND
and NOT operators. The top search text box is for sub-
mitting search terms with a logical AND operator, and the
bottom text box is for the NOT terms. The resulting publi-
cation set from the AND search is filtered by the publica-
tions returned based on the exclusion criteria. Before sub-
mitting the search, using a switch, the user can choose be-
tween GeneRIF or AutoRIF to identify genes matching the
publications. The second section contains the visualization
of the returned search results (Figure 1B). After the search
completes, an interactive scatter plot displays the genes that
are found based on the matching publications. The scatter
plot displays the total matching publications for each gene,
and a normalized total that is the fraction of matching pub-
lications that mention the gene with the search terms over
the total publications that mention the gene regardless of
whether the search terms were mentioned. More detailed
information about each gene can be accessed by clicking on
the point that represents each gene. Clicking on the point
within the scatter plot invokes a function that loads a his-
togram that shows publications that are associated with the
search term alone over time, as well as publications that also
mention the gene. This provides a timeframe that enables a
user to visualize when the gene became associated with a
research topic. The third section displays the information
shown in the scatter plot in an interactive downloadable ta-
ble (Figure 1C). Near this table, on the right side, another
table shows the lists of genes that are predicted to be related
to the search term based on GeneRIF, AutoRIF, Tagger
or Enrichr gene–gene co-occurence, or the ARCHS4 gene–
gene co-expression matrices. Genes from both tables can be
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Figure 1. Geneshot user interface for the PubMed querying tab. (A) Search engine input section. (B) Scatter plot of all publications that mention both the
gene and the search terms against the normalized values (left); gene with and without search terms mentions over time (right). (C) Tables providing ranked
lists of relevant genes based on GeneRIF (left), and predictions based on AutoRIF co-occurrence (right).
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Figure 2. Median area under the receiver operating characteristic curve (AUC) distributions for predicting genes associated with terms from 16 Enrichr
gene set libraries. The libraries are labeled as data-driven and manually curated. Predictions were made using four gene–gene similarity matrices created
from Tagger, GeneRIF, AutoRIF and ARCHS4.

submitted to Enrichr for further analysis, or downloaded in
various formats.

Predicting gene function

The Geneshot user interface for the gene function predic-
tion requires the user to enter a valid human gene symbol,
select a gene set library and select one of the five gene–gene
similarity matrices for making the predictions (Supplemen-
tary Figure S2A). Once such selection is made, Geneshot
produces a table with ranked terms and a ROC curve plot to
estimate the quality of the predictions. The ROC curve ex-
amines how known functions for the gene are ranked among
all terms from the selected gene set library. Known terms
are also marked in color in the table (Supplementary Fig-
ure S2B).

Benchmarking the gene function predictions

To benchmark the quality of the gene function predictions
in Geneshot, we compared the performance of gene func-
tion predictions by predicting the content within gene set
libraries from Enrichr (9,10). Predictions were made with
the gene–gene similarity matrices created from GeneRIF
(15), AutoRIF, Tagger (6), Enrichr queries as well as a
gene–gene co-expression network derived from ARCHS4
(16) as described in the ‘Materials and Methods’ section.
AutoRIF and Tagger outperform all other gene–gene sim-
ilarity matrices for predicting gene set libraries created by
manual curation and are literature based (Figure 2). Hence,
gene-set libraries such as GO Biological Process and Reac-
tome utilize information found in the literature, and thus
literature-based similarity of genes captures these depen-
dencies, resulting in high predictive performance. One dis-
advantage of literature based similarity is that while they

may unravel novel relationships between genes, they do
not include understudied genes with unknown functions.
Gene co-expression similarity and gene–gene co-occurrence
similarity based on Enrichr queries, on the other hand,
is a more data-driven unbiased method to predict gene
function. Since RNA-seq gene expression and hundreds of
thousands of Enrichr queries cover the whole genome, the
gene–gene co-expression matrices created from ARCHS4
and Enrichr are more complete. The similarity matrices
from the ARCHS4 gene–gene co-expression matrix out-
perform the other matrices for predicting libraries created
from ARCHS4. However, the Enrichr gene–gene similarity
matrix outperforms the literature-based co-occurrence ma-
trices and the ARCHS4 gene–gene similarity matrix when
predicting gene functions for all other data-driven libraries
such as upstream transcription factors derived from ChIP-
seq experiments. Overall, the Enrichr gene–gene similarity
matrix performs well across all libraries (Figure 2). This
means that the collective knowledge generated by the crowd
can be reused for systematic high quality gene function dis-
covery.

Retrieving pathway membership

Next, we tested the ability of Geneshot to recover com-
plete pathways by querying Geneshot with pathway terms
from the KEGG pathway database (23). We asked whether
Geneshot can automatically return the genes that are
known members of each pathway. We searched 263 pathway
terms with the AutoRIF setting and measured the percent-
age of successfully recovered genes that are known mem-
bers of each pathway. This benchmark is meant to simulate
a typical use case of an arbitrary search term. On average,
we observe that 44% of the pathway member genes are re-
covered by the Geneshot literature search whereby general
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Figure 3. KEGG pathway gene members recovered by Geneshot given only the pathway terms. (A) Fraction of pathway gene members recovered with the
Geneshot literature search for all 263 KEGG pathway terms using the AutoRIF settings. (B) Total predicted pathway members recovered using the gene
function prediction method with the ARCHS4 gene–gene co-expression correlations. (C) Additional pathways members not recovered by the Geneshot
original search but recovered by the ARCHS4 gene–gene co-expression correlations. The input for the predictions was top ranked genes of different
sizes returned from the literature search with the AutoRIF settings. Ranking was accomplished by three methods: total counts, normalized counts and a
combined score that multiplies the total counts by the normalized counts.

pathway terms recover almost all pathway members while
specific terms recover only few members (Figure 3A).

Following, we asked how many pathway members are
predicted using the ARCHS4 gene–gene co-expression cor-
relation similarity matrix. To perform the functional predic-
tion, we first ranked the returned genes from the literature
search by three different methods. The first method ranks
the genes by the absolute publication count matching the
search term (absolute count); The second method ranks the
genes by the number of publications matching the search
term normalized by the total number of publications for the
gene (normalized count); and the third method is multiply-
ing the scores of the first two methods as a combined score
(combined score). We see that the best method is the com-
bined method in which the gene frequency is multiplied by
the total gene count (Figure 3B). The quality of the pre-
dictions depends on the number of genes that are submit-
ted from the top ranked lists of genes returned from the lit-
erature search, and used as input for performing the pre-
dictions. We can see that the performance level saturates at
around 25 genes for the combined method. Geneshot re-
turns the 200 most likely associated genes for each KEGG
pathway term. The number of genes that could be correctly
matched to a KEGG pathway, as a results of the prediction
step, but not be retrieved by the AutoRIF search, is shown
in Figure 3C.

Gene set novelty and augmentation analysis

The Geneshot user interface for the gene set augmentation
and novelty assessment takes as input a list of genes in an
entry box, and a background gene–gene matrix to perform
the predictions (Supplementary Figure S3A). Once such se-

lection is made, Geneshot returns a bar chart that divides
the genes within the gene set into four buckets: rare, uncom-
mon, common and very common based on the number of
gene–PMID associations listed in the Tagger dataset. Below
is the bar chart displaying two tables. One table lists the en-
tered genes with their publication counts and the other table
enlists the additional augmented genes based on their aver-
age similarity to the input gene set (Supplementary Figure
S3B).

Retrieving gene sets for NIH-funded principal investigators

The Geneshot API opens the opportunity for many appli-
cations. To demonstrate one such application, we first ob-
tained a list of all NIH-funded investigators and then used
Geneshot to extract the genes that they study based on their
prior publications. This enabled us to compute an estimate
of how much funds are spent on the study of each gene (Sup-
plementary Figure S4). We observe that well-studied genes
are also widely invested in further studying them. To miti-
gate this trend, the NIH has initiated the Illuminating the
Druggable Genome Common Fund program that focuses
on a concentrated effort to create new knowledge about
genes that have potential to become drug targets from the
most known druggable gene families: kinases, GPCRs and
ion channels. We see that the lists of kinases, GPCRs and
ion channels selected for further study by the NIH are in-
deed receiving little or no funding.

SUMMARY

Here, we present a new web-server application that enables
the systematic generation of gene sets from any biomedical
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set of terms. Beyond identifying genes associated with pub-
lications given any search term(s), Geneshot also predicts
genes that may be associated with those search terms, as
well as augments the original gene set with predicted genes
based on the various gene–gene similarity matrices. We plan
to update the site once a year. This decision was made to
allow provenance of the results. In other words, we think
it is important to have reproducible results so more fre-
quent updates can confuse users. Just because the ARCHS4
based gene–gene co-expression correlation predictions may
not perform as well as other libraries in some cases, this
does not mean that those predictions are necessarily wrong.
It is likely that many highly ranked genes predicted by the
co-expression correlations are relevant but not yet discov-
ered. Hence, Geneshot can enable rapid hypothesis genera-
tion to direct researchers to the most relevant genes to ex-
perimentally perturb in their next set of web-bench experi-
ments. Since Geneshot can be used to produce many new
gene sets automatically, Geneshot can be used to signifi-
cantly expand the collection of gene sets for gene set en-
richment analysis tools. In addition, Geneshot’s ability to
rapidly identify associations between potential drug targets
and diseases gives it the potential to enrich the content of
resources such as Open Targets (24), Pharos (25) and Har-
monizome (26). The PI analysis using Geneshot can be ap-
plied to create a network that connects PIs, genes, diseases,
drugs and other biomedical terms based on the genes these
search terms share. Such a network will connect investiga-
tors with other investigators and the areas of research these
investigators may overlook. The reason we decided to only
query NIH-funded PIs was due to the manageable size of
this list of researchers. However, all authors could be con-
nected based on the genes they published to form more
comprehensive collaborative networks.
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