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Abstract

Artificial neural networks are the main tools for data mining and were inspired by the human

brain and nervous system. Studies have demonstrated their usefulness in medicine. How-

ever, no studies have used artificial neural networks for the prediction of adverse drug reac-

tions. We aimed to validate the usefulness of artificial neural networks for the prediction of

adverse drug reactions and focused on vancomycin -induced nephrotoxicity. For construct-

ing an artificial neural network, a multilayer perceptron algorithm was employed. A 10-fold

cross validation method was adopted for evaluating the resultant artificial neural network. In

total, 1141 patients who received vancomycin at Hokkaido University Hospital from Novem-

ber 2011 to February 2019 were enrolled. Among these patients, 179 (15.7%) developed

vancomycin -induced nephrotoxicity. The top three risk factors of vancomycin -induced

nephrotoxicity which are relatively important in the artificial neural networks were average

vancomycin trough concentration� 13.0 mg/L and concomitant use of piperacillin–tazobac-

tam and vasopressor drugs. The predictive accuracy of the artificial neural network was

86.3% and that of the multiple logistic regression model (conventional statistical method)

was 85.1%. Moreover, area under the receiver operating characteristic curve (AUROC) of

the artificial neural network was 0.83. In the 10-fold cross-validation, the accuracy obtained

was 86.0% and AUROC was 0.82. The artificial neural network model predicting the vanco-

mycin -induced nephrotoxicity showed good predictive performance. This appears to be the

first report of the usefulness of artificial neural networks for an adverse drug reactions risk

prediction model.

Introduction

The process of data mining is defined as the use of techniques to identify hidden correlations

and patterns from complex datasets. In addition, it has been described as a method for
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constructing predictive models based on the discovery of underlying patterns and relation-

ships in large datasets [1].

Artificial neural networks (ANNs) are among the main tools used for data mining. They

have a complex computational structure that is inspired by the human brain and nervous sys-

tem [2]. The structure consists of input and output layers and a hidden layer of units that

transform the inputs into something that the output layer can use [3]. ANNs are exceptional

tools used for identifying the patterns from complex or numerous datasets to extract and teach

the machine to recognise relationships [4–6]. Thus, ANNs are able to incorporate the intricate

associations among variables into algorithms. In medical fields, recent studies concerning

ANNs have constructed a variety of prediction models: survival prediction of gastric cancer

[4], length of stay in an intensive care unit (ICU) [5] and risk of congenital heart disease in

pregnant women [6]. Recently, several studies have applied ANNs to investigate adverse drug

reactions (ADRs) [7–10]. However, these studies employed ANNs in areas of pharmacovigi-

lance and drug discovery to find a causal relationship between a drug and adverse events [7–

10]. Thus, a risk prediction model of ADRs using ANNs that is intended to be used for ‘indi-

vidual patients in clinical practice’ has not yet been established. Such an ANN would be very

useful, so it is important to validate its usefulness when applied to risk prediction models for

clinical practice.

In this study, we selected vancomycin (VCM)-induced nephrotoxicity (VIN) for validating

the usefulness of ANNs. There are many reports on risk factors for VIN, such as higher con-

centration (e.g. trough concentrations > 15 or 20 mg/L) [11–13], long-term duration of ther-

apy [14,15], certain hosts (i.e. those with baseline renal impairment and a history of acute

kidney injury and those who are critically ill or have septic shock) [16–18] and concomitant

medications [i.e. nonsteroidal anti-inflammatory drugs (NSAIDs), furosemide, amphotericin

B, aminoglycoside antibiotics and piperacillin–tazobactam (PIPC–TAZ)] [11,19,20]. Thus,

risk factors also have been established for the construction of ANNs. In Hokkaido University

Hospital, the number of cases of intravenous VCM administration is about 200 patients per

year, and this has been estimated to be sufficient for the construction of ANNs [4–6]. Consid-

ering the above, VIN was thought to be suitable for verifying the usefulness of an ANN model

for the risk prediction of ADR. These risk factors have also been analysed by multiple logistic

regression [11–18]. Thus, this conventional statistical method is suitable to validate the ANNs.

Although there are several algorithms for constructing ANNs, we employed a multilayer

perceptron (MLP) in this study. MLP is one of the typical supervised learning algorithms in

which a small number of parameters can be used to predict outcomes [21,22]. In addition,

MLP can be performed by packaging software, such as SPSS (IBM, Tokyo, Japan) and JMP

(SAS Institute, Inc., Cary, NC, USA) [4–6,23,24]. Since it does not require complex program-

ming, the methodology established in this research is expected to be easily adaptable to other

ADRs by clinicians and pharmacists. Thus, MLP is not new but our approach of applying it to

‘risk prediction of ADR’ is novel.

Therefore, in the present study, our objective was to validate the usefulness of ANNs using

MLP algorithm as applied to risk prediction ADRs by constructing a risk prediction model for

VIN.

Materials and methods

Ethics

This retrospective observational study was conducted in accordance with the guidelines for

human studies. The study protocol was approved by the ethics committee of Hokkaido
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University Hospital (study protocol NO. 018–0379). Because this study is conducted retrospec-

tively, they approved this study and waived informed consent.

Patients

This single-centre retrospective observational study was conducted at Hokkaido University

Hospital. Subjects who had received VCM intravenously from November 2011 to February

2019 were recruited. All data were obtained from the patients’ electronic medical records. The

inclusion criteria were (1) age� 18 years, (2) measured VCM trough concentration after the

third day of administration and (3) dosing period of�3 days. We excluded patients who had

undergone haemodialysis and continuous haemodialysis flow or had nephrotoxicity prior to

the measurement of VCM trough concentration. Informed consent was obtained from all

patients in the form of opt-out on the web-site in Hokkaido University Hospital.

Criteria of VCM-induced nephrotoxicity

The 2009 vancomycin consensus statement of the Infectious Diseases Society of America [25]

has defined nephrotoxicity as a serum creatinine (Scr) increase of�0.5 mg/dL or�50% rela-

tive to baseline [25]. To evaluate VIN, we extracted the maximum Scr during the administra-

tion period.

Data collection

Risk factors for nephrotoxicity were extracted on the basis of previous reports [11–20] and the

following potential factors: patient age, sex (male/female), body weight, Scr, creatinine clear-

ance (CCr), duration of therapy, concomitant medications (NSAIDs, furosemide, amphoteri-

cin B, aminoglycosides, PIPC–TAZ and vasopressor drugs), residence in the ICU, with or

without loading dose and average VCM trough concentration during therapy. Among the con-

comitant medications, vasopressor drugs were defined as follows: etilefrine, noradrenaline,

olprinone, milrinone, dopamine and dobutamine [26]. The loading dose was defined as an ini-

tial dose (single or daily)� 1.25 times of the maintenance dosage [26]. Moreover, to evaluate

patient characteristics, we collected the days to initial therapeutic drug monitoring (TDM) and

initial and maximum VCM trough concentration during therapy. All data were extracted from

the beginning of VCM administration, except for the duration of therapy, concomitant medi-

cations, residence in ICU, days to initial TDM and VCM trough concentration. Data of con-

comitant medications and residence in ICU were evaluated during the administration period.

To calculate CCr, the Cockcroft–Gault equation was employed [27].

Construction of the ANN and statistical analysis

As described above, MLP was employed for the construction of ANN. The MLP consists of an

input layer of nodes containing information, such as risk factors, followed by a hidden layer of

nodes that interact with the input variables that are finally transferred to the output layer

[21,28]. In the input layer, the number of neurons depends on the number of independent var-

iables, whereas the number of neurons in the output layer correlates with the number of values

that need to be predicted [21,28]. The steps of MLP are summarised as follows [21,28]: (1) data

is provided to input layer; (2) input layer produces a predicted output layer, which is sub-

tracted from actual output, and error value is estimated; (3) a back propagation adjusts the

weights between output and hidden layer nodes, which works backwards through network; (4)

when a back propagation is finished, the process starts again; and (5) this process is repeated

until error is minimised.
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The analysis was performed in three steps according to previous reports [28]. Firstly, uni-

variate logistic regression analysis was performed to identify the potential risk factors of VIN.

All continuous variables were converted into categorical variables. The optimal cut-off points

were determined from the receiver operating characteristic (ROC) curves using Youden’s

index [29]. Secondly, the ANN and multivariate logistic regression models were constructed.

In this analysis, all of the potential risk factors with P-values� 0.05 in the univariate analysis

were used. Finally, the predictive performances of the ANN model and multivariate logistic

regression model were compared. To evaluate predictive performances, the accuracy was cal-

culated for each model, and the areas under the ROC curve (AUROC) of the ANN model was

evaluated. These indexes were generally considered to be important performance scores in

previous studies [28,30–34]. Furthermore, the 10-fold cross validation was performed for

internal validation of the ANN model [24,35]. The Hosmer–Lemeshow test was used to evalu-

ate the fitness of the logistic regression model (the cut-off value was P� 0.05) [36].

Patient characteristics were compared using unpaired, and all tests of significance were

two-tailed. For comparing the continuous variables, the Mann–Whitney U-test was used (all

continuous variables were non-normally distributed). Categorical variables were compared

using Pearson’s Chi-squared test or Fisher’s exact test. P� 0.05 was considered to be statisti-

cally significant.

All statistical analyses were performed using JMP 14 (SAS Institute Inc., Cary, NC, USA), a

statistical software typically used for ANNs [23,24].

Results

Patient characteristics

Out of 1490 initial patients, 1141 were included in the study (Fig 1). Among them, 179 (15.7%)

developed VIN. As shown in Table 1, there were significant differences between the patients

who developed nephrotoxicity and those who did not in Scr; CCr; duration of therapy; con-

comitant medications (furosemide, amphotericin B, PIPC–TAZ and vasopressor drugs);

Fig 1. Flowchart of patients included in this study. Vancomycin: VCM, Therapeutic drug monitoring: TDM,

Haemodialysis: HD, Continuous haemodialysis flow: CHDF.

https://doi.org/10.1371/journal.pone.0236789.g001
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residence in the ICU; and the initial, maximum and average VCM trough concentrations dur-

ing therapy.

Univariate analysis

In the univariate analysis (Table 2), Scr� 0.68 mg/dL, CCr< 88.8 mL/min, duration of

therapy� 10 days, concomitant medications furosemide, amphotericin B, PIPC–TAZ and

vasopressor drugs, residence in the ICU and average VCM trough concentration� 13.0 mg/L

were significant factors (P� 0.05). However, Scr is usually strongly associated with CCr. In

this study, Scr was also excluded. Thus, these factors, excluding Scr, were used to construct the

ANN and multiple logistic regression models.

Construction of the ANN model

The ANN model predicting the VIN is shown in Fig 2. Based on the univariate analysis, the

eight independent variables were applied, and the dependent variable was the presence or

Table 1. Comparison of the characteristics of patients with and without nephrotoxicity.

Characteristic Total (n = 1141) With nephrotoxicity (n = 179) Without nephrotoxicity (n = 962) P-value

Age (years), median (range) 65 (18–96) 65 (18–96) 66 (18–95) P = 0.21 c)

Age� 67 years, n (%) 504 (44.2) 72 (40.2) 432 (44.9) P = 0.25 a)

Sex (male), n (%) 728 (63.8) 111 (62.0) 617 (64.1) P = 0.59 a)

Body weight (kg), median (range) 57.0 (28.3–127.0) 57.9 (28.3–98.1) 56.7 (29.1–127.0) P = 0.37 c)

Body weight� 57.2 kg, n (%) 566 (49.6) 99 (55.3) 467 (48.5) P = 0.10 a)

Serum creatinine (mg/dL), median (range) 0.67 (0.16–5.15) 0.62 (0.24–4.57) 0.68 (0.16–5.15) P < 0.01 c) �

Serum creatinine� 0.68 mg/dL, n (%) 564 (49.4) 71 (39.7) 493 (51.3) P < 0.01 a) �

CCr (mL/min), median (range) 85.9 (7.3–569.6) 96.3 (7.3–315.2) 84.0 (10.0–569.6) P < 0.01 c) �

CCr < 88.8 mL/min, n (%) 607 (53.2) 75 (41.9) 532 (55.3) P < 0.01 a) �

Duration of therapy (days), median (range) 9 (3–88) 12 (3–88) 8 (3–83) P < 0.01 c) �

Duration of therapy� 10 days, n (%) 533 (46.7) 114 (63.7) 419 (43.6) P < 0.01 a) �

Concomitant medications, n (%)

NSAIDs 541 (47.4) 92 (51.4) 449 (46.7) P = 0.24 a)

Furosemide 392 (34.4) 108 (60.3) 284 (29.5) P < 0.01 a) �

Piperacillin–Tazobactam 188 (16.5) 57 (31.8) 131 (13.6) P < 0.01 a) �

Amphotericin B 21 (1.84) 11 (6.15) 10 (1.04) P < 0.01 b) �

Aminoglycoside antibiotics 26 (2.28) 7 (3.91) 19 (1.98) P = 0.17 b)

Vasopressor drugs 149 (13.1) 48 (26.8) 101 (10.5) P < 0.01 a) �

Residence in intensive care unit, n (%) 145 (12.7) 33 (18.4) 112 (11.6) P = 0.01 a) �

Duration of initial TDM (days), median (range) 3 (3–10) 3 (3–7) 3 (3–10) P = 0.63 c)

Initial VCM trough concentration (mg/L), median (range) 10.6 (2.1–39.4) 12.8 (3.8–39.4) 10.4 (2.1–36.0) P < 0.01 c) �

Maximum VCM trough concentration (mg/L), median (range) 13.5 (2.1–72.2) 21.5 (5.7–72.2) 12.6 (2.1–36.0) P < 0.01 c) �

Average VCM trough concentration (mg/L), median (range) 11.6 (2.1–42.1) 15.1 (4.7–42.1) 11.2 (2.1–29.5) P < 0.01 c) �

Average VCM trough concentration� 13 mg/L, n (%) 449 (39.4) 114 (63.7) 335 (34.8) P < 0.01 a) �

With loading dose, n (%) 187 (16.4) 23 (12.8) 164 (17.0) P = 0.16 a)

Creatinine clearance: CCr, Vancomycin: VCM, Nonsteroidal anti-inflammatory drugs: NSAIDs, Therapeutic drug monitoring: TDM

a)Chi-squared test

b)Fisher’s exact test

c)Mann–Whitney U-test.

�P-values� 0.05 were considered statistically significant.

https://doi.org/10.1371/journal.pone.0236789.t001
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absence of nephrotoxicity. The ANN model consists of an input layer, a hidden layer and an

output layer. The input and output layers contained eight and one neuron, respectively. The

relative importance of the independent variables in the ANN model is presented in Fig 3. The

top three factors for VIN were average VCM trough concentration� 13.0 mg/L, concomitant

use of PIPC–TAZ and vasopressor drugs.

Table 2. Univariate analysis of risk factors for nephrotoxicity.

Characteristic OR 95% CI P-value

Age� 67 years 0.83 0.60–1.14 P = 0.25

Sex (male) 0.91 0.66–1.27 P = 0.57

Body weight� 57.2 kg 1.31 0.95–1.81 P = 0.10

Serum creatinine � 0.68 mg/dL 0.63 0.45–0.87 P< 0.01†

CCr < 88.8 mL/min 0.58 0.42–0.81 P< 0.01†

Duration of therapy� 10 days 2.27 1.63–3.16 P< 0.01†

Concomitant medications

NSAIDs 1.24 0.90–1.70 P = 0.19

Furosemide 3.63 2.61–5.05 P< 0.01†

Amphotericin B 6.23 2.61–14.91 P< 0.01†

Aminoglycoside antibiotics 1.95 0.69–5.47 P = 0.21

Piperacillin–Tazobactam 2.96 2.06–4.27 P< 0.01†

Vasopressor drugs 3.12 2.12–4.61 P< 0.01†

Residence in intensive care unit 1.72 1.12–2.63 P = 0.01†

Average VCM trough concentration� 13 mg/L 3.28 2.35–4.58 P< 0.01†

With loading dose 0.72 0.45–1.15 P = 0.17

Creatinine clearance: CCr, Vancomycin: VCM, Odds ratio: OR, 95% Confidence interval: 95% CI

†P-values� 0.05 were included in the artificial neural network and multiple logistic regression analysis.

https://doi.org/10.1371/journal.pone.0236789.t002

Fig 2. ANN model predicting VCM-induced nephrotoxicity. Creatinine clearance: CCr, Average vancomycin trough

concentration: Trough concentration, Intensive care unit: ICU, Piperacillin–Tazobactam: PIPC–TAZ.

https://doi.org/10.1371/journal.pone.0236789.g002
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Multiple logistic regression analysis

As shown in Table 3, in the multiple logistic regression analysis using a stepwise approach,

CCr< 88.8 mL/min, duration of therapy� 10 days, concomitant medications (furosemide,

amphotericin B, PIPC–TAZ and vasopressor drugs) and average VCM trough

concentration� 13.0 mg/L were extracted as the independent risk factors of VIN.

Validation of the ANN and multiple logistic regression models

The predictive accuracy of the ANN model was 86.3% and that of the multiple logistic regres-

sion model (conventional statistical method) was 85.1%. In addition, AUROC of the ANN

model was 0.83 (Fig 4). In the 10-fold cross-validation, accuracy and AUROC were 86.0% and

Fig 3. Relative importance of the independent variables in the ANN model. Average vancomycin trough

concentration: Trough concentration, Creatinine clearance: CCr, Intensive care unit: ICU, Piperacillin–Tazobactam:

PIPC–TAZ.

https://doi.org/10.1371/journal.pone.0236789.g003

Table 3. Multivariate analysis of risk factors for nephrotoxicity.

Characteristic OR 95% CI P-value

CCr < 88.8 mL/min 0.41 0.29–0.60 P < 0.01�

Duration of therapy� 10 days 2.32 1.60–3.36 P < 0.01�

Concomitant medications

Furosemide 2.54 1.75–3.68 P < 0.01�

Amphotericin B 3.43 1.29–9.11 P = 0.01�

Piperacillin–Tazobactam 3.36 2.22–5.06 P < 0.01�

Vasopressor drugs 2.78 1.75–4.41 P < 0.01�

Average VCM trough concentration� 13 mg/L 3.60 2.49–5.20 P < 0.01�

Creatinine clearance: CCr, Vancomycin: VCM, Odds ratio: OR, 95% Confidence interval: 95% CI

�P-values� 0.05 were considered statistically significant.

https://doi.org/10.1371/journal.pone.0236789.t003
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0.82, respectively. In the multiple logistic regression model, the Hosmer–Lemeshow test gave a

P-value of 0.66.

Discussion

To the best of our knowledge, this is the first study to validate the usefulness of ANNs applied

to a risk prediction model of ADRs for individual patients in clinical practice by constructing a

risk prediction model of VIN. In the ANN model, the predictive accuracy was 86.3% and the

AUROC was 0.83. These indexes were also used in some previous reports that regarded them

as important performance scores [28,30–34]. The AUROC of the ANN model (0.83) indicated

moderate accuracy based on the criteria reported by Akobeng [29]. Furthermore, when com-

pared with the results of previous reports, our results are favourable. For example, Pergialiotis

et al. built an ANN model to predict endometrial cancer in postmenopausal women and

achieved an accuracy of 85.4% [2]. Paydar et al. developed a prediction model of pregnancy

outcomes among pregnant women with systemic lupus erythematosus and achieved an accu-

racy of 90.9% [35]. Hassanipour et al. conducted a systematic review of ten studies that used

ANNs to predict health-related outcomes in traumatic patients [30]. They compared AUROC

and accuracy between these ten studies, and the AUROC ranged from 0.73 to 0.97, with accu-

racies from 80.9% to 98.4%. Considering these values, our predictive performances were rea-

sonably accurate. In addition, the accuracy and AUROC in the 10-fold cross-validation was

86.0% and 0.82, respectively, which were favourable [24,35].

In this study, the accuracy of the ANN model (86.3%) was slightly higher than that of the

multiple logistic regression model (85.1%). Comparison of the predictive performances of

ANNs and logistic regression models has been reported by several previous studies. In the

Fig 4. Receiver operating characteristic curve of the ANN model. The area under the receiver operating

characteristic curve was 0.83.

https://doi.org/10.1371/journal.pone.0236789.g004
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above-mentioned systematic review [30], ANNs had a high level of accuracy and was statisti-

cally significant (odds ratio: 1.09). Further, similar results have been obtained in other previous

reports [2,31,37,38]. Thus, clinical application of ANNs may enable more accurate prediction

of ADRs than logistic regression model. In addition, this approach can be applied to other

ADRs and developed further. Meanwhile, logistic regression model is appropriate if the pri-

mary endpoint is extracting dependent factors affecting ADRs because ANNs cannot analyse

individual factors (e.g., calculating odds ratio) [38].

As shown in Fig 3, an average VCM trough concentration� 13.0 mg/L was extracted as the

most important factor of VIN in the ANN, which was consistent with the multiple logistic

regression analysis (Table 3). A high VCM trough concentration is known to be a common

risk factor of VIN, and cut-off values are usually >15 or 20 mg/L [11–13,16]. On the other

hand, our result of�13.0 mg/L was lower than these (cut-off points were determined from the

ROC using the Youden’s index [29]), which was assumed to be caused by differences in the

target trough concentrations. In previous reports, the target trough concentrations were also

set to 15–20 mg/L [16,19,25]. In our hospital, target trough levels were set to 10–20 mg/L

based on the TDM practice guidelines in Japan [39]. Thus, these target trough levels were

lower than those of 15–20 mg/L in previous reports [16,19,25], which may be the reason of the

lower cut-off value of VIN. PIPC–TAZ use was extracted as the second most important risk

factor in ANN model. Recently, concomitant use of PIPC–TAZ has received attention for its

association with VIN [20,40,41]. Although this mechanism remains unclear, VIN is obviously

increased by PIPC–TAZ use, and our results supported those of the previous reports. Gener-

ally, baseline renal impairment, like that in patients with chronic kidney disease, is associated

with VIN [16]. However, our result was inconsistent with this (CCr < 88.8 mL/min, odds

ratio = 0.41, 95% confidence interval, 0.29–0.60, Table 3). This is thought to have been caused

by the ‘actual Scr use’ in the CCr calculations. Smythe et al. evaluated the accuracy of CCr esti-

mates generated for elderly patients and recommended rounding the Scr to 1.0 mg/dL for low

Scr values [42]. In addition, rounding the Scr to 0.6 mg/dL was recommended by Winter [43].

Thus, if an adjusted Scr was employed, this result would not have been obtained. However, an

adjustment method for Scr has not become well established, so we used the actual values in the

present study. Therefore, investigation of the accuracy of CCr calculations should be investi-

gated in future research.

Accordingly, we also used ANNs to successfully build a risk prediction model of VIN. How-

ever, compared with logistic regression analysis, ANNs have several disadvantages. Firstly,

ANNs have a ‘black box’ nature; that is, ANNs cannot explain any insights into the structure of

the function being approximated [44]. This is in contrast with a logistic regression model that

can provide such information. Secondly, ANNs have a risk of overtraining and a possibility of

overfitting the model, which may provide an overconfident prediction [45]. Finally, for clinical

applications, ANNs require special statistical analysis software. Thus, it would currently be dif-

ficult to use our models widely. However, Pergialiotis V et al. explained that these problems

can be solved using a larger number of patients (except for requiring the special statistical anal-

ysis software) because although a small dataset may not be applicable to large cohorts, the

reverse is always possible [2]. Thus, establishment of larger databases, such as one in a multi-

centre study, is necessary for the construction of safer ANN models.

Our study had several limitations. First, this study was conducted at a single centre. Second,

factors that have been reported previously, such as septic shock, history of acute kidney injury

and acute physiology and chronic health evaluation II scores, could not be evaluated [16–18].

In addition, risk factors of concomitant medications and residence in ICU were extracted dur-

ing the administration period, and trough concentrations were evaluated using average values.

Thus, our models included factors that could not be evaluated at the time of use. However, this

PLOS ONE Validation of the usefulness of artificial neural networks for prediction of adverse drug reactions

PLOS ONE | https://doi.org/10.1371/journal.pone.0236789 July 29, 2020 9 / 12

https://doi.org/10.1371/journal.pone.0236789


study aimed to validate ANNs for the prediction of ADRs, so we thought that our study design

was the best.

In this study, the ANN model predicting VIN exhibited good predictive performance.

Thus, our results indicate the usefulness of ANNs as risk prediction models of ADRs for indi-

vidual patients in clinical practice. These models would enable clinician and pharmacists to

predict ADRs and to easily make decisions such as drug selections. Furthermore, some

advanced ANN algorithms, such as recurrent neural network [7,8], can also be employed for

this purpose in future. Thus, by performing multi-centre study and using advanced ANN algo-

rithms, reliable risk prediction models need to be built.

Author Contributions

Conceptualization: Shungo Imai.

Data curation: Shungo Imai, Takayuki Miyai.

Formal analysis: Shungo Imai.

Funding acquisition: Shungo Imai, Masaki Kobayashi, Ken Iseki.

Investigation: Shungo Imai, Yoh Takekuma, Takayuki Miyai.

Methodology: Shungo Imai, Yoh Takekuma, Hitoshi Kashiwagi, Takayuki Miyai.

Project administration: Shungo Imai.

Resources: Shungo Imai, Ken Iseki.

Software: Shungo Imai, Masaki Kobayashi, Ken Iseki.

Supervision: Mitsuru Sugawara.

Visualization: Shungo Imai.

Writing – original draft: Shungo Imai.

Writing – review & editing: Yoh Takekuma, Hitoshi Kashiwagi, Takayuki Miyai, Masaki

Kobayashi, Ken Iseki, Mitsuru Sugawara.

References
1. Hiramatsu N, Kurosaki M, Sakamoto N, Iwasaki M, Sakamoto M, Suzuki Y, et al. Pretreatment predic-

tion of anemia progression by pegylated interferon alpha-2b plus ribavirin combination therapy in

chronic hepatitis C infection: decision-tree analysis. J Gastroenterol. 2011; 46: 1111–1119. https://doi.

org/10.1007/s00535-011-0412-z PMID: 21681410

2. Pergialiotis V, Pouliakis A, Parthenis C, Damaskou V, Chrelias C, Papantoniou N, et al. The utility of arti-

ficial neural networks and classification and regression trees for the prediction of endometrial cancer in

postmenopausal women. Public Health 2018; 164: 1–6. https://doi.org/10.1016/j.puhe.2018.07.012

PMID: 30149185

3. Huang S, Xu Y, Yue L, Wei S, Liu L, Gan X, et al. Evaluating the risk of hypertension using an artificial

neural network method in rural residents over the age of 35 years in a Chinese area. Hypertens Res.

2010; 33: 722–726. https://doi.org/10.1038/hr.2010.73 PMID: 20505678

4. Yazdani Charati J, Janbabaei G, Alipour N, Mohammadi S, Ghorbani Gholiabad S, Fendereski A. Sur-

vival prediction of gastric cancer patients by Artificial Neural Network model. Gastroenterol Hepatol Bed

Bench. 2018; 11: 110–117. PMID: 29910851

5. LaFaro RJ, Pothula S, Kubal KP, Inchiosa ME, Pothula VM, Yuan SC, et al. Neural network prediction

of ICU length of stay following cardiac surgery based on pre-incision variables. PLoS One. 2015; 10:

e0145395. https://doi.org/10.1371/journal.pone.0145395 PMID: 26710254

6. Li H, Luo M, Zheng J, Luo J, Zeng R, Feng N, et al. An artificial neural network prediction model of con-

genital heart disease based on risk factors: A hospital-based case-control study. Medicine (Baltimore).

2017; 96: e6090.

PLOS ONE Validation of the usefulness of artificial neural networks for prediction of adverse drug reactions

PLOS ONE | https://doi.org/10.1371/journal.pone.0236789 July 29, 2020 10 / 12

https://doi.org/10.1007/s00535-011-0412-z
https://doi.org/10.1007/s00535-011-0412-z
http://www.ncbi.nlm.nih.gov/pubmed/21681410
https://doi.org/10.1016/j.puhe.2018.07.012
http://www.ncbi.nlm.nih.gov/pubmed/30149185
https://doi.org/10.1038/hr.2010.73
http://www.ncbi.nlm.nih.gov/pubmed/20505678
http://www.ncbi.nlm.nih.gov/pubmed/29910851
https://doi.org/10.1371/journal.pone.0145395
http://www.ncbi.nlm.nih.gov/pubmed/26710254
https://doi.org/10.1371/journal.pone.0236789


7. Wunnava S, Qin X, Kakar T, Sen C, Rundensteiner EA, Kong X. Adverse drug event detection from

electronic health records using hierarchical recurrent neural networks with dual-level embedding. Drug

Saf. 2019; 42: 113–122. https://doi.org/10.1007/s40264-018-0765-9 PMID: 30649736

8. Cocos A, Fiks AG, Masino AJ. Deep learning for pharmacovigilance: recurrent neural network architec-

tures for labeling adverse drug reactions in twitter posts. J Am Med Inform Assoc. 2017; 24: 813–821.

https://doi.org/10.1093/jamia/ocw180 PMID: 28339747

9. Dey S, Luo H, Fokoue A, Hu J, Zhang P. Predicting adverse drug reactions through interpretable deep

learning framework. BMC Bioinformatics. 2018; 19: 476. https://doi.org/10.1186/s12859-018-2544-0

PMID: 30591036

10. Zhang L, Zhang H, Ai H, Hu H, Li S, Zhao J, et al. Applications of machine learning methods in drug tox-

icity prediction. Curr Top Med Chem. 2018; 18: 987–997. https://doi.org/10.2174/

1568026618666180727152557 PMID: 30051792

11. Huang M, Wu H, Zhou J, Xu M, Zhou S. Efficacy of vancomycin on gram-positive bacterial infection in

elderly critical patients and risk factors associated with nephrotoxicity. Arch Iran Med. 2018; 21: 349–

355. PMID: 30113856

12. Cano EL, Haque NZ, Welch VL, Cely CM, Peyrani P, Scerpella EG, et al. Incidence of nephrotoxicity

and association with vancomycin use in intensive care unit patients with pneumonia: retrospective anal-

ysis of the IMPACT-HAP Database. Clin Ther. 2012; 34: 149–157. https://doi.org/10.1016/j.clinthera.

2011.12.013 PMID: 22284995

13. Bosso JA, Nappi J, Rudisill C, Wellein M, Bookstaver PB, Swindler J, et al. Relationship between vanco-

mycin trough concentrations and nephrotoxicity: a prospective multicenter trial. Antimicrob Agents Che-

mother. 2011; 55: 5475–5479. https://doi.org/10.1128/AAC.00168-11 PMID: 21947388

14. Contreiras C, Legal M, Lau TT, Thalakada R, Shalansky S, Ensom MH. Identification of risk factors for

nephrotoxicity in patients receiving extended-duration, high-trough vancomycin therapy. Can J Hosp

Pharm. 2014; 67: 126–132. https://doi.org/10.4212/cjhp.v67i2.1340 PMID: 24799722

15. Hall RG, Hazlewood KA, Brouse SD, Giuliano CA, Haase KK, Frei CR, et al. Empiric guideline-recom-

mended weight-based vancomycin dosing and nephrotoxicity rates in patients with methicillin-resistant

Staphylococcus aureus bacteremia: A retrospective cohort study. BMC Pharmacol Toxicol. 2013; 14:

12. https://doi.org/10.1186/2050-6511-14-12 PMID: 23402420

16. Lodise TP, Lomaestro B, Graves J, Drusano GL. Larger vancomycin doses (at least four grams per

day) are associated with an increased incidence of nephrotoxicity. Antimicrob. Agents Chemother.

2008; 52: 1330–1336. https://doi.org/10.1128/AAC.01602-07 PMID: 18227177

17. Minejima E, Choi J, Beringer P, Lou M, Tse E, Wong-Beringer A. Applying new diagnostic criteria for

acute kidney injury to facilitate early identification of nephrotoxicity in vancomycin-treated patients. Anti-

microb Agents Chemother. 2011; 55: 3278–3283. https://doi.org/10.1128/AAC.00173-11 PMID:

21576448

18. Cappelletty D, Jablonski A, Jung R. Risk factors for acute kidney injury in adult patients receiving vanco-

mycin. Clin Drug Investig. 2014; 34: 189–193. https://doi.org/10.1007/s40261-013-0163-0 PMID:

24385282

19. van Hal SJ, Paterson DL, Lodise TP. Systematic review and meta-analysis of vancomycin-induced

nephrotoxicity associated with dosing schedules that maintain troughs between 15 and 20 milligrams

per liter. Antimicrob Agents Chemother. 2013; 57: 734–744. https://doi.org/10.1128/AAC.01568-12

PMID: 23165462

20. Hammond DA, Smith MN, Li C, Hayes SM, Lusardi K, Bookstaver P B. Systematic review and meta-

analysis of acute kidney injury associated with concomitant vancomycin and piperacillin/tazobactam.

Clin Infect Dis. 2017; 64: 666–674. https://doi.org/10.1093/cid/ciw811 PMID: 27940946

21. Loftus TJ, Brakenridge SC, Croft CA, Smith RS, Efron PA, Moore FA, et al. Neural network prediction of

severe lower intestinal bleeding and the need for surgical intervention. J Surg Res. 2017; 212: 42–47.

https://doi.org/10.1016/j.jss.2016.12.032 PMID: 28550920

22. Pasini A. Artificial neural networks for small dataset analysis. J Thorac Dis. 2015; 7: 953–960. https://

doi.org/10.3978/j.issn.2072-1439.2015.04.61 PMID: 26101654

23. Pralle RS, Weigel KW, White HM. Predicting blood β-hydroxybutyrate using milk Fourier transform

infrared spectrum, milk composition, and producer-reported variables with multiple linear regression,

partial least squares regression, and artificial neural network. J Dairy Sci. 2018; 101: 4378–4387.

https://doi.org/10.3168/jds.2017-14076 PMID: 29477523

24. Ing EB, Miller NR, Nguyen A, Su W, Bursztyn LLCD, Poole M, et al. Neural network and logistic regres-

sion diagnostic prediction models for giant cell arteritis: development and validation. Clin Ophthalmol.

2019; 13: 421–430. https://doi.org/10.2147/OPTH.S193460 PMID: 30863010

25. Rybak MJ, Lomaestro BM, Rotschafer JC, Moellering RC, Craig WA, Billeter M, et al. Vancomycin ther-

apeutic guidelines: A summary of consensus recommendations from the infectious diseases Society of

PLOS ONE Validation of the usefulness of artificial neural networks for prediction of adverse drug reactions

PLOS ONE | https://doi.org/10.1371/journal.pone.0236789 July 29, 2020 11 / 12

https://doi.org/10.1007/s40264-018-0765-9
http://www.ncbi.nlm.nih.gov/pubmed/30649736
https://doi.org/10.1093/jamia/ocw180
http://www.ncbi.nlm.nih.gov/pubmed/28339747
https://doi.org/10.1186/s12859-018-2544-0
http://www.ncbi.nlm.nih.gov/pubmed/30591036
https://doi.org/10.2174/1568026618666180727152557
https://doi.org/10.2174/1568026618666180727152557
http://www.ncbi.nlm.nih.gov/pubmed/30051792
http://www.ncbi.nlm.nih.gov/pubmed/30113856
https://doi.org/10.1016/j.clinthera.2011.12.013
https://doi.org/10.1016/j.clinthera.2011.12.013
http://www.ncbi.nlm.nih.gov/pubmed/22284995
https://doi.org/10.1128/AAC.00168-11
http://www.ncbi.nlm.nih.gov/pubmed/21947388
https://doi.org/10.4212/cjhp.v67i2.1340
http://www.ncbi.nlm.nih.gov/pubmed/24799722
https://doi.org/10.1186/2050-6511-14-12
http://www.ncbi.nlm.nih.gov/pubmed/23402420
https://doi.org/10.1128/AAC.01602-07
http://www.ncbi.nlm.nih.gov/pubmed/18227177
https://doi.org/10.1128/AAC.00173-11
http://www.ncbi.nlm.nih.gov/pubmed/21576448
https://doi.org/10.1007/s40261-013-0163-0
http://www.ncbi.nlm.nih.gov/pubmed/24385282
https://doi.org/10.1128/AAC.01568-12
http://www.ncbi.nlm.nih.gov/pubmed/23165462
https://doi.org/10.1093/cid/ciw811
http://www.ncbi.nlm.nih.gov/pubmed/27940946
https://doi.org/10.1016/j.jss.2016.12.032
http://www.ncbi.nlm.nih.gov/pubmed/28550920
https://doi.org/10.3978/j.issn.2072-1439.2015.04.61
https://doi.org/10.3978/j.issn.2072-1439.2015.04.61
http://www.ncbi.nlm.nih.gov/pubmed/26101654
https://doi.org/10.3168/jds.2017-14076
http://www.ncbi.nlm.nih.gov/pubmed/29477523
https://doi.org/10.2147/OPTH.S193460
http://www.ncbi.nlm.nih.gov/pubmed/30863010
https://doi.org/10.1371/journal.pone.0236789


America, the American Society of Health-System Pharmacists, and the Society of Infectious Diseases

Pharmacists. Clin Infect Dis. 2009; 49: 325–327. https://doi.org/10.1086/600877 PMID: 19569969

26. Imai S, Yamada T, Ishiguro N, Miyamoto T, Kagami K, Tomiyama N, et al. Validating the effectiveness

of switching the vancomycin TDM analysis software based on the predictive accuracy. Yakugaku Zas-

shi. 2017; 137: 1185–1192. https://doi.org/10.1248/yakushi.17-00080 PMID: 28867705

27. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976; 16:

31–41. https://doi.org/10.1159/000180580 PMID: 1244564

28. Raghupathi V, Raghupathi W. Preventive healthcare: A neural network analysis of behavioral habits

and chronic diseases. Healthcare (Basel). 2017; 5: E8.

29. Akobeng A K. Understanding diagnostic tests 3: Receiver operating characteristic curves. Acta Pae-

diatr. 2017; 96: 644–647.

30. Hassanipour S, Ghaem H, Arab-Zozani M, Seif M, Fararouei M, Abdzadeh E, et al. Comparison of artifi-

cial neural network and logistic regression models for prediction of outcomes in trauma patients: A sys-

tematic review and meta-analysis. Injury. 2019; 50: 244–250. https://doi.org/10.1016/j.injury.2019.01.

007 PMID: 30660332

31. Lee HC, Yoon SB, Yang SM, Kim WH, Ryu HG, Jung CW, et al. Prediction of acute kidney injury after

liver transplantation: Machine learning approaches vs. logistic regression model. J Clin Med. 2018; 7:

E428. https://doi.org/10.3390/jcm7110428 PMID: 30413107

32. Hsieh MH, Hsieh MJ, Chen CM, Hsieh CC, Chao CM, Lai CC. Comparison of machine learning models

for the prediction of mortality of patients with unplanned extubation in intensive care units. Sci Rep.

2018; 8: 17116. https://doi.org/10.1038/s41598-018-35582-2 PMID: 30459331

33. DeGregory KW, Kuiper P, DeSilvio T, Pleuss JD, Miller R, Roginski JW, et al. A review of machine

learning in obesity. Obes Rev. 2018; 19: 668–685. https://doi.org/10.1111/obr.12667 PMID: 29426065

34. Duan H, Sun Z, Dong W, Huang Z. Utilizing dynamic treatment information for MACE prediction of

acute coronary syndrome. BMC Med Inform Decis Mak 2019; 19: 5. https://doi.org/10.1186/s12911-

018-0730-7 PMID: 30626381

35. Paydar K, Niakan Kalhori SR, Akbarian M, Sheikhtaheri A. A clinical decision support system for predic-

tion of pregnancy outcome in pregnant women with systemic lupus erythematosus. Int J Med Inform.

2017; 97: 239–246. https://doi.org/10.1016/j.ijmedinf.2016.10.018 PMID: 27919382

36. Hosmer DW, Lemeshow S. Applied logistic regression, Second Edition (ed. Noel A. et al.). 32–46 (

Wiley & Sons, Inc, 2005).

37. Jang DH, Kim J, Jo YH, Lee JH, Hwang JE, Park SM, et al. Developing neural network models for early

detection of cardiac arrest in emergency department. Am J Emerg Med. 2020; 38: 43–49. https://doi.

org/10.1016/j.ajem.2019.04.006 PMID: 30982559

38. Lin CC, Ou YK, Chen SH, Liu YC, & Lin J. Comparison of artificial neural network and logistic regression

models for predicting mortality in elderly patients with hip fracture. Injury. 2010; 41: 869–873. https://doi.

org/10.1016/j.injury.2010.04.023 PMID: 20494353

39. Matsumoto K, Takesue Y, Ohmagari N, Mochizuki T, Mikamo H, Seki M, et al. Practice guidelines for

therapeutic drug monitoring of vancomycin: a consensus review of the Japanese Society of Chemother-

apy and the Japanese Society of Therapeutic Drug Monitoring. J Infect Chemother. 2013; 19: 365–380.

https://doi.org/10.1007/s10156-013-0599-4 PMID: 23673472

40. Chen XY, Xu RX, Zhou X, Liu Y., Hu CY, Xie XF. Acute kidney injury associated with concomitant van-

comycin and piperacillin/tazobactam administration: a systematic review and meta-analysis. Int Urol

Nephrol. 2018; 50: 2019–2026. https://doi.org/10.1007/s11255-018-1870-5 PMID: 29752626

41. Burgess LD, Drew RH. Comparison of the incidence of vancomycin-induced nephrotoxicity in hospital-

ized patients with and without concomitant piperacillin-tazobactam. Pharmacotherapy. 2014; 34: 670–

676. https://doi.org/10.1002/phar.1442 PMID: 24855041

42. Smythe M, Hoffman J, Kizy K, Dmuchowski C. Estimating creatinine clearance in elderly patients with

low serum creatinine concentrations. Am J Hosp Pharm. 1994; 51: 198–204. PMID: 8160670

43. Winter ME. Basic clinical pharmacokinetics. 3rd ed (ed. Koda-kimble M A., Young L Y). 474–499 (

Applied Therapeutics, Inc, 1994).

44. Tu JV. Advantages and disadvantages of using artificial neural networks versus logistic regression for

predicting medical outcomes. J Clin Epidemiol. 1996; 49: 1225–1231. https://doi.org/10.1016/s0895-

4356(96)00002-9 PMID: 8892489

45. Astion ML, Wener MH, Thomas RG, Hunder GG, Bloch DA. Overtraining in neural networks that inter-

pret clinical data. Clin Chem. 1993; 39: 1998–2004. PMID: 8375090

PLOS ONE Validation of the usefulness of artificial neural networks for prediction of adverse drug reactions

PLOS ONE | https://doi.org/10.1371/journal.pone.0236789 July 29, 2020 12 / 12

https://doi.org/10.1086/600877
http://www.ncbi.nlm.nih.gov/pubmed/19569969
https://doi.org/10.1248/yakushi.17-00080
http://www.ncbi.nlm.nih.gov/pubmed/28867705
https://doi.org/10.1159/000180580
http://www.ncbi.nlm.nih.gov/pubmed/1244564
https://doi.org/10.1016/j.injury.2019.01.007
https://doi.org/10.1016/j.injury.2019.01.007
http://www.ncbi.nlm.nih.gov/pubmed/30660332
https://doi.org/10.3390/jcm7110428
http://www.ncbi.nlm.nih.gov/pubmed/30413107
https://doi.org/10.1038/s41598-018-35582-2
http://www.ncbi.nlm.nih.gov/pubmed/30459331
https://doi.org/10.1111/obr.12667
http://www.ncbi.nlm.nih.gov/pubmed/29426065
https://doi.org/10.1186/s12911-018-0730-7
https://doi.org/10.1186/s12911-018-0730-7
http://www.ncbi.nlm.nih.gov/pubmed/30626381
https://doi.org/10.1016/j.ijmedinf.2016.10.018
http://www.ncbi.nlm.nih.gov/pubmed/27919382
https://doi.org/10.1016/j.ajem.2019.04.006
https://doi.org/10.1016/j.ajem.2019.04.006
http://www.ncbi.nlm.nih.gov/pubmed/30982559
https://doi.org/10.1016/j.injury.2010.04.023
https://doi.org/10.1016/j.injury.2010.04.023
http://www.ncbi.nlm.nih.gov/pubmed/20494353
https://doi.org/10.1007/s10156-013-0599-4
http://www.ncbi.nlm.nih.gov/pubmed/23673472
https://doi.org/10.1007/s11255-018-1870-5
http://www.ncbi.nlm.nih.gov/pubmed/29752626
https://doi.org/10.1002/phar.1442
http://www.ncbi.nlm.nih.gov/pubmed/24855041
http://www.ncbi.nlm.nih.gov/pubmed/8160670
https://doi.org/10.1016/s0895-4356%2896%2900002-9
https://doi.org/10.1016/s0895-4356%2896%2900002-9
http://www.ncbi.nlm.nih.gov/pubmed/8892489
http://www.ncbi.nlm.nih.gov/pubmed/8375090
https://doi.org/10.1371/journal.pone.0236789

