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Abstract

Significance: Oxidative stress is suggested to be a disease mechanism common to a wide range of disorders affecting
human health. However, so far, the pharmacotherapeutic exploitation of this, for example, based on chemical
scavenging of pro-oxidant molecules, has been unsuccessful. Recent Advances: An alternative emerging approach is
to target the enzymatic sources of disease-relevant oxidative stress. Several such enzymes and isoforms have been
identified and linked to different pathologies. For some targets, the respective pharmacology is quite advanced, that is,
up to late-stage clinical development or even on the market; for others, drugs are already in clinical use, although not
for indications based on oxidative stress, and repurposing seems to be a viable option. Critical Issues: For all other
targets, reliable preclinical validation and drug ability are key factors for any translation into the clinic. In this study,
specific pharmacological agents with optimal pharmacokinetic profiles are still lacking. Moreover, these enzymes also
serve largely unknown physiological functions and their inhibition may lead to unwanted side effects. Future
Directions: The current promising data based on new targets, drugs, and drug repurposing are mainly a result of
academic efforts. With the availability of optimized compounds and coordinated efforts from academia and industry
scientists, unambiguous validation and translation into proof-of-principle studies seem achievable in the very near
future, possibly leading towards a new era of redox medicine. Antioxid. Redox Signal. 23, 1113–1129.

Introduction

Oxidative stress is the production of reactive oxygen
species (ROS) to high nonphysiological concentrations

or at nonphysiological locations. Mechanistically, this can lead
to DNA damage, lipid peroxidation (72), protein modification,
and other pathological effects observed in various chronic
disorders, including neurodegenerative, cardiovascular and
diabetes-associated renal diseases, and cancer. Many therapeutic

attempts to improve patient-relevant outcomes using exoge-
nous small-molecule antioxidants, such as vitamins C and E,
have failed (38) or even increased mortality (101) such as in
the settings of diabetes mellitus (168, 169).

Possible explanations for this paradox may reside in the
lack of specificity of antioxidants towards a certain cellular
compartment or tissue, and/or the possibility of generating
reductive stress, by increasing levels of reducing agents and
therefore disturbing redox homeostasis in the opposite
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direction. Exogenous antioxidants are also likely to interfere
with both disease-triggering and physiological ROS levels.
The latter regulate extracellular matrix, control vasomotor
activity, are involved in the innate immune response, and
promote cell differentiation, proliferation, and migration
(4, 10, 161, 163).

Another somewhat indirect type of antioxidant therapeutic
strategy that could have fewer side effects relies on the ac-
tivation of endogenous antioxidant responses. In this context,
pharmacological activation of the transcription factor NRF2
is promising therapeutic option currently studied clinically.
The conceptual difference between these two antioxidant
approaches is broad unspecific scavenging versus a localized
response at physiological (sub)cellular sites. Only the latter
has promise in leaving physiological ROS formation and
signaling intact.

Of far broader relevance is a third approach that involves the
specific inhibition of the disease-relevant sources of ROS. In
this case, the key question is which enzyme to target. Besides
NADPH oxidases (NOXs) (10), xanthine oxidase (XO) (96),
uncoupled nitric oxide synthase (uc-NOS) (155), and mono-
amine oxidases (MAOs) (39), other sources such as cyto-
chrome P450 oxidases (44), lipoxygenases (170), and the
mitochondrial electron transport chain (134) are all able to
generate ROS. Among these, NOXs stand out as their primary
function is to produce ROS. All other enzymes do not form
ROS as their primary function, but only as a collateral or side
product. Examples include uc-NOS, uncoupled mitochondria,
and XO. Additional approaches include the inhibition of
ROS-toxifying peroxidases, such as myeloperoxidase (MPO),
or the functional repair of oxidatively damaged proteins, such

as the redox-sensitive soluble guanylate cyclase (sGC), a
principle that has already entered the clinic.

We here review the current status and outlook of the most
advanced areas in the field of translational redox medicine by
focusing on drugs in four categories:

� Activators of endogenous antioxidant defense systems
(indirect antioxidants)

� Inhibitors of ROS formation
� Inhibitors of ROS toxification
� Compounds that allow functional repair of ROS-induced

damage

Activators of Antioxidant Defense Systems

The main, if not only, representative members of this group
of drugs are nuclear factor (erythroid-derived 2)-like 2 (NRF2)
activators. NRF2 is a basic region-leucine zipper (bZIP) tran-
scription factor (Fig. 1A) that forms heterodimers with other
bZIP partners, of which the small musculoaponeurotic fibro-
sarcoma proteins are the best characterized. Together, they
recognize an enhancer sequence termed Antioxidant Response
Element (ARE) that is present in the regulatory regions of over
250 genes (ARE genes), including antioxidant genes such as
HMOX1 (coding heme oxygenase-1) (58). These genes encode
enzymes involved in antioxidant reactions, including those
driven by glutathione and thioredoxin, generation of nicotin-
amide adenine dinucleotide phosphate (NADPH), biotrans-
formation, proteostasis, and even DNA repair (58, 90, 135).

The main mechanism of regulation of NRF2 transcrip-
tional activity is through control of protein stabilization by
the E3 ligase adapter Kelch-like ECH-associated protein 1

FIG. 1. Domain structures of NRF2 and KEAP1. (A) Domain structure of NRF2. NRF2 possesses six highly conserved
domains called NRF2-ECH homology (Neh) domains (105). The functional role of each Neh domain is specified. Within
the Neh2 domain, the low-affinity (DLG) and high-affinity (ETGE) binding domains to KEAP1 are zoomed in. (B) Domain
structure of a KEAP1 monomer showing the position of cysteine residues. The N-terminal BTB (bric-a-brac, tramtrack,
broad-complex) domain participates in homodimerization and binding to Cul1/Rbx. The C-terminal region, Kelch repeat,
DGR domain, contains a WD40 propeller that binds NRF2 at its Neh2 domain. The intervening region connects BTB
and DGR domains and is particularly rich in redox-sensitive cysteine residues. C151 is targeted by some electrophiles
(tert-butylhydroquinone, diethylmaleate, sulforaphane, and dimethylfumarate; see Fig. 2) disrupting the KEAP1-Cul3 in-
teraction. Other important cysteines are C272 and C288 that react with other compounds (15-deoxy-D12,14-prostaglandin J2,
2-cyano-3,12 dioxooleana-1,9 diene-28-imidazolide, ebselen, and cadmium chloride; see Fig. 2) leading to a conforma-
tional distortion of the DC domain and altering the KEAP1-NRF2 interaction (147). BTB, (bric-a-brac, tramtrack, broad-
complex); DGR, double glycine repeat; DLG, aspartate leucine glycine; ETGE, glutamate, threonine, glycine, glutamate;
KEAP1, kelch-like ECH-associated protein 1; Rbx, ring box protein.
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(KEAP1). This is a homodimeric zinc (Zn) finger protein that
bridges NRF2 with the E3 ligase complex formed by Cullin3
and Rbx proteins (Cul3/Rbx). Under homeostatic conditions,
the N-terminal domain of the KEAP1 homodimer binds
one molecule of NRF2 at two amino acid sequences of low
(aspartate leucine glycine) and high glutamate, threonine,
glycine, and glutamate (ETGE) affinity, thus presenting
NRF2 to ubiquitination by Cul3/Rbx (152). However, in the
presence of ectopic or endogenous electrophiles, KEAP1 is
inactivated.

Mechanistically, electrophiles modify sulfhydryl groups of
specific redox-sensitive cysteines of KEAP1, including C151,
C273, and C288 (Fig. 1B). These modifications of KEAP1
lead to changes in NRF2 recognition, alterations in dimer
conformation, or interaction with Cul3/Rbx. As a result, NRF2
escapes KEAP1-dependent degradation, accumulates in the
nucleus, and activates ARE genes.

KEAP1 is one of the best-suited proteins to act as an
electrophilic/redox sensor as it contains a large number of
cysteine residues (27 in the human protein) and can function as
an electrophile trap. However, other proteins such as phos-
phatase and tensin homolog (PTEN), which is mutated in a
large number of human tumors, are also redox sensitive (55, 79,
84) and affect NRF2 activity. The catalytic C124 residue of
PTEN can be modified through adduct formation with strong
electrophiles such as synthetic triterpenoids (2-cyano-3,12-
dioxooleana-1,9-dien-28-oic acid-imidazolide; CDDO-Im)
(114) and tert-butylhydroquinone (121). This modification
results in loss of the PTEN lipid phosphatase activity and yields
a more sustained activation of signaling events downstream of
phosphoinositide 3-kinase, leading to NRF2 activation by a
KEAP1-independent mechanism (117, 118). Thus, electro-
philic targeting of NRF2 may involve not only KEAP1 but also
other redox-sensitive enzymes. Moreover, KEAP1 interacts
with other proteins that also contain the high-affinity binding
motif, ETGE (57), such as inhibitor of nuclear factor kappa-B
kinase subunit beta and Bcl-2 (78, 109). Hence, some results
obtained from KEAP1 mutant or -deficient cells may not be
necessarily related to the control of NRF2.

Several groups of electrophilic compounds induce NRF2
in cell culture and less frequently in animals or humans (120)
[Fig. 2; for a detailed list of KEAP1 ligands, see refs. (37, 59,
91)]. Many of these compounds are used as nutraceuticals,
and for some of them, there is evidence of clinical efficacy.
The most successful drug of this type is the ester derivative of
fumaric acid, dimethyl fumarate (DMF) (87). DMF crosses
the gastrointestinal barrier where it is converted into mono-
methyl fumarate. The first clinical use of DMF was for the
topical treatment of psoriasis in 1994 (5). More recently, an
oral formulation of DMF, known as BG12, was commer-
cialized for the treatment of relapsing–remitting multiple
sclerosis (14, 76). Other autoimmune diseases such as lupus
erythematosus, asthma, and arthritis are under investigation
with other formulations of fumarate esters (128, 153).

Other lines of research have focused on targeting NRF2 in
degenerative diseases where low-grade chronic inflammation
is present. One very potent synthetic triterpenoid, CDDO-
methyl ester, bardoxolone methyl, has been studied in great
detail for treatment of diabetic nephropathy (157). The initial
excitement about this compound was set back by a small yet
significant increase in the risk of heart failure. Importantly
though, this effect appears not to be related to NRF2 targeting,

but rather to alteration of endothelin signaling, leading to
reduction in urine volume and sodium excretion in some
patients with advanced chronic kidney disease (26). Bar-
doxolone methyl is now being studied in new indications
for pulmonary arterial hypertension, melanoma, and Frie-
dreich’s ataxia.

A third NRF2 inducer that has reached the level of clinical
studies is the isothiocyanate sulforaphane (SFN) isolated
from broccoli sprout extracts. Contrary to DMF and bar-
doxolone methyl, a drawback of this compound is the ab-
sence of a pure formulation that could be used clinically and
the lack of commercial value. Nevertheless, SFN provided
proof of concept that NRF2 targeting has a therapeutic
potential (40, 129, 132). Furthermore, NRF 2 agonists in
clinical development are summarized in Table 1.

Inhibitors of ROS-Forming Enzymes

NADPH oxidase inhibitors

NOXs are transmembrane proteins comprising seven
members (NOX1, NOX2, NOX3, NOX4, NOX5, DUOX1,
and DUOX2). Each NOX isoform has specific tissue ex-
pression and regulation (10, 85). The catalytic core of all
NOXs contains four conserved C-terminal NADPH-binding
subregions and two flavin adenine dinucleotide (FAD)-
binding subregions, as well as four conserved histidine resi-
dues, which coordinate two nonidentical iron heme prosthetic
groups located between transmembrane domains 3 and 5.
They are commonly referred to as the inner and outer heme,
depending on their proximity to the cytosol and extracellular
space, respectively. NOX activity was first described in
neutrophils (7) where it forms superoxide anion radical (O2

-)
as part of the phagocytic oxidative burst of the innate immune
response (65). All NOX enzymes catalyze the reduction of
extracytosolic oxygen (i.e., in phagosomes, endosomes, or
the extracellular space) with cytosolic NADPH serving as an
electron donor. The activity of most NOX isoforms is tightly
regulated: NOX1, NOX2, and NOX3 require the presence of
cytosolic proteins, while NOX4 generates ROS in a consti-
tutive manner; NOX5 and DUOX isoforms require increased
cellular Ca2+ concentrations and binding to N-terminal EF-
hand domains for full activity. NOX5 is also a notable ex-
ception with respect to preclinical target validation; it is
present in several mammals, including humans, but not in
mice and rats. Increasing evidence shows that inhibition of
NOX activity can be beneficial in multiple models of human
diseases [for details, see Casas et al. in the same Forum (24)].
In addition, NOX2-derived ROS can have anti-inflammatory
effects under certain conditions such as rheumatoid ar-
thritis and multiple sclerosis (67). This provides a rationale
for the development of NOX activators. Many advantages
and pitfalls of currently available NOX inhibitors have
been recently comprehensively reviewed in (4) and (69).
In this study, we focus on three chemical compound fam-
ilies, with one compound currently in clinical development
(Table 2).

GKT136901 and GKT137831 were developed by Gen-
KyoTex to explore structure–activity relationship along
pyrazolopyridine dione compounds (82). These compounds
were selected based on oral bioavailability and beneficial
pharmacokinetic parameters (4, 70). They block NOX1,
NOX4, NOX5, and DUOX (142) activity in the micromolar
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range. In terms of off-targets effects, GKT136901 also scav-
enges peroxynitrite (125), but no interference was identified
with other redox-sensitive enzymes, G-protein-coupled recep-
tors, kinases, ion channels, or other enzyme activity (4).
However, GKT136901 interacts with Amplex Red fluorescence
and dose dependently decreases the signal, thereby complicating
the interpretation of in vitro results (4). Preclinical results show
that GKT137831 reduces glomerular injury and structural
changes, as well as macrophage infiltration and proinflammatory
transcription factor expression, in models of diabetic nephrop-
athy (54, 70). GKT137831 has entered a clinical study phase II
clinical trial, testing its efficacy in diabetic type 2 patients with
diabetic nephropathy (50a) (study completed 2015).

Vasopharm developed the triazolo pyrimidine, VAS2870,
following a screening approach for NOX2 inhibitors (139,
148). Its derivative, VAS3947, was later generated to slightly

improve VAS solubility while keeping a similar NOX in-
hibitory profile.

Both compounds are able to inhibit different NOX iso-
forms, such as NOX2 (4), NOX 4, and NOX5 (3, 81), in the
micromolar range. Intrathecal injection of VAS2890 signif-
icantly reduced cerebral infarct volume and ROS production
in a mouse stroke model, suggesting a crucial contribution of
one or more NOX enzymes in stroke (Table 2).

However, VAS2870 presents a number of limitations: (i) it
blocks NOX2-derived ROS in neutrophils; (ii) its mode of
action is independent of NOX2 (50); (iii) it is cytotoxic at low
concentrations (171); and (iv) it exerts thioalkylation of cysteine
residues in vitro, with so far unknown functional relevance
(4, 144). In terms of drug development, a proof of principle of
VAS compounds in humans is currently unfeasible due to their
low solubility and unknown oral pharmacokinetic profile.

FIG. 2. Molecular formu-
las of some common redox-
active compounds. These
compounds are capable of
modifying protein cysteine
thiols by oxidation, reduction,
alkylation, and metal chela-
tion and presumably disrupt
the KEAP1/NRF2 interaction.
The classification has been
simplified from Ma et al. (91).
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Recently, GSK2795039, a novel NOX2 inhibitor, abolished
NOX2-induced ROS production in a model of paw inflammation
and is protective in an animal model of acute pancreatitis (62). A
pharmacokinetic/pharmacodynamic evaluation indicates that
GSK2795039 is suitable for in vivo use. Further assessment of
this compound will provide insights regarding its possible utility
for validation of NOX2 as a pharmacological target.

XO inhibitors

Xanthine oxidoreductase (XOR), a 300-kDa homodimer,
can exist as an NAD-dependent dehydrogenase (XD) or as an
O2-dependent oxidase (XO), depending on the oxidation state
of its cysteine thiols (95). XD can be converted into the ROS-
generating XO either by formation of intramolecular dis-
ulfide bonds (reversible) or by proteolytic cleavage of a loop
region connecting the FAD-binding domain and the
molybdenum-binding domain (irreversible) (107). While XD
depends on NAD+ (31, 140), XO uses O2 as electron acceptor
and generates O2

- and H2O2 as products (110). As a conse-
quence, XO conversion from XD could be a direct conse-
quence of increased oxidative stress and results in further
production of ROS by XO.

XO may contribute to the pathogenesis of various diseases,
such as coronary artery disease, type 2 diabetes, and idiopathic
dilated cardiomyopathy (21, 22). The XO inhibitor, allopuri-
nol, an analog of hypoxanthine, and its active metabolite,
oxypurinol, have been in clinical use for more than 40 years for
the treatment of hyperuricemia and gout (41). A recent meta-
analysis of 38 clinical trials with allopurinol or oxypurinol in
patients with chronic heart failure and coronary artery disease
has concluded that XO inhibition improves endothelial func-
tion and circulating markers of oxidative stress in patients
with, or at risk of, cardiovascular disease (61). Because het-
erogeneity in those studies made it impossible to come to a
conclusion on the effect of XO inhibitors on cardiac outcome,
larger prospective multicenter trials are needed (61). Most
recently, a study involving 253 high-risk heart failure patients
with elevated uric acid levels failed to show improvement with
allopurinol in clinical and functional parameters (53).

In 2009, the XOR inhibitor, febuxostat (TEI-6720, TMX-
67), was approved by the Food and Drug Administration and
marketed for gout (9) as more selective and potent than
allopurinol and oxypurinol (110). In contrast to allopurinol,
febuxostat has no structural similarity to a purine. Therefore, it
has no effects on the activities of other enzymes involved in
purine and pyrimidine metabolism, such as guanine deaminase,
hypoxanthine-guanine phosphoribosyltransferase, purine nu-
cleoside phosphorylase, orotate phosphoribosyltransferase, and
orotidine-5V-monophosphate decarboxylase, compared with
allopurinol (166). Contrary to allopurinol and oxypurinol,
febuxostat, a potent inhibitor of both XO and XD (146), forms
stable long-lasting complexes with the oxidized XOR (111). Its
therapeutic application may be useful in cases of allopurinol
incompatibility (8). From an experimental point of view,
febuxostat may be a superior tool over allopurinol, which may
have intrinsic radical scavenging properties that could make it
difficult to distinguish between its antioxidant effects and XO
inhibition. For example, it was proposed that the protective
effects of allopurinol after hypoxia cannot be entirely explained
by XO inhibition alone (104).

Another compound used in preclinical studies is BOF-4272
[sodium-8-(3-methoxy-4-phenylsulfinyl-phenyl) pyrazolo[1,
5-a]-1,3,5-triazine-4-olate monohydrate] (112), which specif-
ically inhibits XO-based O2

- generation (94, 100, 123, 145).
However, it could not be tested clinically because of unfa-
vorable pharmacokinetics due to both hepatic metabolism and
poor intestinal absorption (108).

Other newly introduced XO inhibitors, such as naphto-
flavons, 1,3,5-triazine-based purine analogs, and topiroxostat
(FYX-051, 4-[5-pyridin-4-yl-1H-[1, 2, 4] triazol-3-yl]pyridine-
2-carbonitrile), are currently being tested in preclinical studies
(86, 93, 108, 131). A selection of substances in clinical devel-
opment is shown in Table 3.

MAO inhibitors

The attention on MAO as a drug target has been driven by
the serendipitous discovery of the antidepressant effect of the

Table 3. Monoamine Oxidase and Xanthine Oxidase Inhibitors:

Mechanism of Action and Treatment Indications

Target Compound Basic mechanism of action Pathology

MAO Hydrazines (Phenelzine,
isocarboxazid,
tranylcypromine)

Nonselective and irreversible MAO
inhibitors

Major depressive disorder (130)

Moclobemide,
toloxatone, pirlindole

Selective and reversible MAO-A inhibitors Depression, anxiety (130)

Rasagiline, selegiline Selective and irreversible MAO-B inhibitors PD, depression, neurodegenerative
diseases (30)

Safinamide Selective and reversible MAO-B inhibitor PD (15, 16)

XO Allopurinol and
oxypurinol

XOR inhibitor oxypurinol is the active
metabolite of allopurinol.

Hyperuricemia and gout (46)
cardiovascular disease

Febuxostat Nonpurine XOR inhibitor. More selective
and potent than allopurinol. Do not
interfere with other metabolic enzymes.

Hyperuricemia and gout (8) more
effective, safe, and well tolerated
than allopurinol (8, 27).

BOF-4272 Inhibits XOR-based superoxide generation. Impossible for clinical use due to low
blood concentrations (112)

Topiroxostat XOR inhibitor Hyperuricemia and gout (86, 93, 107)

PD, Parkinson’s Disease; MAO, monoamine oxidase; BOF-4272 sodium,7-[4-(benzenesulfinyl)-3-methoxyphenyl]-1,3,9-triaza-5-
azanidabicyclo[4.3.0]nona-3,6,8-trien-2-one; XO, xanthine oxidase; XOR, xanthine oxidoreductase.
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antitubercular agent, iproniazid, which was found to act as an
MAO inhibitor (35). This observation paved the way to the
clinical use of MAO inhibition in depressive disorders (130).
Recently, MAO has become also a drug target for ROS-related
pathologies. Due to its localization on the outer mitochondrial
membrane, H2O2 and other MAO products [aldehydes and
ammonia; for details, see Casas et al. in the same Forum (24)]
can accumulate in the mitochondria to a significant extent and
affect mitochondrial function (73). This can further lead to
amplification of oxidative stress and cell damage so that the
inhibition of MAO is beneficial in a number of disease models
[for details, see Casas et al. in the same Forum (24); (11, 17,
18, 36, 73, 74, 98, 136, 156, 165)]. With the possible exception
of NOX4 [for details, see Hirschhäuser et al. in the same
Forum (63)]), MAO is the only known mitochondrial ROS
source that can be inhibited pharmacologically without inter-
fering with energy metabolism.

MAO exists in two isoforms, A and B, which generate H2O2

as a by-product during the oxidative deamination of biogenic
monoamines. A wide range of MAO inhibitors are in clinical
use, targeting one or both isoforms. Clorgyline is the proto-
typic MAO-A-specific inhibitor, while deprenyl inhibits
MAO-B, and pargyline is nonselective. Recently, other more
selective MAO inhibitors have been developed for the treat-
ment of depressive disorders (130). Of those, phenelzine,
isocarboxazid, and tranylcypromine are nonselective and ir-
reversible MAO inhibitors, while moclobemide, toloxatone,
and pirlindole are MAO-A selective and reversible. Selective
and irreversible MAO-B inhibitors, such as selegiline and ra-
sagiline, are widely prescribed for the treatment of affective
and neurodegenerative disorders (Table 3), for example, mild
symptoms of Parkinson’s disease (PD) and associated motor
fluctuations (30). Recently, specific and reversible MAO-B
inhibitor, safinamide, has been launched in Germany for the
treatment of mid- to late-stage PD in combination with levo-
dopa or other PD therapies (15, 16). The therapeutic potential
of MAO-B inhibitors is currently being evaluated also for the
treatment of Alzheimer’s disease. GABA formation from re-
active astrocytes is mediated by MAO-B and affects synaptic
plasticity, learning, and memory (71). Since astrocytic GABA
and MAO-B are upregulated also in postmortem brains of
individuals affected by Alzheimer’s disease, MAO-B inhibi-
tion has been proposed as a potentially effective therapeutic
strategy for treating memory impairment in this disease. In-
deed, ladostigil, a dual acetylcholine butyrylcholine esterase
and brain-selective MAO-A and -B inhibitor, was shown to
antagonize scopolamine-induced impairment in spatial mem-
ory (66). More recently, a new small-molecule MAO-B
inhibitor, EVT 302, is currently in phase IIb clinical trial for
the treatment of Alzheimer’s disease.

MAO inhibition can also be the result of an off-target
effect. For example, the PPAR-gamma agonist, pioglitazone,
used for the treatment of type 2 diabetes, specifically inhibits
MAO-B in a reversible manner (12), a property that is not
shared by other members of the glitazone family, such as
troglitazone and rosiglitazone. Importantly, this off-target
effect may contribute to the beneficial effects of pioglitazone
in diabetic cardiomyopathy.

To date, MAO inhibitors have been used in patients to
preserve or increase monoamine levels. It remains to be
investigated clinically whether MAO inhibitors modulate
oxidative stress-based pathologies and whether their use can

be extended to other indications. The most relevant hurdle in
the clinical development of MAO inhibitors is represented by
a hypertensive reaction occurring when selective MAO-A
inhibition is combined with intake of tyramine-rich food,
such as aged cheese and alcoholic beverages (43). Tyramine
is mostly oxidized by intestinal MAO-A; MAO-A inhibition
causes an increase in circulating tyramine, which is taken
up by postganglionic sympathetic neurons and induces
noradrenaline release. However, MAO-B and reversible
MAO-A inhibitors are devoid of this potential risk (167).
Other minor contraindications and concerns related to MAO
inhibitors are listed in (162).

NOS inhibitors

Nitric oxide (NO) is another ROS, although mostly with
beneficial effects. However, under certain conditions, over-
production may cause cell death, for example, in neurotrauma
and stroke. Most NOS inhibitors are based on displacing the
substrate, arginine, off its binding site. However, none of these
has been approved as a drug for any indication. The most
dramatic failure was NG-mono-methyl-l-arginine (L-NMMA)
in septic shock (89), where L-NMMA resulted in a 10%
increase in overall mortality due to a higher proportion of
cardiovascular deaths. Another analog, the amidino amino acid
N6-(1-iminoethyl)-l-lysine (L-NIL), applied as its 5-tetrazole-
amide prodrug (L-NIL-TA, SC-51) was tested to treat asthma.
Oral administration of L-NIL-TA reduced exhaled NO levels
in both healthy volunteers and asthmatics for at least 72 h
without affecting blood pressure and pulse rate, but did not
improve respiratory function (56). Finally, GW273629 (3-[[2-
[(1-iminoethyl)amino]ethyl] sulfonyl]-l-alanine) was ineffec-
tive in the treatment of acute migraine (154).

The most advanced and currently most successful thera-
peutic approach is to target another and more unique binding
site in NOS, the redox-sensitive cofactor, tetrahydrobiopterin
(13, 48). Vasopharm’s VAS203 has been successfully devel-
oped up to phase II for traumatic brain injury (141) (Table 4).

Inhibitors of ROS Toxification

These inhibitors target enzymes that do not produce ROS
but metabolize ROS to other more toxic species. The most
prominent example is myeloperoxidase (MPO).

MPO inhibitors

MPO is a heme protein that can use H2O2 to oxidize Cl- to
the highly reactive hypochlorous acid (HOCl), a potent oxi-
dizing agent, but can also generate free radicals through its
catalytic peroxidase cycle (77). Besides the major halide Cl-,
MPO can also utilize bromide (Br-) to form brominating
species, including hypobromous acid (HOBr) (60).

MPO is abundant in neutrophils and certain macrophages
where it plays a role in the innate immune response. MPO-
derived oxidants also have the potential to cause host tissue
injury via initiation of post-translational protein modifications
(i.e., chlorination) of proteins (115, 164) and lipid peroxidation
(124). As a result, MPO-mediated oxidative damage is thought
to contribute to a wide range of chronic inflammatory diseases,
including cardiovascular and neuroinflammatory diseases
(33, 106). The extracellular Br- concentration is much lower
than that of Cl- (149). Thus, the physiological relevance of
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brominating oxidants such as HOBr, although they elicit an-
timicrobial effects in vitro (80, 159), has yet to be determined.

However, complete deficiency of MPO can be detrimental.
For example, mice deficient in MPO and the low-density
lipoprotein receptor (Ldlr), that is, Mpo-/-Ldlr-/-mice, de-
velop larger atherosclerotic lesions compared with Ldlr-/-mice
(20), and engraftment of bone marrow from Mpo-/-mice into
Ldlr-/-mice increases rather than decreases the size of ath-
erosclerotic lesions (20). Moreover, mice lacking MPO are
more susceptible to experimental autoimmune encephalomy-
elitis, a mouse model of multiple sclerosis (19), and are pro-
tected from some features of PD (28). As a result of the implied
overall benefit of phagocyte MPO, pharmacological strategies
to attenuate MPO-mediated inadvertent oxidant damage aim at
partial rather than complete inhibition of the enzyme.

Until recently, no specific MPO inhibitors were described
that could be considered drug candidates. Although a number
of commercially available compounds, including hydro-
xamic acids, hydrazines, and hydrazides, were used previ-
ously to inhibit the catalytic activity of MPO (92), they are
not specific and also inhibit other heme peroxidases.

More recently, AstraZeneca found that 2-thioxanthines are
potent and selective suicide inhibitors of MPO. Upon oxi-
dation by MPO compound I, the thioxanthine radical forms
an adduct with the heme prosthetic group of the enzyme,
resulting in inactivation of MPO (150). These new com-
pounds inhibit MPO activity in plasma, decrease protein
chlorination in a mouse model of peritonitis, and elicit a
range of beneficial effects in various disease models, without
interfering with the killing of bacteria by neutrophils or other
peroxidases, for example, thyroid peroxidase or lactoperox-
idase activity (150). A number of thioxanthines have yielded
positive results in preclinical and clinical studies. For

example, the thioxanthine, AZD5904, stopped progression of
emphysema and small airway remodeling and partially pro-
tected against pulmonary hypertension in a guinea pig model
of chronic obstructive pulmonary disease (COPD) induced
by exposure to cigarette smoke (29). In addition to AZD5904
entering phase I clinical trials for COPD and multiple scle-
rosis, AstraZeneca has completed a phase IIA clinical trial
with another thioxanthine, AZD3241, in patients with PD
(116) (Table 5).

Another small-molecule inhibitor of MPO is INV-315 with a
submicromolar IC50 [0.9 lM; (88)]. INV-315 decreases plaque
burden and improves endothelial function in apolipoprotein E-
deficient mice fed a high-fat diet for 16 weeks, a commonly
used mouse model of atherosclerosis (88). However, no direct
evidence for MPO inhibition or improved endothelial function
was provided in that study. Pfizer, Inc., has also implemented a
discovery program targeting MPO in inflammation and has
filed patents for 2-thiopyrimidones (Fig. 3), which have a
structure that is similar to 2-thioxanthines, suggesting that they
may also act as suicide inhibitors by forming adducts with the
heme moiety of MPO (23).

Functional Repair of ROS-Induced Protein Damage

This category of ROS-related drugs does not modulate
ROS formation, but corrects some of its functional conse-
quences. In the present review, we focus on NO-cGMP sig-
naling, which appears to be one of the major mechanisms of
deregulation initiated by oxidative stress (97). ROS can in-
terfere with NO-cGMP signaling in three manners:

� by uncoupling NOS,
� by chemically scavenging NO, or
� by oxidatively damaging the NO receptor, sGC.

Table 5. Myeloperoxidase Inhibitors: Mechanism of Action and Treatment Indications

Compound Chemical characteristics Basic mechanism of action Pathology

AZD3241 2-thioxanthine derivate MPO inhibitor by forming an adduct with
the heme prosthetic group of the enzyme.

Peritonitis (preclinical data)
PD (116)

AZD5904 2-thioxanthine derivate MPO inhibitor, Similar mechanism
of action as AZD3241.

Chronic obstructive pulmonary
disease (29)

MPO, myeloperoxidase.

Table 4. Nitric Oxide Synthase NOS Inhibitors: Mechanism of Action and Treatment Indications

Compound Chemical characteristics Basic mechanism of action Pathology

L-NMMA Arginine derivate Nonselective NO synthase inhibitor Septic shock dramatic failure
in clinical trials (89)

VAS203 Tetrahydrobiopterin
derivate

Nonselective NO synthase inhibitor Traumatic brain injury (141)

Tilarginine
acetate

Arginine derivate Nonselective NO synthase inhibitor Cardiogenic shock
complicating—acute
myocardial infarction (2)

L-NIL Arginine derivate L-NIL-TA
and SC-51 prodrug oral
administration

Inducible NO synthase inhibitor Asthma (56)

GW273629 Alanine derivate Inducible NO synthase inhibitor Acute migraine (154)

GW273629, (3-[[2-[(1-iminoethyl)amino]ethyl]sulfonyl]-l-alanine); L-NIL-TA, L-N6-(1-iminoethyl)lysine-5-tetrazole-amide; L-NMMA,
1-(4-aminopentyl)-2-methylguanidine; SC-51, L-N6-(1-iminoethyl)lysine 5-tetrazole amide.
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This essentially leads to four therapeutic options:

� to recouple uc-NOS [e.g., in peripheral arterial disease
(Clinical Trials Registry ACTRN12609000882224)]

� to replenish scavenged NO via NO donor compounds
� to sensitize sGC for lower NO levels [e.g., in pulmonary

arterial hypertension (52) and chronic thromboembolic
pulmonary hypertension (51)]

� to (re-)activate oxidatively damaged and heme-free
sGC (apo-sGC) (e.g., in calcific aortic valve stenosis
[NCT02481258] and neuropathic pain [NCT00799656])

NO donors

For over 100 years, NO-releasing drugs have been in clin-
ical use. However, they have several serious side effects that
will most likely lead to their eventual replacement. First, many
NO donors are subject to tolerance, leading to loss of efficacy
and requiring treatment interruptions. Moreover, they can lead
to systemic hypotension and reflex tachycardia. Another
concern is the fact that under oxidative stress, additional NO
from NO donors leads to a spillover and sGC activation, but
may also be metabolized to peroxynitrite. Thus, with NO do-
nors, NO-cGMP signaling is partially and acutely recovered,
but this happens at the expense of a chronic buildup of un-
wanted post-translational modifications such as protein tyro-
sine nitration (133). In addition, NO-drug hybrid molecules
comprising an established drug and an NO-releasing moiety
have been developed with the aim to preserve the pharmaco-
logical activity of the lead structure and add possibly beneficial
effects of NO. Of the many compounds tested and developed, a
series of NO-NSAIDs (nonsteroidal anti-inflammatory drugs),
nitrosylated adrenoreceptor antagonist moxisylate (S-NO-
moxisylate), and latanoprostene bunod (VESNEO�), an NO-
donating prostaglandin F2-alpha analog, are currently most
advanced. The latter is currently in phase III clinical devel-
opment for the reduction of intraocular pressure in patients
with glaucoma and ocular hypertension. Results from the
phase 2b study confirmed that the drug is safe (158). Whether
these combinations will not have similar limitations as other
NO donors remains to be seen.

HNO donors

Besides classical NO donors and NO-drug hybrid molecules,
recent preclinical studies and a phase IIa study reveal the
therapeutic potential of an NO-related species, nitroxyl (HNO),
which is developed as an HNO-donating drug (CXL-1020) by
Cardioxyl, for acute decompensated heart failure therapy (122).
However, serious inflammatory irritation at the injection site
led to development of a second-generation HNO donor, CXL-
1427, which is currently in clinical phase II testing. In contrast
to NO donors, HNO donors such as Angeli’s Salt/HNO appear
to not induce tolerance, at least preclinically (6, 68, 103). In-
terestingly, HNO seems resistant towards scavenging by su-
peroxide and retains efficacy after repeated infusions (45, 103,
113, 122, 151). However, further proof-of-concept studies need
to be performed with safe HNO donors.

Recoupling uc-NOS

Oxidative damage of NOS is seen predominately not only
for NOS3/eNOS but also for NOS1/nNOS (102). For this, two
reversible processes are important, the oxidation of the
redox-sensitive NOS cofactor, tetrahydrobiopetrin (BH4)
(119), and the accumulation of an endogenous antagonist at
the arginine substrate binding site, asymmetric-dimethyl-l-
arginine (ADMA). ADMA is an independent risk marker, if
not a risk factor, for cardiovascular disease states [for details,
see Frijhoff et al. in the same Forum (47)], which may be
mechanistically related to uc-NOS.

To replenish the BH4 binding site, BH4 substitution is an
option (143). However, BH4 therapy under oxidative stress
may also carry the risk of leading to BH2 accumulation, a BH4

antagonist at the NOS BH4 binding site (13). The so-called
salvage pathway recycles oxidized BH2 back to BH4 via di-
hydrofolate reductase (25). Moreover, angiotensin II type 1
receptor blockers and statins may, among other actions, in-
crease the expression of the BH4-forming GTP cyclohydrolase
1 and therefore normalize low BH4 levels (160). High doses of
l-arginine may compete off ADMA on eNOS or normalize
intracellular ADMA levels. However, a direct antioxidant ef-
fect of the guanidine group is also possible (83). Moreover,
important differences exist in the bioavailability of arginine in
humans versus rodents. Hence, l-citrulline, which is absorbed
with near 100% bioavailability, may be a better alternative in
humans and is subject to ongoing trials (Australian New
Zealand Clinical Trials Registry ACTRN12609000882224).

sGC stimulators and activators

Although stimulation and activation of sGC may sound
similar, both innovative drug classes display entirely differ-
ent modes of action and target different redox and disease
states of the NO receptor, sGC. sGC stimulators (sGCs) such
as riociguat (BAY 63-2521), vericiguat (BAY 1021189),
BAY 41-8543, and BAY 60-4552, and YC-1 (49) bind to an
allosteric binding site of Fe(II)heme-containing sGC and
allosterically sensitize the enzyme for diminished biophase
levels of endogenous NO. In a disease condition where bio-
phase levels of NO are diminished, for example, by oxidative
stress, higher or physiological increases in cGMP tissue
levels can be achieved. Clinical indications may be similar to
NO donors, but without the risk of tolerance and protein
nitration as an accumulating by-product.

FIG. 3. Selective myeloperoxidase inhibitors. (A) Struc-
ture of the 2-thioxanthine, TX1 (150). (B) Basic structure of 2-
thiopyrimidone compounds in development by Pfizer, Inc. R1
is a five- to six-membered aromatic ring with one to three
heteroatoms, while R2 is a fully saturated, partially unsaturated
of fully unsaturated 1- to 14-membered straight carbon chain.
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In contrast, sGC activators (sGCa), such as cinaciguat
(BAY 58-2667), ataciguat (HMR 1766), and S3448 (126),
activate only Fe(III)heme-oxidized or heme-free (apo-)sGC.
They do this by either replacing the weakly bound oxidized
heme in (apo-)sGC or by directly occupying the orphaned
heme pocket in apo-sGC (138).

Otherwise, apo-sGC would be ubiquitinated at the empty
heme binding site and degraded (64, 99). Therefore, sGC
activators also stabilize apo-sGC. The ratio of oxidized or apo-
sGC to Fe(II)-sGC is increased under oxidative stress condi-
tions (42). In a condition where just NO levels are diminished,
but Fe(II)sGC is intact, sGCa would be ineffective. Most re-
cently two other sGCa, GlaxoSmithKline’s GSK218123A and
Boehringher-Ingelheims’s Bl 703704, have been tested pre-
clinically in different animal models of hypertension (32) and
kidney diseases (137). The possible benefit of this new com-
pound class and precise mechanism of action, as well as safety,
need to be further validated.

Conclusion

In recent years, considerable data have accrued, indicating
that disturbances in redox homeostasis are a common mech-
anism in different cardiovascular, neurological, and metabolic
diseases. However, oxidative stress was hitherto not pharma-
cologically targetable, and the only strategy tested so far, using
antioxidants, has been ineffective or even harmful. A possible

reason for this is the lack of specificity for disease triggering
versus physiological ROS that have a signaling, rather than
pathological, role. Furthermore, ROS scavenging by antioxi-
dants takes place in all (sub)cellular locations, not just those
relevant for the disease. Innovative drugs need to target
disease-relevant ROS-producing enzymes, ROS toxifying
enzymes, or proteins damaged by ROS. For all of these, small
molecules have become available that are able to perturb
specific targets and allow for therapeutic proof-of-concept
studies.

These include not only new compounds but also some well-
characterized drugs, such as allopurinol and MAO isoform-
selective inhibitors, which have been clinically used for
decades, although not with the purpose to inhibit ROS for-
mation. In addition, sGC stimulators (in the clinic), NOX in-
hibitor (entering phase III), NOS inhibitors (phase II-III), sGC
activators (phase I-II), and superoxide dismutase mimetics
such as GC4410 (phase I) [for details, see Schmidt et al. in the
same Forum (127)] are rapidly gaining relevance. Other pos-
sible clinical candidates are, for example, mitochondria tar-
geted antioxidants such as mitoquinone and mito TEMPO [for
details, see Schmidt et al. in the same Forum (127)].

However, in several cases (e.g., NOX inhibitors), there is an
unmet need for isoform-selective drugs. Finally, promising
results have been obtained with activators of the transcription
factor NRF2, even though in this case the mechanisms are
more complex. In particular, one NRF2-activating compound,

FIG. 4. Compounds targeting ROS sources, ROS toxifiers, and enzymes damaged by ROS. The physiologic interaction of
NRF2 and KEAP1 underlies a negative feedback mechanism. Disruption of this interaction can be caused by electrophilic
compounds, which react with specific cysteines of Keap1. Keap 1 is a sensor for environmental and endogenous reactive oxygen
and nitrogen species. In conditions of ROS overload, NRF2 escapes Keap1-dependent degradation, accumulates in the nucleus,
and activates ARE genes, leading to activation of glutathione and thioredoxin metabolism, including GPx and TPx. Sources that
produce O2

- are NOX, XO, and MAO. Superoxide anion will be detoxified by SOD to H2O2 and further by catalase to H2O or will
react with NOS-derived NO to form peroxynitrite (ONOO-). On the other side, NO activates the sGC, which results in cGMP
generation and stimulates protein kinase G signaling. The NO production can be reduced by inhibition of NOS with the
endogenous l-arginine analog ADMA. In oxidative stress conditions, the sGC heme can be oxidized or removed (apo-sGC),
leading to NO unresponsive sGC. Selected inhibitors and activators are indicated with inhibiting or activating arrows and blocks,
respectively. ADMA, asymmetric-dimethyl-l-arginine; ARE, antioxidant responsive element; apo-sGC, heme-free soluble
guanylate cyclase; cGMP, cyclic guanosine monophosphate; GPx, glutathione peroxidase; MAO, monoamine oxidases; NO,
nitric oxide; NOS, nitric oxide synthase; NOX, nicotinamide adenine dinucleotide phosphate oxidase; ROS, reactive oxygen
species; sGC, soluble guanylate cylcase; SOD, superoxide dismutase; TPx, thioredoxin peroxidase; XO, xanthine oxidase.
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BG12, is effective and approved for the treatment of multiple
sclerosis and, following its success, other NRF2 activators are
currently being tested in proof-of-principle studies for various
inflammatory diseases (Fig. 4).

Outlook

New, more specific pharmacological agents and future drugs
are likely to transform the field of oxidative stress, with its many
potential medical implications. Indirectly acting compounds
(e.g., sGCs) have already provided proof of concept. The final
breakthrough will be achieved when inhibitors of ROS-forming
enzymes will enter evidence-based medicine.
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Abbreviations Used

ADMA¼ asymmetric-dimethyl-l-arginine
apo-sGC¼ heme-free soluble guanylate cyclase

ARE¼ antioxidant responsive element
BH4¼ tetrahydrobiopterin
bZIP¼ basic region-leucine zipper

CDDO¼ 2-cyano-3,12-dioxooleana-1,9-dien-28-oic
acid

cGMP¼ cyclic guanosine monophosphate
COPD¼ chronic obstructive pulmonary disease
CYBA¼ cytochrome b alpha subunit

DGR¼ double glycine repeat
DLG¼ aspartate leucine glycine.
DMF¼ dimethyl fumarate

DUOX¼ dual oxidase
eNOS¼ endothelial NO synthase
ETGE¼ glutamate, threonine, glycine,

and glutamate
FAD¼ flavin adenine dinucleotide
GPx¼ glutathione peroxidase

H2O2¼ hydrogen peroxide
HOBr¼ hypobromous acid

IC50¼ half maximal inhibitory concentration
KEAP1¼ kelch-like ECH-associated protein 1

LDL¼ low-density lipoprotein
L-NIL¼N6-(1-iminoethyl)-l-lysine

L-NMMA¼ 1-(4-aminopentyl)-2-methylguanidine
MAO¼monoamine oxidases
MPO¼myeloperoxidase
NAD¼ nicotinamide adenine dinucleotide

NADPH¼ nicotinamide adenine dinucleotide
phosphate

NO¼ nitric oxide
NOS¼ nitric oxide synthase
NOX¼ nicotinamide adenine dinucleotide

phosphate oxidase
NRF2¼ nuclear factor (erythroid-derived 2)-like 2

O2
-¼ superoxide anion

PD¼ Parkinson’s disease
PTEN¼ phosphatase and tensin homolog

Rbx¼ ring box protein
ROS¼ reactive oxygen species
SFN¼ isothiocyanate sulforaphane
sGC¼ soluble guanylate cyclase
SOD¼ superoxide dismutase
TPx¼ thioredoxin peroxidase

uc-NOS¼ uncoupled nitric oxide synthase
XD¼ xanthine dehydrogenase
XO¼ xanthine oxidase

XOR¼ xanthine oxidoreductase
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