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Intestine is a major target of vitamin D and several studies indicate an associ-

ation between vitamin D deficiency and inflammatory bowel diseases (IBD),

but also increased colorectal cancer (CRC) risk and mortality. However, the

putative effects of 1a,25-dihydroxyvitamin D3 (calcitriol), the active vitamin

D metabolite, on human colonic stem cells are unknown. Here we show by

immunohistochemistry and RNAscope in situ hybridization that vitamin D

receptor (VDR) is unexpectedly expressed in LGR5+ colon stem cells in

human tissue and in normal and tumor organoid cultures generated from

patient biopsies. Interestingly, normal and tumor organoids respond differen-

tially to calcitriol with profound and contrasting changes in their transcrip-

tomic profiles. In normal organoids, calcitriol upregulates stemness-related

genes, such as LGR5, SMOC2, LRIG1, MSI1, PTK7, and MEX3A, and inhi-

bits cell proliferation. In contrast, in tumor organoids calcitriol has little

effect on stemness-related genes while it induces a differentiated phenotype,

and variably reduces cell proliferation. Concordantly, electron microscopy

showed that calcitriol does not affect the blastic undifferentiated cell pheno-

type in normal organoids but it induces a series of differentiated features in

tumor organoids. Our results constitute the first demonstration of a regula-

tory role of vitamin D on human colon stem cells, indicating a homeostatic

effect on colon epithelium with relevant implications in IBD and CRC.

Abbreviations

ChIP, chromatin immunoprecipitation; CRC, colorectal cancer; EGF, epidermal growth factor; FBS, fetal bovine serum; GSEA, gene set

enrichment analysis; IBD, inflammatory bowel diseases; IGV, integrative genome visualization; PBS, phosphate-buffered saline; PGE2,

prostaglandin E2; RSPO1, R-spondin 1; VDR, vitamin D receptor.

53The FEBS Journal 287 (2020) 53–72 ª 2019 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and

distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

https://orcid.org/0000-0003-3890-4251
https://orcid.org/0000-0003-3890-4251
https://orcid.org/0000-0003-3890-4251
mailto:
mailto:
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction

Calcitriol (1a,25-dihydroxyvitamin D3) is the active

vitamin D metabolite and a main regulator of the

physiology and homeostasis of the intestine. It induces

Ca2+ and phosphate absorption, and contributes to

epithelial integrity/barrier function, detoxification, and

protection against infection [1]. These actions of cal-

citriol are the consequence of it binding to and activat-

ing vitamin D receptor (VDR), a member of the

nuclear receptor superfamily that acts predominantly

as a transcription factor modulating the expression of

a high number of genes in a tissue- and cell-dependent

fashion [2,3]. Epidemiological and preclinical studies

suggest an association between vitamin D deficiency

and inflammatory bowel diseases (IBD), various

extraskeletal disorders, and several neoplasias, particu-

larly colorectal cancer (CRC) [1,3,4]. Supporting this,

experimental results in immortal carcinoma cell lines

and animal models of CRC demonstrate a multilevel

protective action of calcitriol and other VDR agonists

[3,5].

High level of Vdr RNA has been found in the small

and large intestine/colon as compared to other mouse

tissues [6]. VDR was reported to be preferentially

expressed in top differentiated enterocytes, which sup-

ports its role in Ca2+ and phosphate absorption and

barrier function, and to a lesser extent in cells at the

crypt base [7,8]. However, a detailed analysis of VDR

protein expression and function in human colon tissue

is lacking. Intestinal epithelium is the highest renewal

body tissue, which has hampered its long-term cell cul-

ture in vitro. However, the identification of LGR5 as a

marker of colon crypt bottom stem cells [9] made pos-

sible their isolation and unlimited growth as three-di-

mensional culture, forming structures called organoids

or mini-guts [10,11]. Organoid technology is a power-

ful tool for multiple applications (diagnosis, personal-

ized medicine. . .) and has now allowed us to study

VDR expression and calcitriol action in human colon

stem cells using CRC patient-derived organoids.

Here, we combined RNAscope in situ hybridization

and immunohistochemistry to study the expression of

LGR5 stem cell marker and VDR protein in human

colon mucosa. Interestingly, our results show for the

first time that a high proportion of crypt bottom stem

cells co-express LGR5 and VDR. This led us to investi-

gate the role of calcitriol in colon stem cells. To this

end, we generated a unique living biobank of CRC

patient-derived organoids from matched healthy (nor-

mal) and tumor colon biopsies. Remarkably, matched

normal and tumor organoids responded distinctly to

calcitriol, which has contrasting effects on cell

phenotype and gene expression. Our results strongly

support a major regulatory role of vitamin D on

human colon normal and cancer stem cells that has

potential implications in important medical conditions

such as IBD and CRC.

Results

VDR is expressed in human colon crypt stem

cells

To analyze the expression of VDR protein in human

colon mucosa, we performed immunohistochemistry

assays in healthy tissue from CRC patients. In the

same sections, to identify the colon stem cells, we car-

ried out RNAscope in situ hybridization for detection

of the stem marker LGR5 [9] as all available anti-

LGR5 antibodies showed a lack of specificity in test

experiments (data not shown). We observed a strong

predominantly nuclear VDR signal in both top differ-

entiated enterocytes/cells and a population of cells

located at the crypt bottom, while those in the mid-

crypt displayed a lower signal (Figs 1A and S1). Quan-

tification of data at cell level in 100 crypts from four

CRC patients (25 crypts/patient) revealed that VDR is

expressed in 64% of crypt bottom cells and that 87%

of LGR5+ cells were positive for VDR expression

(Fig. 1B). We additionally performed double

immunostaining of tissue microarrays of healthy colon

from 25 CRC patients with antibodies against VDR

and PTK7, a stemness-related cell marker [12]. In line

with LGR5 data, VDR (nuclear) and PTK7 (extranu-

clear) proteins were largely co-expressed in crypt bot-

tom cells (Fig. S1). These findings provide evidence,

for the first time, that VDR is expressed in human

colon stem cells in vivo.

Human normal and tumor colon organoids

express VDR and respond to calcitriol

To investigate the effect of vitamin D on human colon

stem cells, we successfully generated a living biobank

of long-term normal and tumor organoid cultures

from 39 CRC patients who had undergone surgery for

curative purposes (Table S1). Normal organoids had

relatively homogeneous cystic morphology formed by

one or two cell layers, whereas tumor organoids were

frequently multilayered and showed two alternative

morphologies, cystic or compact (Fig. 1C) and resem-

bled the primary tumor morphology (Fig. 1D). The

analysis by RT-qPCR of VDR RNA expression

revealed slightly higher levels in normal than in tumor

organoids (Fig. 2A). RNA expression of CYP24A1,
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Fig. 1. Human colon stem cells express VDR. (A) Images of VDR immunofluorescence (red) and LGR5 RNAscope in situ hybridization

(green) in human colon crypts. Scale bars: 50 lm left and 20 lm right. (B) Quantification of VDR and LGR5-positive cells in 25 crypts/patient

(n = 4 patients). Bars represent mean � standard error of the mean (SEM). (C) Representative phase-contrast images of normal and tumor

colon organoids. Scale bars: 500 lm. (D) Hematoxylin/eosin images showing the primary tumor architecture and tumor organoid phenotype.

Scale bars: 100 lm.
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the most responsive calcitriol-target gene that encodes

the enzyme responsible for its degradation, was higher

in tumor than in normal organoids, as occurs in tumor

vs. healthy colon tissue [13]. Calcitriol treatment

increased CYP24A1 RNA to comparable levels in the

two types of organoids (Fig. 2B). In addition, calcitriol

increased both VDR and CYP24A1 proteins to a vari-

able extent in matched normal and tumor organoids

from a subset of patients (Fig. 2C) and CA2, a protein

typically expressed in normal colon organoids [14]

(Fig. 2C). We also performed RNAscope in situ

hybridization for LGR5 detection in organoids and, as

in colon tissue, VDR protein and LGR5 RNA were

mostly co-expressed in normal and tumor organoids.

VDR signal was increased by calcitriol in both types

of organoids whereas that of LGR5 seemed to increase

apparently only in normal organoids (Fig. 2D). Alto-

gether, these results showed that both types of orga-

noids, derived respectively from human normal and

cancer stem cells, express VDR and respond to cal-

citriol.

Calcitriol differentially modulates cell phenotype

and proliferation in normal and tumor colon

organoids

Based on the induction of differentiation by calcitriol

on carcinoma cell lines [15], we next explored the effect

of this hormonal agent on the cell phenotype in both

types of organoids. Ultrastructural analysis of

untreated normal organoids from three patients consis-

tently showed an undifferentiated cell phenotype with

decondensed euchromatin and large nucleoli typical of

high transcriptional activity, absence of intercellular

adhesion structures and microvilli, many free ribo-

somes, and few Golgi complexes and intermediate fila-

ment bundles. Unexpectedly, calcitriol treatment did

not change the undifferentiated cell phenotype in nor-

mal organoids (Fig. 3A, upper panels). On the con-

trary, cells of three tumor organoid cultures that

showed a similar undifferentiated phenotype responded

to calcitriol with changes compatible with

differentiation: heterochromatin patches, prominent

microvilli and adhesion structures (desmosomes)

(Fig. 3A, lower panels), bundles of intermediate fila-

ments, abundant, well-developed, rough endoplasmic

reticulum cisternae, autophagic vacuoles, and Golgi

complexes (Fig. 3B).

We then explored whether the antiproliferative effect

of calcitriol reported in carcinoma cell lines [2,3] was

reproduced in colon organoids. Calcitriol consistently

diminished cell proliferation in all seven patient-

derived normal organoids under study and, to a vari-

able extent, in tumor organoids (Fig. 4A,B). No differ-

ences were found in the number of organoids, which

suggests that calcitriol does not affect the clonogenicity

of either normal or cancer stem cells (Fig. 4C). Taken

together, the VDR RNA level in normal and tumor

organoids show a statistically significant correlation

with the antiproliferative response to calcitriol

(Fig. 4D,E), which may also depend on other cal-

citriol-related features and/or the tumor-specific muta-

tional status. Together, these results indicate that

calcitriol contributes to maintain the undifferentiated

phenotype and restricts the proliferation of normal

colon stem cells and their progeny, while it induces dif-

ferentiation and variably inhibits the proliferation of

cancer stem cells.

Calcitriol differentially regulates the expression

of stemness, differentiation, proliferation and

tumorigenesis genes in colon cancer patient-

derived normal and tumor organoids

Next we studied the long-term effect of calcitriol on

the transcriptomic profiles of six matched normal and

tumor organoid cultures by RNA-seq analysis upon

96 h of treatment. Given the differences in function

and mutational profiles between colon segments (right-

side, left-side) [16,17], to attenuate interindividual vari-

ability [18], we selected patients with left-side colon

(descending plus sigma) tumors (Table S1). Mutational

analysis of tumor organoids confirmed that they har-

bored patterns of genetic alterations that are typical of

Fig. 2. Human colon patient-derived normal and tumor organoids express VDR and respond to calcitriol. (A) Box-plot of VDR RNA level in 18

normal and 9 tumor organoid cultures in relation to that of SW480-ADH colon cancer cells. Box plots represent median � max/min.

Statistical analysis was performed by nonparametric Mann–Whitney test, *P < 0.05. (B) Box-plot of CYP24A1 RNA level in relation to that of

SW480-ADH colon cancer cells (left) and its fold-change (right) in the organoid cultures used in (A) treated for 96 h with 100 nM calcitriol or

vehicle. Box plots represent median � max/min. Statistical analysis was performed by nonparametric Kruskal–Wallis test using the

Benjamini, Krieger and Yekutieli post test (left) and Mann–Whitney test (right), *P < 0.05, ***P < 0.001. (C) Western blot analysis of VDR,

CYP24A1, and CA2 protein levels in whole-cell extracts from six matched normal and tumor organoid cultures treated for 96 h with 100 nM

calcitriol or vehicle. b-actin was used as a loading control. The graphics below show the VDR/b-actin ratio. (D) Images of VDR

immunofluorescence (red) and LGR5 RNAscope in situ hybridization (green) in human normal and tumor organoids treated for 96 h with

100 nM calcitriol or vehicle. Scale bars: 15 lm.
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Fig. 3. Calcitriol induces cell differentiation in human tumor organoids. (A) Representative ultrastructural images of normal (patient #11) and

tumor organoids (patient #38) treated with 100 nM calcitriol or vehicle for 96 h. Upper panel scale bars (from left to right): 2 lm, 2 lm,

2 lm, and 1 lm. Lower panel scale bars: 2 lm, 1 lm, 2 lm, and 1 lm. L, lumen; asterisks, heterochromatin aggregates; arrowheads,

desmosomes; red-dotted line, intercellular region lacking mature adhesion structures. (B) Epithelial differentiation features induced by

calcitriol in tumor organoids from patients #4 and #29. (1) Microvilli. (2) Heterochromatin clumps (arrows) and dilated intercellular spaces

(asterisks). (3) Desmosomes (arrows). (4) Rough endoplasmic reticulum. (5) Golgi complexes. (6) Autophagic vacuoles (asterisk). Scale bars

(from 1 to 6): 0.4 lm, 1 lm, 0.5 lm, 0.5 lm, 0.5 lm and 1 lm.
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sporadic CRC, with APC (5/6) and KRAS mutations

(4/6) (Fig. 5A). Accordingly, nuclear staining of

MLH1, PMS2, MSH2, and MSH6 proteins in all cases

(data not shown) and lack of POLE mutation ruled

out a hypermutated MMR phenotype.

Transcriptomic profiles of untreated normal and

tumor organoids showed a high number of

differentially expressed genes, which mostly coincide

with those previously reported (Fig. 5B; GSE64392)

[14]. Paired analysis of data from normal and tumor

organoids of each patient followed by joint analysis of

all patients’ data revealed that calcitriol significantly

changed the expression of 2,107 genes (943 upregu-

lated, 1,164 downregulated) in normal organoids and

Fig. 4. Antiproliferative action of calcitriol in human normal and tumor organoids. (A) Proliferation assay of normal and tumor organoid

cultures from seven patients treated with 100 nM calcitriol or vehicle for 10 days. Box-plot represents median � max/min. Statistical

analysis was performed by nonparametric Wilcoxon signed-rank test, *P < 0.05, ***P < 0.001. (B) Phase-contrast images of human normal

and tumor organoid cultures from (A). Broken line indicates the border of Matrigel. Scale bars: 1 mm. (C) Graph showing the number of

normal and tumor organoids used in (A) after 10 days of calcitriol treatment. Box-plot represents median � max/min. Statistical analysis was

performed by Wilcoxon signed-rank test. The exact P-values are indicated for nonsignificant results. (D) RT-qPCR analysis of VDR RNA level

in normal and tumor organoids from (A) in relation to that of SW480-ADH colon carcinoma cells. Data are represented as mean � standard

deviation (SD). (E) Scattegram showing the inverse correlation between VDR RNA levels and cell proliferation in organoids used in (A).

Statistical significance was determined by Pearson test.
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1,182 genes (643 upregulated, 539 downregulated) in

tumor organoids, which were partially coincident (532,

19.3%) (Fig. 5C,D and Table S2; GSE100785). A

strong correlation was found between genes induced

by calcitriol in normal and tumor organoids, whereas

the correlation was much weaker for repressed genes

(Fig. 5E). Common calcitriol-target genes in both

types of organoids included known VDR-regulated

genes such as CYP24A1 and TRPV6 (Fig. 5F and

Table S2). Notably, some clusters of genes showed dif-

ferent quantitative or even inverse regulation by cal-

citriol in normal and tumor organoids (Fig. 5G, left).

The expression level of these genes in untreated nor-

mal and tumor organoids is shown (Fig. 5G, right).

Calcitriol targets also included genes involved in a

variety of metabolic, detoxification, nuclear receptor-

related, and other pathways (Table S3). Supporting

post-translational regulation by vitamin D, as

described in several systems [19,20], VDR was not

identified as a significant regulated gene in the RNA-

seq analysis.

Among the top up/downregulated genes by calcitriol

in normal and tumor organoids, there were some

involved in cell stemness (MSI1, SMOC2), differentia-

tion (CEACAM7, HMGCS2, and MUC2), prolifera-

tion (GRK5, RARRES1), and tumorigenesis

(ALDH3A1, S100P) (Table S4). So, next we used an

independent cohort of 18 normal and 9 tumor orga-

noids to a) confirm the effect of calcitriol on the

expression of several genes that were found to be sig-

nificantly regulated in the RNA-seq assay and, b)

study the effect of calcitriol on genes involved in those

processes or pathways relevant for colon biology. As

expected, differentiation genes were expressed at higher

levels in untreated normal than in tumor organoids

(Fig. S2). Interestingly, the opposite was found for

stemness-related genes, which showed lower expression

in untreated normal than in tumor organoids

(Fig. S2). In line with the RNA-seq data, RT-qPCR

analyses confirmed the upregulation by calcitriol of

multiple stemness-related genes including LGR5,

MSI1, PTK7, SMOC2, LRIG1, and MEX3A, a mar-

ker of slow-dividing subpopulation of LGR5+ stem

cells, in normal organoids (Fig. 6A) [9,12,21,22]. In

tumor organoids, the effects of calcitriol on stemness-

related genes were weaker as only MSI1 and LRIG1

were upregulated (Fig. 6A).

Consistent with the ultrastructural analysis, calcitriol

induced desmosomal (DSC2), microvilli (PLS1), and

adhesion (CDH1) genes in tumor organoids

(Table S2). We also confirmed by RT-qPCR that sev-

eral genes expressed in differentiated enterocytes

(KRT20) or in goblet/secretory cells (KLF4, SPDEF,

and MUC2) were downregulated by calcitriol in nor-

mal but not in tumor organoids (Fig. 6A). Addition-

ally, Gene Set Enrichment Analysis (GSEA) showed

that the differentiation signature EPHB2low vs.

EPHB2high of human colon cells [12] was significantly

enriched in calcitriol-treated tumor, but not normal,

organoids (Fig. 6B).

We also observed that a series of genes involved in

cell proliferation (LRIG1, GRK5, RARRES1, TFF2,

and TNS4) and tumorigenesis (ALDH3A1, BCAS1,

S100P, PPP1R14D, and SERPINE1) were regulated

by calcitriol, preferentially in normal organoids, in a

way compatible with the previously described antipro-

liferative action of calcitriol and a potential antitu-

moral effect (Fig. 6A). Concordant with its effects on

cell proliferation, GSEA revealed an inverse associa-

tion of the calcitriol profile (RNA-seq) with E2F,

mTOR, and c-MYC proliferative signatures (Fig. 6C).

GSEA also showed that untreated tumor organoids

were enriched in the ‘Core transcriptional embryonic

stem cell (ESC)-like’ pro-tumorigenic signature that, as

described by Wong and cols [23] is frequently activated

in aggressive human epithelial cancers. Remarkably,

calcitriol was able to abolish this association in both

types of organoids (Fig. 6D). In contrast to data on

Fig. 5. Transcriptomic profile changes by calcitriol in human normal and tumor organoids. (A) Overview of the mutations found in the tumor

organoid cultures of six selected patients. (B) Volcano plot comparing human normal and tumor RNA-seq signatures from the six matched

organoid cultures analyzed in (A). The x-axis shows the fold-change (Log2) and the y-axis shows the q-value (�Log2). Each dot represents a

gene. Blue/red dots represent genes that are down- or upregulated (respectively) in tumor vs. normal organoids. Dots above the line are

significant. (C) Volcano plot comparing normal (upper blot) and tumor (lower blot) organoid signatures from (B) treated with 100 nM calcitriol

or vehicle for 96 h. (D) Venn diagram showing the overlap between calcitriol-significant regulated genes in normal and tumor organoids. The

number of genes included in each group is depicted and the complete list of genes is in Table S2. (E) Graphs representing the linear

correlation between the effect of calcitriol on gene expression (left graph, induction; right graph, repression), computed as the ratio (Log10

fold-change) of the RNA-seq counts, in treated organoids over controls. Only genes significantly (FDR<0.05) regulated by the treatment in

normal organoids are represented. Green line, theoretical perfect correlation (r2 = 1). Statistical analysis was performed by Multiple r-

squared regression test. (F) Heatmap showing significant genes commonly regulated by calcitriol in matched normal and tumor organoids

with an average Log2 fold-change > 1 and expression > 4 cpm. (G) Heatmaps showing the genes with the greatest variance between

sample groups of Log2 fold-change upon calcitriol treatment in matched normal and tumor organoids (left) and tumor RNA expression of

those genes compared to its normal counterpart (right).
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carcinoma cell lines cultured in 2D conditions [15], cal-

citriol did not repress classical genes of the Wnt path-

way except DKK4 (Fig. 6A), a gene that increases

invasiveness, angiogenesis, and chemoresistance [24,25]

(Table S5).

To confirm the specificity of the RNA-seq results,

we silenced VDR expression in normal organoids

through lentiviral transduction of a shRNAmir against

VDR, which inhibited the regulation of several cal-

citriol-target genes (Fig. S3). Overall, these results

show that calcitriol has different/opposite regulatory

effects on stemness and differentiation genes in human

normal and tumor organoids.

In addition, we generated colon organoids from

wild-type (wt) and, as control, Vdr-deficient (Vdr�/�)
mice and analyzed the transcriptomic profile induced

by calcitriol treatment using RNA microarrays. As

expected, no genes were regulated by calcitriol in orga-

noids from Vdr�/� mice, while 143 target genes were

identified in wt organoids. Remarkably, only 32 genes

overlapped between those regulated by calcitriol in

human (RNA-seq analysis) and mouse (RNA microar-

rays, GSE105117) colon organoids (Fig. S4A), while

111 genes were exclusively regulated in mouse orga-

noids (Table S6). This result agrees with the reported

lack of conservation of VDR response elements

between primates and rodents [26]. We also show that

the calcitriol expression profile in wt mouse organoids

was related with the Mex3ahigh/Lgr5high mouse signa-

ture of slow-dividing intestinal stem cells [22]

(Fig. S4B).

Identification of direct calcitriol-target genes in

human colon organoids

To further elucidate the action of calcitriol in colon

homeostasis, we searched for direct transcriptional tar-

get genes in normal organoids. To this end, three inde-

pendent chromatin immunoprecipitation-sequencing

(ChIP-seq) assays were performed using six additional

normal patient-derived organoids (2 per ChIP-seq)

treated with calcitriol for 2 h. A variable number of

DNA binding sites for VDR were found after calcitriol

treatment (Fig. 7A). As in other systems [27], a large

number of VDR-binding sites were located in intronic

or intergenic regions (Fig. S5A). Identified peaks were

assigned to the nearest gene at a maximum distance of

10 kb. As many as 559 genes were coincident between

two ChIP-seq assays and 182 genes were coincident in

all three, including CYP24A1 and TRPV6 (Table S7;

GEO107283). Moreover, GSEA revealed that the cal-

citriol-direct target gene signature, defined as the 182

genes commonly identified in all ChIP-seq assays, was

strongly associated with calcitriol-upregulated genes in

the RNA-seq analysis (Fig. 7B). This result agrees

with the current model of VDR/nuclear receptor

action: direct binding to upregulated genes and pre-

dominant indirect action by signaling interference, pro-

tein–protein interaction or via microRNAs on

downregulated genes [28]. Remarkably, 68 genes of the

182-gene signature overlapped with those regulated (62

up- and 6 downregulated) by calcitriol in the RNA-seq

assay (Table S7). The stemness-related MSI1 and

SMOC2 genes, several genes with antiproliferative

and/or tumor suppressive function (KCNIP3,

PPP1R1C, PRKG2, PRR5L, GRK5, and RARRES1,

the latter with a VDR-binding site 37 kb away from

50UTR), and CYP24A1 and TRPV6 (Fig. 7C) were

among the calcitriol-direct transcriptional targets

(Table S7). ChIP-seq assays also showed enrichment in

the consensus direct repeat (DR)3 VDR motif

(Fig. 7D). The comparison of our RNA-seq data anal-

ysis with public transcription factor (TF) ChIP-seq

datasets confirmed VDR as the most significant TF

involved in gene upregulation (Fig. S5B).

Discussion

The association of vitamin D deficiency with the risk

and severity of clinically relevant gut diseases such as

IBD and CRC, together with the observation that cal-

citriol induces a more differentiated phenotype of ente-

rocytes in vivo and of colon carcinoma cells in 2D

culture conditions [1,3,15], led us to analyze the effects

of calcitriol on human organoids. These 3D structures

constitute the state-of-the-art system to study normal

Fig. 6. Calcitriol distinctly changes gene expression profile of human normal and tumor organoids. (A) RT-qPCR analysis of the RNA level of

selected genes in an independent series of 18 normal and nine tumor organoid cultures treated with 100 nM calcitriol or vehicle for 96 h.

Box plots represent median � max/min. Statistical analysis was performed by One-sample t-test (normal organoids) and nonparametric

Wilcoxon signed-rank test (tumor organoids), *P < 0.05, **P < 0.01, ***P < 0.001. The exact P-values are indicated for nonsignificant

results. (B) GSEA comparing the reported human healthy colon EPHB2-based differentiation gene signature and the RNA-seq analysis of

human tumor colon organoids treated with calcitriol. (C) GSEA comparing the proliferation-related molecular signatures databases and the

RNA-seq analyses of human normal and tumor organoids treated with calcitriol. (D) GSEA comparing the pro-tumorigenic signature core

ESC-like with the RNA-seq analysis of genes up/downregulated in tumor vs. normal organoids (upper graph), and with that of normal or

tumor organoids treated with calcitriol (lower graphs).
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and tumoral epithelial stem cells in vitro. We report

unanticipated differential effects of calcitriol on both

types of organoids that are relevant for understanding

the relevance of vitamin D in normal and pathological

intestinal biology.

Vitamin D action in human colon has classically

been investigated in immortalized carcinoma cell lines,

and recently in ex vivo short-lived colon biopsy sam-

ples and primary fibroblasts from patient-derived nor-

mal and tumor tissue [29,30]. We report for the first

time that human colon stem cells express VDR in vivo.

VDR is a major determinant of tissue responsiveness

to vitamin D. Others are the circulating level of the

liver-synthesized calcitriol precursor 25-hydroxyvitamin

D/calcidiol, the activity of CYP27B1 and CYP24A1

enzymes that synthesize and degrade calcitriol, respec-

tively, and the nuclear expression of VDR co-repres-

sors and co-activators [2,3]. This finding points to a

potential effect of calcitriol on the behavior of normal

and cancer stem cells.

To directly address these issues, we established a

unique long-term culture collection of matched

patient-derived normal and tumor organoids and

tested the effects of calcitriol. First, we validated that

VDR is co-expressed in vivo with LGR5 and PTK7,

markers of colon crypt base columnar stem cells, and

furthermore, it mediates in normal organoids the

induction of LGR5 by calcitriol. The direct binding of

VDR to, and transcriptional regulation of, other stem-

ness-related genes such as MSI1 and SMOC2 in nor-

mal organoids further supports the stemness-inducing

action of calcitriol in colon tissue. Together, these

results strengthen the association of the vitamin D-in-

duced gene expression program with the maintenance

of stemness of, perhaps, several colon stem cell popu-

lations. Homeostasis of intestinal mucosa, one of the

tissues with the highest cell renewal, depends on an

adequate balance between proliferation and differentia-

tion of crypt bottom stem cells and their progeny in

response to a number of intrinsic and stromal signals

such as Wnt, EGF, Notch, Hippo, BMP, and Hedge-

hog. The new actions of vitamin D described in this

study may contribute to the homeostasis of healthy

intestinal mucosa, and to the repair and regeneration

of damaged intestine upon injury. In line with this,

epidemiological studies indicate an association of vita-

min D deficiency with IBD, and experiments with ani-

mal models suggest a beneficial effect of VDR agonists

in these conditions [31].

We also determined that calcitriol declines, but does

not abolish, cell proliferation in normal organoids.

Although Wnt and EGF pathways are essential for

colon stem cell proliferation in vivo and, concordantly,

for the generation of organoids in vitro [32,33], we

show that calcitriol reduces cell proliferation in normal

organoids, yet classical Wnt pathway genes were unaf-

fected in our transcriptomic analyses. Instead, cal-

citriol upregulates LRIG1, marker of quiescent + 4

stem cells [21,31] and also master regulator of epithe-

lial stem cells and tumor suppressor that encodes a

multilevel tyrosine kinase receptor (EGFR and others)

inhibitor [34,35]. Moreover, we observed in mouse,

due the lack of the equivalent human signature, that

calcitriol induces a gene expression profile that is

related to the Mex3ahigh/Lgr5high signature of slow-di-

viding intestinal stem cells [22]. Additionally, calcitriol

inhibits the activator of EGF pathway TFF2 gene [36]

and regulates the expression of the pro-tumorigenic

gene TNS4 and of the negative regulators of colon car-

cinoma cell proliferation RARRES1 (also known as

TIG1) and its target GRK5 [37]. Conceivably, these

effects may contribute to the antiproliferative action of

calcitriol in crypt stem cells.

Our results show that the gene regulation effect of

calcitriol is much stronger in human than in mouse

colon organoids, and that little coincidence exists

between target genes in the two species. However,

Peregrina and collaborators reported the presence of

Vdr and a role of dietary vitamin D in the growth and

maturation of mouse intestinal Lgr5+ cells [38].

The finding that calcitriol has pro-differentiation and

variable antiproliferative effects lacking stemness induc-

tion in tumor organoids adds to the reported actions on

carcinoma cell lines and cancer-associated fibroblasts,

which indicates that calcitriol is a multifaceted protec-

tive agent against CRC. In line with the cancer stem cell

model stating that tumors originate from the mutational

alteration of resident tissue stem cells, human CRC is

mainly supported by mutated LGR5+ stem cells [39].

The pro-differentiation effect of calcitriol on tumor

Fig. 7. Direct transcriptional calcitriol-target genes in human colon normal organoids. (A) Venn diagram showing the overlap between genes

with VDR binding sites identified by ChIP-seq in three independent experiments using six human normal organoid cultures treated with

100 nM calcitriol for 2 h. (B) GSEA comparing the genes containing VDR-binding sites identified in the ChIP-seq assays and those regulated

by calcitriol in normal organoids in the RNA-seq analysis. (C) Integrative Genome Visualization (IGV) representation of VDR-binding sites

identified in the ChIP-seq assays in CYP24A1 and TRPV6 (controls), MSI1, GRK5, SMOC2, and RARRES1 genes. (D) Homer de novo motif

analysis of VDR-binding sites in ChIP-seq studies. (E) Scheme showing the proposed action of vitamin D on normal and cancer colon stem

cells.
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organoid cells is in line, albeit less apparent, with that

observed in colon carcinoma cell lines grown on plastic

dishes [15]. Notably, VDR agonists have been proposed

to promote terminal differentiation of normal upper

crypt absorptive enterocytes [1], which however is not

observed in cells of normal colon organoids. This dis-

crepancy may rely on differences in the microenviron-

ment (location and other signals) and the distinct

phenotype of these two cell populations (top crypt ente-

rocytes/bottom crypt stem cells) in human tissue and

organoid culture, respectively. In this scenario, our

results favor a protective action of VDR agonists

against CRC. Further supporting this we describe that

calcitriol downregulates a gene signature associated to

aggressiveness and poor prognosis of breast and lung

carcinoma patients [23].

In summary, the newly identified functions in

patient-derived organoids reveal an unanticipated

homeostatic action of vitamin D in the human intesti-

nal mucosa. This strongly supports a role of calcitriol

in the maintenance of colon crypt cell stemness and in

the differentiation of colon cancer stem cells (Fig. 7E).

Materials and methods

Human samples

Fresh human tissues were provided by IdiPAZ and Fun-

daci�on Jim�enez D�ıaz Biobanks, integrated into the Spanish

Biobank Network ( www.redbiobancos.es), from individu-

als diagnosed with colorectal cancer and subjected to sur-

gery between 2013 and 2018. Normal tissue samples were

obtained from the area distal to the tumor and the histol-

ogy of the biopsies was evaluated by the pathology services

of La Paz University Hospital and Fundaci�on Jim�enez

D�ıaz. All human subjects gave informed consent. The study

complied with ethical regulations and was approved by the

Ethics Committee of La Paz University Hospital (HULP-

PI-1425) and the Fundaci�on Jim�enez D�ıaz (PIC-15/2014).

Establishment of 3D colon and tumor organoid

cultures

To establish human normal colon organoids, colon crypts

were isolated from human biopsies as previously described

[10,11]. Briefly, colon mucosa biopsies were incubated with a

mixture of antibiotics [Primocin (Invivogen, San Diego, CA,

USA), Gentamycin and Fungizone (Thermo Fisher Scien-

tific, MA, USA)] for 30 min in rotation at room temperature

(RT). Next, tissue was cut into small pieces and incubated

twice with 10 mM dithiothreitol (DTT) for 5 min at RT.

Samples were then transferred to 8 mM EDTA solution for

5 min at RT and 60 min in slow rotation at 4 °C. Samples

were washed in PBS until complete EDTA removal and

transferred to a 50 mL conical tube in fresh PBS. Colon

crypts were separated from the mucosa after shaking and

supernatant was centrifuged at 115 g for 5 min at RT. Crypts

were washed twice in washing buffer [Advanced DMEM/

F12, 10 mM HEPES, and 10 mM Glutamax (Thermo Fisher

Scientific)] and finally pelleted crypts were embedded in

Matrigel (Corning, MA, USA). Drops were seeded on pre-

warmed, 48-well culture dishes. After Matrigel solidification

at 37 °C complete ‘normal’ culture medium was added [50%

Advanced DMEM/F12, 50% Wnt3a-conditioned medium,

10 mM HEPES, 10 mM Glutamax, 10 mM Nicotinamide

(Sigma-Aldrich, St. Louis, MD, USA), 1x N2 (Thermo

Fisher Scientific), 1x B27 (Thermo Fisher Scientific), 1 mM

N-acetyl-L-cysteine (Sigma-Aldrich), 1 : 500 Primocin,

0.1 lg�mL�1 Noggin ( Peprotech, New Jersey, NJ, USA),

1 lg�mL�1 Gastrin (Tocris, Bristol, UK), 1 lg�mL�1 RSPO1

(Sinobiological, Beijing, China), 50 ng�mL�1 EGF (Pepro-

tech), 0.02 lM PGE2 (Sigma-Aldrich), 1 lM LY-2157299

(Axon-Medchem, Groningen, The Netherlands), and 10 lM
SB-202190 (Sigma-Aldrich)].

To establish mouse normal colon organoids, colon crypts

were basically isolated as described for human crypts with

minor modifications. Mouse colon was washed in PBS,

incubated for 30 min with antibiotics (Primocin) and cut

into small pieces. Next, tissue was incubated for 5 min with

8 mM EDTA at RT and 30 min at 4 °C in slow rotation.

Then, it was washed in PBS to remove EDTA. Crypts were

isolated after shaking and collected in a 50 mL conical tube

after passing the solution through a 70-lm mesh filter. The

crypts solution was centrifuged at 260 g for 5 min at 4 °C.
The pellet was washed in washing buffer and pelleted

crypts were embedded in Matrigel on a prewarmed 48-well

culture dish. After Matrigel solidification, ‘mouse’ culture

medium was added (‘normal’ culture medium minus Nicoti-

namide, Gastrin, PGE2, and SB-202190).

Human tumor organoid cultures were generated as fol-

lows. Human tumor biopsies were washed in PBS several

times and incubated in a mixture of antibiotics (Primocin,

Gentamycin, and Fungizone) for 30 min in rotation at RT.

To obtain single cells, tissue was cut into small pieces and

digested enzymatically in a suspension of 1 mg�mL�1 colla-

genase type IV (Sigma-Aldrich) (in PBS) for 30 min at

37 °C with continuous shaking in a waterbath. We forced

cell disaggregation by passing the suspension through a

18G syringe. Next, we added 5% FBS and single cells were

collected in a conical 50 mL tube after passing the solution

through a 70-lm mesh filter and centrifugation at 250 g for

5 min at 4 °C. To lyse erythrocytes, the pellet obtained

after centrifugation was incubated in 157 mM NH4Cl for

5 min, washed in PBS and centrifuged again. Cells were

then washed in washing buffer and finally pelleted cells

were embedded in Matrigel and seeded on prewarmed 48-

well culture dishes. After Matrigel solidification, ‘tumor’

culture medium was added (‘normal’ culture medium minus

Wnt3a-conditioned medium, Nicotinamide and RSPO1).
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Growth and expansion of organoid cultures

Normal and tumor culture medium was changed every

other day. For passaging, we followed the protocol

described [10,11], with modifications. Briefly, Matrigel-em-

bedded organoids were collected using a scraper in a

15 mL conical tube and incubated with Cell Recovery

Solution (Corning) for 30 min on ice with continuous shak-

ing to remove Matrigel. After centrifugation at 260 g 5 min

at 4 °C, organoids were washed in washing buffer and cen-

trifuged again. Next, organoids were incubated with disag-

gregation buffer [washing buffer solution containing

1 mg�mL�1 dispase (Thermo Fisher Scientific)] for 10 min

at RT in orbital rotation. Immediately afterwards, 2 mM

EDTA was added and the mixture was incubated for an

additional 5 min. Following this, the solution was homoge-

nized by passing it through a 21G syringe, collected in a

15 mL conical tube, centrifuged at 250 g for 5 min at 4 °C
and washed twice in washing buffer. Pelleted cells were

embedded in Matrigel and seeded on culture dishes.

RNAscope in situ hybridization

In situ hybridization for LGR5 on formalin-fixed paraffin-

embedded samples (colon mucosa and normal/tumor orga-

noids) was performed using the RNAscope� 2.5 HD Assay-

RED (Advanced Cell Diagnostics; External Service, Dr. Ilse

Rooman’s laboratory at Vrije Universiteit Brussel) according

to manufacturer’s instructions and with standard sample pre-

treatment (15 min Target Retrieval and 30 min Protease

Plus). Subsequently, sections were stained for VDR using a

rabbit monoclonal antibody (D2K6W #12550, Cell Signal-

ing, Danvers, MA, USA) diluted 1:50 in Antibody Diluent

(Agilent, Santa Clara, CA, USA) and applied for 20 min at

RT. For detection, a donkey anti-rabbit Alexa Fluor 488-la-

beled F(ab’)2 secondary antibody (Jackson ImmunoResearch

Europe, Cambridgeshire, UK) was used, diluted 1:500 in

PBS and applied for 30 min at RT. Nuclei were counter-

stained with Hoechst 33342. Images were taken with Zeiss

LSM710 confocal microscope (Zeiss, Oberkochen, Ger-

many). VDR and LGR5 colors were changed using IMAGEJ

software for a better visualization (VDR in red and LGR5 in

green). Images of at least 25 crypts/patient from four patients

were taken in a confocal microscope. Quantification of VDR

and LGR5 staining was performed manually by two people,

considering the percentage of positive cells from a total of 46

cells of the crypt bottom per crypt.

Western blot

Normal (passages 1–5) and tumor (passages 3–8) organoids
were pelleted after removing Matrigel with Cell Recovery

Solution and whole-cell extracts were prepared using RIPA

buffer (0.05 M Tris/HCl pH 7.5, 0.1% SDS, 0.15 M NaCl,

1% Triton X-100 (Sigma-Aldrich) and 1% sodium

deoxycholate) containing protease and phosphatase inhibi-

tors (10 lg�mL�1 leupeptin, 10 lg�mL�1 aprotinin, 1 mM

PMSF, 1 mM orthovanadate, and 1 mM NaF, all from

Sigma-Aldrich). Cell extracts were separated by SDS/

PAGE, transferred to PVDF membranes and incubated

with the following primary antibodies: rabbit monoclonal-

VDR (D2K6W) (Cell Signaling, #12550), rabbit polyclonal-

CA2 (CUSABIO, #PA004370HA01HU, TX, USA), rabbit

polyclonal-CYP24A1 (Santa Cruz Biotechnology, #sc-

66851, Dallas, TX, USA) and goat polyclonal-b-actin
(Santa Cruz Biotechnologies, #sc-1616). Different exposure

times of the films were used to ensure that bands were not

saturated. ImageJ was used for the semi-quantification of

VDR protein level.

Electron microscopy

For electron microscopy analysis, samples from three human

normal (patients #11, #12, and #37; passages 2–11) and

tumor organoid cultures (patients #4, #29, and #38; passages

10–21) treated with 100 nM calcitriol or vehicle for 96 h

(n = 3 per group) were fixed with 3% glutaraldehyde (Mer-

ck-Millipore, Burlington, MA, USA) in 0.12 M phosphate

buffer, pH 7.4. Samples were then rinsed in 0.12 M phos-

phate buffer, postfixed in 2% osmium tetroxide (Sigma-

Aldrich), dehydrated in acetone and embedded in araldite

(Durcupan, Sigma-Aldrich, St. Louis, MO, USA). Ultrathin

sections stained with uranyl acetate and lead citrate were

examined with a JEOL 201 electron microscope.

Proliferation and clonogenicity assays

Normal (passages 2–7) and tumor (passages 8–27) organoids
were disaggregated with 1 mg�mL�1 dispase and around

6000–7000 single cells were seeded on 20 lL Matrigel drops

in 48-well culture dishes. Organoids were incubated with nor-

mal or tumor complete medium plus Y-27632 (Tocris) in the

presence of 100 nM calcitriol or vehicle for 10 days. Medium

and calcitriol/vehicle were replaced every other day. At day

10, normal and tumor organoids were used to study RNA

expression and cell viability by estimating the amount of cel-

lular ATP using the CellTiter-Glo Luminescent Cell Viability

Assay (Promega, Madison, WI, USA) following the manufac-

turer’s instructions. To analyze the clonogenicity, pictures of

drops were taken at days 0 and 10 of the cell viability assay

and the number of organoids in each drop was counted using

MIPAR software [40]. Phase-contrast images of cultured orga-

noids were captured with a DFC550 digital camera (Leica,

Wetzlar, Germany) mounted on an inverted TS100 micro-

scope (Nikon, Tokio, Japan).

Mutational status

Mutations present in six tumor organoid cultures from

CRC patients (#1–6; passages 1–3) were analysed. Briefly,
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Matrigel was removed using ice-cold Cell Recovery follow-

ing manufacturer’s instructions and DNA was extracted

from pelleted organoids by incubation overnight (O/N) at

56 °C with lysis buffer [50 mM Tris/HCl pH 8.0, 100 mM

EDTA pH 8, 100 mM NaCl, 1% SDS, and 20 mg�mL�1

proteinase K (Merck-Millipore, MA, USA)]. Saturated

NaCl buffer was added for 5 min and DNA was precipi-

tated with isopropanol and washed twice with 70% etha-

nol. DNA was genotyped by sequencing the amplified

product of a multiplexed-PCR reaction (Amplicon sequenc-

ing) using a proof-reading polymerase. Indexed libraries

were pooled and loaded onto a MiSeq instrument (Illu-

mina). Initial alignment was performed with BWA after

primer sequence clipping and variant calling was done with

the GATK Unified Genotyper and VarScan2 followed by

ANNOVAR annotation. Mutations were called at a mini-

mum 3% allele frequency. SNPs were filtered out with

dbSNP and 1000 genome datasets. All detected variants

were manually revised and confirmed.

Real-time quantitative PCR

Matrigel-embedded normal and tumor organoids (passages 1–6)
were washed twice in PBS, lysed with TRIZOL (Thermo Fisher

Scientific) and total RNA was purified using the NucleoSpin

miRNA extraction kit (Machery-Nagel, D€uren, Germany). For

cDNA retrotranscription iScript cDNA Synthesis kit, (Bio-Rad,

Hercules, CA, USA) was used. RT-qPCR analyses were per-

formed with the Taqman� Universal PCRMaster Mix (Applied

Biosystems, Waltham, CA, USA) using the following

FAM-labeled TaqMan probes (Applied Biosystems):

ALDH3A1 (Hs00964880_m1), AXIN2 (Hs00610344_m1),

BCAS1 (Hs00180227_m1), CA2 (Hs01070108_m1), CCND1

(Hs00765553_m1), CEACAM7 (Hs00185152_m1), CYP

24A1 (Hs00167999_m1), DKK1 (Hs00183740_m1), DKK4

(Hs00205290_m1), GRK5 (Hs00992173), HMGCS2

(Hs00985427_m1), IFITM1 (Hs01652522_g1), IFITM2 (Hs0

0829485_sH), JSRP1 (Hs00376079_m1), KLF4 (Hs0035883

6_m1), KRT20 (Hs00300643_m1), LGR5 (Hs00173664_m1),

LRIG1 (Hs00394267_m1), MSI1 (Hs01045894_m1), MUC2

(Hs03005103_g1), MYC (Hs00153408_m1), PPP1R14D (Hs

00214613_m1), RARRES1 (Hs00161204_m1), S100P (Hs00

195584_m1), SERPINE1 (Hs01126606_m1), SLC2A1 (Hs00

892681_m1), SMOC2 (Hs00405777_m1), SPDEF (Hs0102

6050_m1), TFF2 (Hs00193719_m1), and TNS4 (Hs0026266

2_m1). RNA expression values were normalized vs the VIC-

labeled TaqMan probe for housekeeping gene large riboso-

mal protein (RPLPO) (H99999902_m1) using the compara-

tive CT method. Additionally, we used Power SYBR� Green

PCR Master Mix (Applied Biosystems) and the following pri-

mers to VDR (forward 50 AACGCTGTGTGGACAT

CGGC-30; reverse 50-GTCATGGCTTTCGTTGGACT-30),
MEX3A (forward 50-CAAGCTCTGCGCTCTCTACA-30;
reverse 50-ATGAACACTGGTTCCTCGCC-30) and PTK7

(forward 50-TCTGGGAGACCTCAAGCAGT-30; reverse 50-

ATGCACAAAGCGGTTGTTGG-30) analysis, and their val-

ues were normalized vs. the housekeeping gene Succinate Dehy-

drogenase Complex subunit A (SDHA) (forward 50-TG
GGAACAAGAGGGCATCTG-30; reverse 50-CCACCACT

GCATCAAATTCATG-30) using the comparative CT method.

All RT-qPCR were performed in a CFX384 Touch Real-Time

PCRDetection System (Bio-Rad). SW480-ADHcells were used

as relative value to compare VDR and CYP24A1 expression in

Figs 2A,B and 4D. To study the mRNA levels of other genes,

organoids treated with vehicle were used as control.

RNA-sequencing

Matched normal and tumor organoids from six patients (#1–
6; passages 1–3) were seeded in 48-well culture dishes and

48 h later were treated with 100 nM calcitriol (Sigma-

Aldrich) or vehicle for 96 h. Medium and calcitriol/vehicle

was replaced every other day. Total RNA was extracted and

RNA integrity was confirmed as optimal for all samples on

an Agilent 2100 Bioanalyzer (RIN range 9.1–9.9). Six hun-

dred nanograms of RNA samples was used for library con-

struction. PolyA+ fraction was purified and randomly

fragmented, converted to double stranded cDNA and pro-

cessed through subsequent enzymatic treatments of end-re-

pair, dA-tailing and ligation to adapters as in Illumina’s

TruSeq Stranded mRNA Sample Preparation kit (Illumina,

CA, USA). Adapter-ligated library was completed by PCR

with Illumina PE primers (eight cycles). The resulting puri-

fied cDNA library was applied to an Illumina flow cell for

cluster generation and sequenced on an Ilumina HiSeq2000

by following manufacturer’s protocols. Eight samples were

combined per sequencing lane and a minimum of 25 million

50 base single-reads were generated for each sample.

Sequencing reads were aligned to the transcriptome with

TopHat2 [41]. Novel transcript discovery was not

attempted. TopHat was provided with known gene annota-

tions and other transcript data obtained from Gencode

(Version 26 – Ensembl 75) basic gene set for the GRCh37/

hg19 human genome assembly [42]. Gene expression level

was calculated from TopHat alignments as the number of

reads per gene computed using HTSeq [43] using default

settings and gene features as defined in the GRCh37.75

release of the human genome (gtf file). Differential gene

expression analysis was performed with the Bioconductor

[44] DEseq2 package for the R statistical Software [45]. Sin-

gle enrichment analysis was performed with differentially

expressed genes between calcitriol vs. vehicle treatment. The

analysis was carried out with the functional annotation tool

included in the PathVisio bioinformatic resources [46,47].

Chromatin immunoprecipitation-sequencing

We performed three independent ChIP-seq experiments with

human normal organoids (two culture organoids/experi-

ment: ChIP #1, patients #34&35 at passages 12 and 6; ChIP

68 The FEBS Journal 287 (2020) 53–72 ª 2019 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Vitamin D regulates human colon stem cells A. Fern�andez-Barral et al.



#2, patients #18&19 at passages 3 and 4; and ChIP #3,

patients #38&39 at passages 2 and 4) following the ChIP-seq

Millipore protocol with modifications. Briefly, normal orga-

noids from two patients cultured on 6-well dishes were trea-

ted with 100 nM calcitriol or vehicle for 2 h. DNA-protein

crosslinking was done by incubation of Matrigel-embedded

organoids with 1% formaldehyde (methanol free) for 8 min

shaking at 4 °C. Crosslinking was quenched with 1.25 mM

glycine in PBS for 5 min. We transferred the organoid solu-

tion to a 50 mL conical tube for centrifugation at 700 g for

5 min at 4 °C. Supernatant was removed and the pellet was

washed twice in cold PBS, transferred to a 1.5 mL tube and

lysed in 1 mL ChIP-lysis buffer [1% SDS, 10 mM EDTA,

50 mM Tris/HCl pH 8.1 and 1x protease cocktail inhibitors

(Complete, EDTA-free, Sigma-Aldrich)] for 1 h. We used a

21G syringe to homogenize the solution and force the lysis.

Samples were sonicated for 20 min at maximum intensity at

4 °C in a S220 Focused-ultrasonicator (Covaris). We took

40 lL of calcitriol and vehicle-samples as input control, and

diluted 10-fold the remaining sonicated cell supernatant in

ChIP-dilution buffer (0.01% SDS, 1.1% Triton X-100,

1.2 mM EDTA, 167 mM NaCl, Tris/HCl pH 8.1 and 1x pro-

tease cocktail inhibitor). After 45 min precleaning incubation

using magnetic beads (Magna ChIPTM Protein A+G Mag-

netic Beads, Merck-Millipore), the supernatant was incu-

bated with 10 lg rabbit monoclonal-VDR (D2K6W)

antibody (Cell Signaling #12550, 2 mg�mL�1, made to order)

O/N in orbital rotation at 4 °C. Immunocomplexes were

recovered using magnetic beads for 2 h in orbital rotation at

4 °C. Immunoprecipitated material was then washed in the

following buffers in the indicated order: ChIP-dilution buf-

fer, ChIP-low salt buffer (0.1% SDS, 1% Triton X-100,

2 mM EDTA, 150 mM NaCl, 20 mM Tris/HCl pH 8.0 and 1x

protease cocktail inhibitor), ChIP-high salt buffer (0.1%

SDS, 1% Triton X-100, 2 mM EDTA, 500 mM NaCl, 20 mM

Tris/HCl pH 8 and 1x protease cocktail inhibitor), ChIP-

LiCl buffer (0.25 M LiCl, 1% NP-40, 1% sodium deoxy-

cholate, 1 mM EDTA, 10 mM Tris/HCl pH 8.0 and 1x pro-

tease cocktail inhibitor), ChIP-TE buffer (two washes) and

finally eluted in freshly prepared ChIP-elution buffer (1%

SDS, 0.1 M NaHCO3). The eluted solution and input con-

trols were incubated with 0.2 M NaCl at 65 °C ON in order

to de-crosslink the DNA complexes, and subsequently we

added 9.5 mM EDTA, 36.5 mM Tris/HCl pH 6.5 and

70 lg�mL�1 proteinase K for 1 h at 45 °C. DNA extraction

was performed using the QIAquick� PCR purification kit

(Qiagen, Venlo, The Netherlands).

Fragmented DNA were processed through subsequent

enzymatic treatments of end-repair, dA-tailing, and ligation

to adapters with NEBNext Ultra II DNA Library Prep Kit

for Illumina (New England BioLabs, Ipswich, MA, USA).

Adapter-ligated libraries were completed by limited-cycle

PCR and extracted with a (single) double-sided SPRI size

selection. Median fragment size is 340 bp from which 120 bp

correspond to adaptor sequences. Libraries were applied to

an Illumina flow cell for cluster generation and sequenced on

an Illumina instrument by following manufacturer’s proto-

cols. Sequencing reads were aligned to the GRCh37/hg19 gen-

ome assembly with Bowtie2 [48]. Enriched peak calling was

performed with MACS2 [49] callpeak function, with –q-value
0.15, –nomodel and –extsize 200 options using as control con-
catenated same-patient alignment files from input treated

(calcitriol) and untreated (vehicle). MACS2 bdgdiff function

was used to obtain statistically enriched DNA regions using

the pileup data obtained from the peak calling. Peaks annota-

tion was performed using custom parameters in order to

assign the peaks to the nearest gene in a range of 10 kb

upstream/downstream from the gene body. Manual inspec-

tion of data and RNA-seq identified genes of interest was per-

formed using INTEGRATIVE GENOME VISUALIZATION (IGV) Tool

v.2.3.79 [50,51].

Functional enrichment analysis

We used Gene Set Enrichment Analysis (GSEA) [52] to

assess the degree of association between our RNA-seq pro-

file (genes regulated by calcitriol in human colon normal/

tumor organoids), or microarray expression (genes regu-

lated by calcitriol in mouse colon normal organoids), with

other signatures defined with genes enriched (differentiation

gene set: EPHB2low vs. EPHB2high human normal colon

epithelial cells [12]; proliferation gene sets: E2F, MYC and

mTORC1 hallmark gene sets from MSigDB; pro-tumori-

genic gene set: Core ESC-like from MSigDB; slow-dividing

mouse intestinal stem cells gen set: Mex3ahigh/Lgr5high

mouse colon cells [22] and VDR ChIP-seq in human colon

normal organoids, Table S7). The over-representation of

transcription factor binding sites in genes regulated by cal-

citriol was computed with the Bioconductor TFEA.ChIP

package.

Statistical analysis

Statistical analysis was performed using GraphPad Prism

(GraphPad, CA, USA). P-values < 0.05 were considered sig-

nificant and * indicates P < 0.05, **P < 0.01, and

***P < 0.001. The exact P-values are indicated for nonsignifi-

cant results. Box plots shown in Figs 2A,B, 4A,C and 6A rep-

resent median � max/min. Graphs showing the

quantification of VDR and LGR5 positive cells in human

crypts (Fig. 1B) represent mean � standard error of the

mean (SEM). Graphs showing the RNA levels in VDR inter-

ference (Fig. S3), and relative VDR RNA levels of normal

and tumor organoids (Fig. 4D) represent mean � standard

deviation (SD).
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