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Abstract

In the last decade, Amaranthus tuberculatus has evolved resistance to 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-hydroxyphe-

nylpyruvate dioxygenase inhibitors in multiple states across the midwestern United States. Two populations resistant to both mode-

of-action groups, one from Nebraska (NEB) and one from Illinois (CHR), were studied using an RNA-seq approach on F2 mapping

populations to identify thegenes responsible for resistance.Usingbothan A. tuberculatus transcriptomeassemblyandahigh-quality

grain amaranth (A. hypochondriacus) genome as references, differential transcript and gene expression analyses were conducted to

identify genes that were significantly over- or underexpressed in resistant plants. When these differentially expressed genes (DEGs)

were mapped on the A. hypochondriacus genome, physical clustering of the DEGs was apparent along several of the 16

A. hypochondriacus scaffolds. Furthermore, single-nucleotide polymorphism calling to look for resistant-specific (R) variants, and

subsequent mapping of these variants, also found similar patterns of clustering. Specifically, regions biased toward R alleles over-

lapped with the DEG clusters. Within one of these clusters, allele-specific expression of cytochrome P450 81E8 was observed for 2,4-

Dresistance inboththeCHRandNEBpopulations,andphylogeneticanalysis indicatedacommonevolutionaryoriginof thisRallele in

the two populations.

Key words: nontarget-site resistance (NTSR), Amaranthus tuberculatus, differential expression analysis, single-nucleotide

polymorphism (SNP) analysis, 4-hydroxyphenylpyruvate dioxygenase (HPPD), 2,4-dichlorophenoxyacetic acid (2,4-D).

Introduction

If left uncontrolled, weeds can decrease the yields of several

major crops by more than 50% in present North American

agronomic systems (Soltani et al. 2016, 2018). Many growers

in the United States currently rely heavily on chemical means

(i.e., herbicides) to control their weed populations, but the

effectiveness of this approach is steadily declining due to

growing numbers of herbicide-resistant weeds. Although her-

bicide resistance has been present in the United States since

the late 1950s (Hilton 1957; Switzer 1957), the widespread

adoption of herbicide-tolerant crop varieties in the mid-1990s

and overreliance on one or two herbicidal modes of action
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contributed to an exponential increase in the number of re-

sistant weed species over the last two decades (Heap 2020).

There are currently 164 weed species in the United States with

documented resistance to herbicides spanning 1 or more

modes of action (Heap 2020).

From a practical standpoint, understanding how weeds

deal with herbicidal compounds to avoid damage is a major

goal of weed science, both to generate workarounds to com-

bat herbicide resistance and to gain insights into plant evolu-

tion. Research on herbicide-resistance mechanisms over the

last several decades has largely been focused on mutations

occurring within genes that encode the target enzymes that

are directly inhibited by herbicides (target-site resistance). Only

recently has significant progress been made on nontarget-

site-based resistance (NTSR) mechanisms, largely due to the

increased availability of high-throughput whole genome/tran-

scriptome analyses (Gaines et al. 2014; Duhoux et al. 2015;

Bai et al. 2018; Gil et al. 2018). This work has largely pointed

to enhanced herbicide metabolism as a primary route of

NTSR, but resistance mechanisms including reduced translo-

cation (Goggin et al. 2016) and vacuolar sequestration (Ge

et al. 2010) have also been reported.

From an academic standpoint, widespread use of herbi-

cides to control weeds provides an excellent platform for

studying rapid adaptation of plants to strong selection, and

to address evolutionary questions that are increasingly tracta-

ble due to genomics advances. For example, the relative con-

tributions of new mutations, standing genetic variation, and

gene flow to convergent evolution of herbicide resistance at a

landscape scale recently was addressed using genomics and

population-genetics approaches in the agriculturally impor-

tant weed A. tuberculatus (Kreiner et al. 2019).

Amaranthus tuberculatus is a highly problematic weed spe-

cies for growers across the midwestern United States, due to

both its high fecundity and ability to readily evolve resistance

to herbicides. Since the report of acetolactate synthase (ALS)-

inhibitor resistance in A. tuberculatus in 1993 (Horak and

Peterson 1995), this species has accrued resistances to herbi-

cides spanning six additional sites of action (Heap 2020). In

2016, a population was discovered in Illinois that carried five-

way resistance, including resistance to photosystem II inhib-

itors, protoporphyrinogen oxidase (PPO) inhibitors, 4-hydrox-

yphenylpyruvate dioxygenase (HPPD) inhibitors, and synthetic

auxins (Evans et al. 2019). Two of the resistance traits (ALS

and PPO) were found to be attributable to target-site muta-

tions, but both the HPPD-inhibitor- and synthetic auxin-

resistance mechanisms were unknown. In 2012, a population

was reported from Nebraska that was highly resistant to 2,4-

D (Bernards et al. 2012) and was subsequently determined to

be resistant to HPPD-inhibiting herbicides as well (Murphy and

Tranel 2019).

As is the case with other weeds, genes responsible for

NTSR in A. tuberculatus are largely unknown. Enhanced her-

bicide metabolism via glutathione S-transferases (GSTs) and

cytochrome P450 monooxygenases (CYP450s) has been de-

scribed in both HPPD-inhibitor resistance (Ma et al. 2013;

Kaundun et al. 2017; Shergill et al. 2018; Kohlhase et al.

2019) as well as for 2,4-D resistance (Figueiredo et al.

2018). An RNA-seq study of HPPD-inhibitor-treated

A. tuberculatus populations revealed 29 CYP450 genes that

were upregulated in resistant plants compared with sensitive

plants, including one (CYP72A15) that was induced 3 h after

treatment along with ten more CYP450s upregulated 24 h

after treatment (Kohlhase et al. 2019). Resistance to 2,4-D

in another A. tuberculatus population was also attributed to

enhanced 2,4-D metabolism possibly mediated by a cyto-

chrome P450 (Figueiredo et al. 2018). Similarly, ALS-

inhibitor resistance likely can be conferred by constitutive or

upregulated expression of specific CYP450s (Shergill et al.

2018) and herbicide metabolism genes have been implicated

in PPO-inhibitor resistance (Obenland et al. 2019) in

A. tuberculatus. For PS-II inhibitors, a phi-class GST

(AtuGSTF2) has been identified and is known to confer resis-

tance to atrazine (Evans et al. 2017). Clearly, enhanced me-

tabolism of herbicides is an important NTSR mechanism in

A. tuberculatus, however, in almost all studies published so

far, the specific gene(s) responsible has not been identified.

In this paper, we present the results of an RNA-seq study

conducted on the Illinois and Nebraska A. tuberculatus pop-

ulations with resistance to both HPPD inhibitors and synthetic

auxins. The objectives of this research were to: 1) use RNA-

Seq on F2 mapping populations to measure differential gene

expression between resistant and sensitive F2 individuals for

both populations and both herbicides, 2) explore the origin

and regulation of select differentially expressed genes (DEGs),

and 3) use genomics-based analysis to understand the pat-

terns of gene expression and the role of coexpression clusters

in herbicide resistance.

Materials and Methods

F2 Production and Tissue Collection

Two populations of A. tuberculatus showing resistance to

HPPD inhibitors and 2,4-D were identified from both Illinois

(referred to as “CHR”) (Evans et al. 2019) and Nebraska (re-

ferred to as “NEB”) (Bernards et al. 2012). Herbicide-resistant

plants from each population were crossed with an herbicide-

sensitive A. tuberculatus population (WUS; originally collected

in Brown County, OH) and F1 seeds were screened to confirm

resistance to both HPPD inhibitors and 2,4-D. To screen these

F1 populations, plants were grown under previously described

greenhouse conditions (Lillie et al. 2020) and sprayed with an

initial discriminating dose of mesotrione (220 g ai ha�1;

Callisto; Syngenta Crop Protection Inc., Greensboro, NC)

plus 1% v/v crop oil concentrate, followed by a late POST

treatment of 2,4-D (560 g ae ha�1; 2,4-D amine; Nufarm

Americas Inc., Chicago, IL) plus 0.25% v/v nonionic
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surfactant. All herbicide applications were made using a

moving-nozzle spray chamber as described previously (Lillie

et al. 2020). Within each of the NEB- and CHR-derived F1

lines, pairs of full-sibling F1 survivors were crossed together

to form several segregating pseudo-F2 populations. Because

A. tuberculatus is dioecious, an F1 plant cannot be selfed to

create a true F2 population.

A single pseudo-F2 (hereafter referred to as an F2) popula-

tion was selected each from NEB and CHR and several hun-

dred seeds from each F2 were germinated for 48 h on wet

filter paper in a growth chamber set to a 12-h day/night cycle

(35 �C/15 �C). Germinated seedlings were transplanted into

50-cm3 pots filled with Weed Lite Mix (3:1:1:1 mixture of LC1

[Sun Gro Horticulture Canada]: Soil: Peat: Torpedo Sand) and

grown in the greenhouse until plants reached a height of

4� 6 cm. One hundred plants from each F2 population

were then transplanted into 3.8-l round pots filled with

Weed Lite Mix and allowed to grow until plants reached

8� 10 cm in height. Tissue was then collected from the small-

est fully unfolded leaf, immediately placed into liquid nitro-

gen, and stored at�80 �C until RNA extraction. All tissue was

collected within a 2-h period between 10 AM and noon on

the same day. Tissue was taken prior to herbicide application

and herbicide-treated tissue was not included in this study.

Without the use of an extensive (and expensive) time course

RNAseq study, identifying potential resistance genes that are

induced by herbicide application is extremely difficult due to

the differential effects of herbicide treatment on stress and

death pathways between resistant and sensitive plants

(Giacomini et al. 2018).

All F2 plants continued to grow for three more weeks until

each plant had produced multiple side shoots, at which point

the side shoots were clipped off, dipped in rooting hormone,

and transplanted into 400-cm3 inserts in flats filled with damp

soil. These flats were covered with a clear 15-cm plastic dome

(to maintain high humidity) until the clones established a good

root system (�3� 4 weeks). Four clones were produced from

each plant and each clone was treated with either an HPPD

inhibitor or 2,4-D at a high or low dose to phenotype each F2

individual for multiple herbicide resistance. The low and high

rates of HPPD inhibitor were 27 and 270 g tembotrione ha�1

(Laudis; Bayer CropScience LP, Research Triangle Park, NC),

respectively. The low and high rates of 2,4-D were 560 and

2,240 g ae ha�1 (2,4-D amine; Nufarm Americas Inc,

Chicago, IL), respectively. Clones were visually rated for her-

bicide damage 14 and 21 DAT, using a 1� 10 scale (a score of

10 indicated no plant damage).

The cloning and spraying procedure was repeated on an-

other 70 plants from each population to generate enough

data for a Fisher’s exact test to assess whether the two resis-

tance traits segregated independently of one another. Using a

cutoff of 3 (Supplementary Material online; fig. 1) on the

visual rating scale to score plants as either sensitive or resis-

tant, count data for each category was fed into R and ana-

lyzed using fisher.test (alternative ¼ “two.sided”).

RNA Sequencing and Assembly

Based on the clonal visual ratings at both rates 21 DAT, F2

plants were ranked in order of least to most resistant for both

Fig. 1—Experimental design for this study. Within each F2 population, plants were cloned and sprayed with high and low rates of tembotrione or 2,4-D.

Based on their response, each plant was grouped into one of four categories: RR, resistant to both 2,4-D and tembotrione; RS, resistant to 2,4-D and sensitive

to tembotrione; SR, sensitive to 2,4-D and resistant to tembotrione; and SS, sensitive to both 2,4-D and tembotrione. The four most resistant/sensitive plants

from each category were chosen for RNA-seq analysis. This allowed for an N¼8 comparison between resistant and sensitive plants for each herbicide using

only 16 plants for each population.
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tembotrione and 2,4-D. Within each F2 population, plants

were then grouped into four categories: 1) RR, resistant to

both 2,4-D and tembotrione; 2) RS, resistant to 2,4-D and

sensitive to tembotrione; 3) SR, sensitive to 2,4-D and resistant

to tembotrione; and 4) SS, sensitive to both 2,4-D and tem-

botrione. The four most resistant and sensitive in each cate-

gory (16 plants total from each population and 32 plants

overall) were selected for RNA extraction using a Trizol-

based method (Simms et al. 1993) with a DNase I treatment

following extraction. Samples were checked for quality and

quantity, respectively, by running them on a Qubit analyzer

and on a 1% agarose gel before sending them to the Roy J.

Carver Biotechnology Center at the University of Illinois,

Urbana-Champaign for Illumina library construction and

sequencing.

The RNAseq libraries were prepared using the Illumina

TruSeq Stranded mRNAseq Sample Prep kit (Illumina Inc.,

San Diego, CA, Cat. # RS-122-2101). The libraries were quan-

titated by qPCR and sequenced across four lanes on a HiSeq

4000 using a HiSeq 4000 sequencing kit version 1. Fastq files

were generated and demultiplexed with the bcl2fastq

v2.17.1.14 Conversion Software (Illumina). Adaptors were

trimmed from the 30 end of the reads and any leading or

trailing bases below a quality score of 30 were trimmed via

Trimmomatic-0.33, only retaining reads that were 30-bp or

longer (Bolger et al. 2014).

The trimmed read files within each subgroup (RR, RS, SR,

and SS) were concatenated and assembled using Trinity

v2.1.0 (Grabherr et al. 2011). All four resulting assemblies

were compared with one another and clustered into groups

of transcripts using CD-HIT (Li and Godzik 2006). The longest

transcript from each group was used as a representative of

that group, generating a final reference transcriptome.

Differential Transcript and Gene Expression Analysis

Each sample was aligned to the reference transcriptome as-

sembly using kallisto (Bray et al. 2016) with the following

parameters: –b 100 –bias –single –rf-stranded –l 255 –s 40.

These pseudoalignments were then analyzed for differential

expression using sleuth (Pimentel et al. 2017) with herbicide

sensitivity rating (R vs S) as the condition. The sleuth analysis

was carried out for all four comparisons: Tembotrione resis-

tant versus sensitive for the NEB population, tembotrione re-

sistant versus sensitive for the CHR population, 2,4-D resistant

versus sensitive for the NEB population, and 2,4-D resistant

versus sensitive for the CHR population (n¼ 8). Transcripts

were further mapped to gene models from a reference ge-

nome assembly of A. hypochondriacus (Lightfoot et al. 2017;

GenBank accession number GCA_000753965.1) to calculate

the gene-level differential expression and to anchor genes to

scaffolds, potentially identifying any physical clustering of

DEGs. GMAP (Wu and Watanabe 2005) was used to align

transcripts to the genome in a splice-aware manner (–cross-

species –n 1 –min-trimmed-coverage¼ 0.80 –min-identi-

ty¼ 0.80). This gene-transcript mapping table was then fed

into sleuth, which was rerun in gene mode to calculate dif-

ferential gene expression between herbicide-resistant and

sensitive cohorts. Genes with a Benjamini�Hochberg cor-

rected P-value (Benjamini and Hochberg 1995) of 0.1 or less

were considered DEGs and used in further analyses.

Coexpression Cluster Analysis

Significant clustering of the DEGs was tested using CROC

(Pignatelli et al. 2009). CROC searches for clusters using a

hypergeometric test that calculates the probability of getting

k number of DEGs (out of n total genes) present in a sliding

window along each scaffold. A window size of 1 Mb and an

offset size of 500 kb was used, calling significant clusters only

when the adjusted P-value (false discovery rate [FDR]) was

<0.05. A sliding window approach was used to visualize clus-

tering along each of the 16 longest scaffolds using R v3.5.1 (R

Core Team 2018). Given a window size of 500 kb and a step

size of 500 kb, the number of DEGs was counted within each

window and plotted using a custom R script (Supplementary

Material online, “slidingWindowPlots.R”).

Additionally, over-representation of DEGs at the whole-

chromosome level was tested by totaling up the number of

DEGs across each chromosome and comparing them to the

expected number of DEGs on that chromosome using Fisher’s

Exact test in R. Adjusted P-values (p.adjust, method ¼
“bonferroni”) were calculated.

Single-Nucleotide Polymorphism Calling

Single-nucleotide polymorphisms (SNPs) were called using

the best practices outlined by GATK v3.7 (Van der Auwera

et al. 2013). Cleaned reads from each RNA-seq sample

were first mapped to the A. hypochondriacus genome using

STAR v2.5.3 (Dobin et al. 2013) with the following

parameters: –outSAMtype BAM SortedByCoordinate –

quantMode TranscriptomeSAM GeneCounts –

sjdbGTFtagExonParentTranscript Parent. Read groups were

assigned and PCR duplicates were removed using Picard

Tools v1.95 (The Broad Institute 2019), followed by hard clip-

ping of sequences that extended into the intronic regions us-

ing the GATK SplitNCigarReads tool. To correct for any

systemic bias in the quality of each aligned base, GATK

BaseRecalibrator was run using a set of high-quality SNPs.

Because no high-quality SNP data sets exist for

A. tuberculatus, a set was created from data generated herein

by first running an initial round of variant calling on the unca-

librated data using GATK’s HaplotypeCaller and

GenotypeGVCFs functions, then hard filtering the SNPs using

the following strict parameters: QD < 2.0; FS > 60.0; MQ <

40.0; MQRankSum < �12.5; ReadPosRankSum < �8.0.

After base recalibration, variant calling was again run, this

time on the calibrated data, using HaplotypeCaller

Giacomini et al. GBE
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(parameters: -dontUseSoftClippedBases -stand_call_conf

20.0 –variant_index_type LINEAR –variant_index_parameter

128000 -ERC GVCF) and Genotype GVCFs. SNPs were

extracted from the final variant file and filtered to include

only SNPs that were biallelic and that passed the following

parameters: -window 35 -cluster 3 -filter QD< 2.0 -filter FS>

30.0.

Out of this final SNP data set, condition-specific SNPs were

called using the case/control association analysis in PLINK v1.9

(Steiß et al. 2012; Chang et al. 2015). Due to low sample sizes

for each herbicide-resistant versus sensitive comparison

(n¼ 8), an adaptive Monte Carlo permutation test with

1,000 iterations was also run as part of this association anal-

ysis. SNPs that were different between R and S plants with a

corrected P-value of 0.05 or less were called as condition-

specific SNPs. As with the DEGs, a sliding window approach

(Supplementary Material online, “slidingWindowPlots.R”)

was used to visualize these condition-specific SNPs, using a

window size of 500 kb and a step size of 500 kb.

Quantitative PCR

Of the DEGs that emerged from the data for all four compar-

isons, the most likely candidates for herbicide resistance were

identified based on their relative rank, fold-change expression,

and gene annotation as a possible metabolic resistance gene,

as supported by previous papers suggesting a herbicide-

metabolism-based resistance mechanism for these popula-

tions (Figueiredo et al. 2018; Evans et al. 2019).

Quantitative PCR primers were developed for each candidate

gene. Primers were also created for six housekeeping genes

and PCR efficiencies were calculated for all primer sets using a

5-step log-scale serial dilution of cDNA. Only primer sets that

showed a PCR efficiency close to 100% (þ/- 5%) were

retained and used for further analyses (supplementary table

1, Supplementary Material online).

To validate the differential analysis results, a subset of F2

plants from both CHR- and NEB-derived populations were

selected (n¼ 14), including individuals that were and were

not used in the RNA-seq. RNA was extracted from all samples

using the Trizol method (previously described) and RNA was

converted to cDNA using a ProtoScript First Strand cDNA

Synthesis Kit (NEB). Quantitative PCR was performed in trip-

licate on each sample for each primer set by combining 5ll of

iTaq Universal SYBR Green Supermix (Bio-Rad), 0.5ll forward

primer (10lM), 0.5ll reverse primer (10lM), 3ll of

nuclease-free water, and 1ll of cDNA. Three housekeeping

genes were run on each plate for each sample to serve as

endogenous controls and assays were conducted 2� 3 times

to ensure consistent results. Relative expression was calcu-

lated using the 2–DDCt method (Livak and Schmittgen 2001),

using a sensitive parent (WUS) as the reference sample. These

expression values were then regressed against the phenotypic

rating values in R (stats v3.6.1) to test for a significant linear

relationship for each population.

Promoter Analysis

The 1,000 bases upstream of the transcription start site were

extracted from all A. tuberculatus genes from a newly assem-

bled A. tuberculatus genome (Kreiner et al. 2019) for tran-

scription factor-binding site (TFBS) analysis. These “promoter”

regions were searched for known plant-specific TFBSs by

matching them to position weight matrices downloaded

from JASPAR 2018 (Khan et al. 2018). Using the searchSeq

function from TFBSTools v1.10.3 in R (min.score ¼ “90%”),

all 501 plant-specific TFBSs were matched and counted across

the A. tuberculatus promoter regions. Each DEG set was

tested for over-representation of the TFBSs using a hypergeo-

metric test in R (phyper; lower.tail¼ FALSE) and correcting for

multiple testing using the Benjamini-Hochberg P-value adjust-

ment method (p.adjust; method ¼ “BH”).

Allele-Specific Expression Analysis

Given the co-occurrence of both differential gene expression

and condition-specific SNPs in several regions of the genome,

the hypothesis of allele-specific expression (ASE) was tested

using the read count data for each condition-specific SNP to

identify all heterozygous individuals (those that showed ex-

pression of each allele). Homozygous resistant and sensitive

plants at each SNP site were then used to classify each SNP as

R or S, then the count data of each R- or S-associated SNP in

the heterozygous individuals were used to test for a significant

difference in read depth between R and S SNPs using R (rsta-

tix). SNPs and their associated adjusted P-values (Benjamini

and Hochberg, P¼ 0.1) were plotted across the scaffold 4

cluster region using R (ggpubr).

Cytochrome 81E8 Phylogenetic Analysis

Both the CHR and the NEB population showed the same

upregulated allele of a CYP81E8 gene for resistance to 2,4-

D, raising the question of whether or not this putative resis-

tance allele evolved independently in each population. Using a

previously published (Kreiner et al. 2019) data set of whole

genome sequence from A. tuberculatus samples from Illinois

and Canada, a phylogenetic tree was constructed to examine

the evolutionary relationship of CYP81E8 from each popula-

tion. Whole genome or whole transcriptome data sets were

aligned to the CDS of CYP81E8 using bowtie2 (Langmead

and Salzberg 2012) (parameters: –no-unal -t -L 20). The

sorted bam files were then fed into the same GATK SNP

pipeline described above to generate a filtered vcf file. The

SNPRelate package in R converted this vcf file to a gds file that

could then be used to generate a dendogram based on relat-

edness (snpgdsHCluster; snpgdsCutTree, n.perm ¼ 5000).
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Results

Resistance Response

Dose–response data from previous work have shown about a

15-fold level of resistance to mesotrione and 9-fold resistance

to 2,4-D for the CHR population compared with WUS (Evans

et al. 2019). A similar level of 2,4-D resistance has been

reported in the NEB population, with 10-fold resistance com-

pared with the Nebraska 2,4-D sensitive population (Bernards

et al. 2012) that was reverted to sensitivity by pretreatment

with the cytochrome P450 inhibitor malathion (Figueiredo

et al. 2018). For tembotrione, we saw a 43-fold resistance

in the CHR population and a 15-fold resistance in the NEB

population, compared with WUS (Murphy and Tranel 2019).

In both CHR and NEB populations, resistance to tembotrione

and 2,4-D appeared to segregate independently (P-value ¼
0.2457 and 0.1457, respectively). By selecting four F2 plants

with each resistance combination (RR, RS, SR, and SS) we

were able to achieve, for each population, eight replicate

comparisons for each of two resistant traits from only 16

plants (fig. 1).

Differential Transcript/Gene Expression

The transcriptome assembled into 57,106 transcripts for a

total length of 98,112,700 bp. The 32 libraries (16 for each

population) were all sequenced to a minimum of 40 million

reads per sample (total reads sequenced ranged from

40,800,978 to 54,938,593 bp). Over 80% of reads aligned

to the transcriptome for each sample with an average of

81.3% alignment across all libraries, resulting in approxi-

mately �40� coverage across the entire transcriptome.

For the CHR F2 population, there were 39 differentially

expressed transcripts (DETs) between 2,4-D resistant and

2,4-D sensitive plants and 121 DETs between tembotrione

resistant and sensitive plants (supplementary table 2,

Supplementary Material online). In the NEB F2 population,

1,445 transcripts were found to be differentially expressed

between 2,4-D resistant and sensitive plants and 115 be-

tween tembotrione resistant and sensitive plants.

One of the most significantly DETs in the CHR population

for 2,4-D resistance was a cytochrome P450 (CYP81E8), also

identified as an isoflavone 2’-hydroxylase. This same cyto-

chrome P450 gene was also found to be significantly overex-

pressed in 2,4-D resistant plants for the NEB population,

pointing to a possible shared resistance mechanism between

these two populations despite their disparate geographic ori-

gins. Quantitative PCR analysis validated overexpression of

CYP81E8, finding strong correlations between its expression

and phenotypic response to 2,4-D for both populations (ta-

ble 1). Other putative resistance genes underwent the same

qPCR validation process, confirming higher expression of a

glucosyltransferase (UDP-glucose flavonoid 3-O-glucosyltrans-

ferase) in NEB plants resistant to the HPPD inhibitor. An ABC

transporter gene that emerged as a DET for the CHR popu-

lation for tembotrione was also confirmed to correlate with

resistance, not only for the HPPD inhibitor, but also for 2,4-D

resistance in both populations. All genes were also examined

for genomic copy number increase using a qPCR-based assay,

and no evidence of gene duplication for any of these DETs

was found (data not shown).

Differential expression was also measured at the gene level

to 1) increase the power and remove any confounding infor-

mation due to minor transcript isoforms and 2) be able to later

map the genes to the genome for spatial gene expression

profiling. For the CHR population, 90 and 31 DEGs were

obtained for the 2,4-D comparison and tembotrione compar-

ison, respectively. Again, the NEB population gave higher

numbers, with 676 DEGs found for the 2,4-D comparison

and 268 DEGs found in the tembotrione comparison (supple-

mentary table 3, Supplementary Material online).

Coexpression Cluster Analysis

DEGs between the 2,4-D resistant and sensitive biotypes of

both CHR and NEB were found to physically cluster together

in a few chromosomal regions. CROC analyses found signif-

icant clustering in a region on scaffold 4 for both populations

and a significant region in scaffold 7 for the NEB population

(table 2; fig. 2A). No significant regional clustering was ob-

served for DEGs between HPPD-resistant and -sensitive plants,

however, a Fisher’s exact test for over-representation of DEGs

Table 1

Linear Regression of RT-qPCR Expression Data for Each Gene Against

Phenotypic Damage Ratings for Each Population (CHR and NEB) and

Each Chemistry (HPPD and 2,4-D)

Gene HPPD 2,4-D

CHR NEB CHR NEB

ABCI11 NS NS NS NS

CYP81E8 NS NS 0.021 0.008

ABCC10 NS 0.036 0.034 0.018

UDPflav NS 0.047 NS NS

CYP97B2 NS NS NS NS

CYP71A1 NS NS NS NS

CYP72A219 NS NS NS NS

BTBTOZ NS NS NS NS

NOTE.—Significant P-values reported; NS, not significant.

Table 2

Chromosomal Cluster Testing (Using CROC; Pignatelli et al. 2009) of

Differentially Expressed Genes in CHR and NEB for 2,4-D Resistance

Scaffold Population Start Stop Adj. P-Value

Scaffold_4 CHR 3,469,336 6,412,488 0.0058

Scaffold_4 NEB 3,002,834 9,781,978 1.37E�06

Scaffold_7 NEB 14,666,782 16,050,619 0.0021
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across the entire chromosome-level scaffolds indicated signif-

icantly higher numbers of DEGs than expected on scaffolds 6

and 13 for NEB (supplementary table 4, Supplementary

Material online). This over-representation analysis also identi-

fied the significant clustering previously found for the 2,4-D

comparisons on scaffold 4 (for CHR and NEB) and scaffold 7

(for NEB) as well as clustering on scaffold 13 for NEB. It may be

that the low sample sizes (n¼ 8) were insufficient for ade-

quate resolution of coexpression clusters in the HPPD

comparisons.

Fig. 2—Sliding window graph of significantly differentially expressed genes and significant SNPs. (A) Significantly differentially expressed genes (DEGs)

between 2,4-D resistant and sensitive plants in CHR and NEB mapped on the A. hypochondriacus genome. Only genes with an FDR of 0.05 or less were

considered significant. (B) SNPs that were statistically different between 2,4-D resistant and sensitive plants in CHR and NEB mapped on the

A. hypochondriacus genome. Statistically significant SNPs were called if PLINK analysis returned a corrected P-value of 0.05 or less.
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Condition-Specific SNPs

To check for the presence of any resistant-specific SNPs in

these populations, SNPs were called across all genes and

condition-specific SNPs (those that varied between resistant

and sensitive plants) were identified using Fisher’s exact test in

PLINK v1.9. Using an adjusted P-value cutoff of 0.05, 10, and

192 SNPs were found to be associated with resistance in the

2,4-D resistant versus sensitive comparison for CHR and NEB,

respectively (supplementary table 5, Supplementary Material

online). In both populations, SNPs were found to cluster in the

same regions that DEGs were found to cluster. In CHR, 9 out

of 10 SNPs were found in the region of scaffold 4 that con-

tained the CYP81E8 gene, whereas the other SNP was found

on scaffold 6. Within the scaffold 4 cluster, there were signif-

icant SNPs found in both the CYP81E8 gene as well as a PIN3

auxin efflux carrier gene (which is interesting given 2,4-D is a

synthetic auxin). However, 2,4-D resistance cannot be attrib-

uted to any of these SNPs because they are in linkage disequi-

librium with one another, making it challenging to locate the

causal variant. Fine mapping of this region is currently under-

way. In NEB, 182 SNPs were found in the scaffold 4 region, 6

were found in the scaffold 7 region that also showed a cluster

of DEGs in the expression analysis, and the other 4 SNPs were

scattered across scaffolds 1, 2, and 16. Sliding window graphs

illustrate the clustering of these SNPs, and compared with the

DEG sliding window graphs, show the co-occurrence of DEG

and SNP clustering (fig. 2B). No significant SNPs were found

between resistant and sensitive plants for the HPPD compar-

isons. The reason for a lack of SNP clustering in the HPPD

comparisons may be due to the more complex nature of

this resistance trait, because it has been documented to be

a multigenic trait in these populations (Murphy and Tranel

2019).

ASE Analysis

The clustering of condition-specific SNPs with regions of dif-

ferential gene expression suggested the occurrence of ASE.

An ASE is defined as a form of allelic imbalance, wherein one

parental allele is preferentially expressed over another allele

(Knight 2004). In the scaffold 4 cluster, nine SNPs were found

to be statistically significantly differentially expressed for NEB

(fig. 3A). For all but one, the R allele had significantly higher

expression than the S allele, perhaps indicating some cis-act-

ing factor associated with this region, controlling expression.

For the CHR population, there were four SNPs that occurred

in this scaffold 4 region in heterozygous individuals and three

showed significantly different expression between the two

alleles (fig. 3B), again with the R allele showing higher expres-

sion than the S allele. ASE may also be occurring in other

places along this region, but only the SNPs that were found

to occur in a heterozygous state across three or more individ-

uals were included in this analysis.

Cytochrome 81E8 Phylogenetic Analysis

Phylogenetic analysis of the CYP81E8 gene revealed the evo-

lutionary relatedness of each CYP81E8 allele from both the

CHR and NEB populations and other A. tuberculatus popula-

tions from Illinois, Missouri, and Canada. As seen in figure 4,

the CYP81E8 alleles from CHR and NEB separated into three

groups representing 1) the 2,4-D sensitive allele from NEB; 2)

the 2,4-D sensitive allele from CHR; and 3) the 2,4-D resistant

allele in both CHR and NEB. The separation of the wildtype

sensitive alleles from CHR and NEB along with the tight clus-

tering of the 2,4-D resistance-associated CYP81E8 from CHR

and NEB provides good evidence that the R allele in both

populations has a common evolutionary origin.

Discussion

Herbicide Resistance Candidate Genes

Strong candidate genes for metabolic-based herbicide resis-

tance were found for 2,4-D in both the CHR and NEB pop-

ulations in this study. Both a cytochrome P450 (CYP81E8) and

an ABC transporter (ABCC10) showed consistent overexpres-

sion in 2,4-D resistant plants compared with 2,4-D sensitive

plants. These results support earlier work that found 2,4-D

resistance in the NEB population was likely mediated by a

cytochrome P450, because the cytochrome P450 inhibitor

malathion reversed the resistance phenotype (Figueiredo

et al. 2018). Follow-up work is needed to validate these genes

in vitro, but the CYP81E8 appears particularly promising. The

putative resistance allele of this gene cosegregated with ad-

ditional resistant plants from F2 populations (data not shown),

and fine mapping is currently underway.

Our findings for HPPD-inhibitor resistance, however, were

less clear. One candidate gene, a UDP-glucose flavonoid 3-O-

glucosyltransferase, was confirmed to be overexpressed in

tembotrione-resistant plants compared with tembotrione-

sensitive plants. The primary functional annotation of this

gene shows it to be involved in fruit ripening, but additional

work has shown it to possibly participate in xenobiotic me-

tabolism by glycosylation of exogenous substances (Griesser

et al. 2008). The lack of additional candidate HPPD-inhibitor-

resistance genes may be due to its multigenic nature (Oliveira

et al. 2018), making it difficult to identify the resistance loci.

Additionally, our RNA-seq approach focused primarily on

identifying genes contributing to resistance via constitutive

differential expression, potentially missing other resistance-

conferring changes between the plants. A recent RNA-seq

study looking into mesotrione resistance in A. tuberculatus

did include treated plants and found some evidence of in-

duced expression of cytochrome P450a in resistant plants,

compared with sensitive plants (Kohlhase et al. 2019).

However, the final list of DETs in this study was�4,800, mak-

ing the identification of causative resistance genes difficult.
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Work using a genetic mapping approach to identify HPPD-

inhibitor resistance genes in the NEB and CHR populations is

currently underway.

Identification of coexpression networks was not extensively

pursued in this work due to the fact that plants were not

treated with herbicide prior to RNA-seq. Without this shared

treatment, it is unlikely that coexpression analysis would yield

anything meaningful, because it would measure the random

expression differences across the two populations. Indeed,

initial forays into coexpression networks yielded no informa-

tive results.

Regulation of Herbicide Resistance

In addition to the identification of herbicide resistance gene

candidates, this data also reveal some insights into the regu-

lation of herbicide resistance. The physical clustering of DEGs

observed for 2,4-D resistance provides evidence for coexpres-

sion of colocalized genes, a phenomenon that has been ob-

served in many other species, including yeast (Cohen et al.

2000), Arabidopsis (Williams and Bowles 2004), C. elegans

(Chen and Stein 2006), and human (Trinklein et al. 2003).

Although several of these coexpression clustering examples

are found between neighboring gene pairs, coexpression

Fig. 3—Allele-specific expression of all SNPs in the scaffold 4 hotspot region for (A) the NEB population and (B) the CHR population. The location of each

SNP is given across the x axis and the results of a t-test for differential expression between the R and S allele (Benjamini and Hochberg adjusted P-value) is

given above the bars for each locus.
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across longer chromosomal intervals has also been reported

(Lercher and Hurst 2006; Reimegård et al. 2017). The ability of

herbicides to reshape the genomic landscape of weedy spe-

cies has been recently documented in Ipomoea purpurea,

wherein evidence of selective sweeps was found in five ge-

nomic regions within glyphosate-resistant populations (Van

Etten et al. 2020). Interestingly, enrichment for herbicide de-

toxification genes was apparent within these regions.

One major implication of this clustering is the likelihood of

a shared mechanism of gene regulation for these regions.

Regulation of gene expression is a complex process, involving

the selective interaction of transcription factors with

enhancers, the opening and closing of chromatin to allow/

prevent transcription, and the interaction between these two

processes (Voss and Hager 2014). In this study, we examined

the upstream regions of all DEGs and looked for overrepre-

sentation of TFBSs, but found no evidence of shared enhancer

elements (data not shown). Previous work looking into regu-

lation mechanisms for physically clustered, coexpressed genes

has shown that coexpressed gene pairs are often regulated by

shared transcription factors, whereas larger regions of shared

expression across 10� 20 genes are influenced by a change

in the chromatin structure (Batada et al. 2007). However, only

a few examples have been studied so far and the interde-

pendent nature of regulatory mechanisms makes it difficult

to ascertain direct causes of gene expression. It also should be

noted that we cannot rule out that the observed physical

clustering of co-expressed genes occurred as a result of link-

age in the segregating F2 plants.

The differential expression of genes in scaffold 4 is associ-

ated with 2,4-D resistance in both A. tuberculatus populations

in this study, but how many genes in this region actually con-

tribute to the phenotype is unknown. A recent study of coex-

pression genes in humans (Kustatscher et al. 2017) found that

despite high levels of coexpression between neighboring

genes at the transcript level, only a small fraction (3%) had

similar abundances at the protein level. Regardless of whether

all differentially regulated genes in the scaffold 4 region con-

tribute to resistance, the discovery of these expression clusters

provides several benefits to transcriptomics researchers. As

stated previously, they deliver insight into the regulatory

mechanism responsible for the expression differences leading

to resistance. They also provide an excellent forensic tool for

narrowing down to the causal resistance gene. Finding a re-

gion of coexpression across individuals with a shared pheno-

type indicates some level of selection on that region, likely

pointing to a gene within that region that is responsible for

the phenotype.

Conclusion

In summary, this study presents an intriguing story of

nontarget-site herbicide resistance evolution in

A. tuberculatus. The combination of RNA-seq and genomic

data to unravel the patterns of gene expression in resistant

plants has revealed colocalized, coexpression clusters for 2,4-

D resistance in both populations. In at least one of these

clusters, ASE is occurring, presenting a model in which cis-

acting genetic variation is the cause of this differential

Fig. 4—A phylogenetic tree of cytochrome P450 81E8 in an arbitrary subset of A. tuberculatus populations from Illinois, Nebraska, Missouri, and

Canada. Samples from this study are indicated with their population name (“CHR” or “NEB”) as well as their 2,4-D phenotypic response. Samples beginning

with a number or “N3” originated from Ontario and samples beginning with “B,” “F,” “J,” or “K” originated from Illinois and Missouri.
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expression. Future work building off this project has the po-

tential to enhance our understanding of the regulatory sys-

tems underlying herbicide resistance. Additionally, for one of

the genes found in this study (CYP81E8), a phylogenetic anal-

ysis revealed very close relatedness of the resistance-

associated allele between the CHR and NEB populations de-

spite no such relatedness found in the sensitive-associated

allele, suggesting a common evolutionary origin despite the

geographic separation of the two populations.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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