Nontranscriptional modulation of intracellular Ca²⁺ signaling by ligand stimulated thyroid hormone receptor

Nuttawut Saelim,¹ Linu M. John,² Jun Wu,¹ Jeong Soon Park,¹ Yidong Bai,¹ Patricia Camacho,² and James D. Lechleiter¹

¹Department of Cellular and Structural Biology and ²Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229

hyroid hormone 3,5,3'-tri-iodothyronine (T₃) binds and activates thyroid hormone receptors (TRs). Here, we present evidence for a nontranscriptional regulation of Ca²⁺ signaling by T₃-bound TRs. Treatment of *Xenopus* thyroid hormone receptor beta subtype A1 (xTR_pA1) expressing oocytes with T₃ for 10 min increased inositol 1,4,5-trisphosphate (IP₃)-mediated Ca²⁺ wave periodicity. Coexpression of TR_pA1 with retinoid X receptor did not enhance regulation. Deletion of the DNA binding domain and the nuclear localization signal of the TR_pA1 eliminated transcriptional activity but did not affect the ability to regulate Ca²⁺ signaling. T₃-bound TR_pA1 regu-

Introduction

Thyroid hormones are lipophilic ligands composed of two iodinated tyrosine residues that regulate cellular differentiation and development, cardiac function, and basal metabolism (Abbaticchio et al., 1981; Oppenheimer et al., 1987, 1994; Nagai et al., 1989; Kawahara et al., 1991; Soboll, 1993a; Ichikawa and Hashizume, 1995). Thyroid receptors (TRs) are classified as steroid hormone receptors and have genomic effects similar to other nuclear receptors. Two separate genes encode thyroid hormone receptors α (TR $_{\alpha}$) and β (TR $_{\beta}$). Alternative splicing or lation of Ca²⁺ signaling could be inhibited by ruthenium red treatment, suggesting that mitochondrial Ca²⁺ uptake was required for the mechanism of action. Both xTR_βA1 and the homologous shortened form of rat TR_α1 (rTR_αΔF1) localized to the mitochondria and increased O₂ consumption, whereas the full-length rat TR_α1 did neither. Furthermore, only T₃-bound xTR_βA1 and rTR_αΔF1 affected Ca²⁺ wave activity. We conclude that T₃-bound mitochondrial targeted TRs acutely modulate IP₃-mediated Ca²⁺ signaling by increasing mitochondrial metabolism independently of transcriptional activity.

the use of different promoters generates multiple isoforms including the α (TR $_{\alpha}$ 1, TR $_{\alpha}$ 2) and β (TR $_{\beta}$ 1, TR $_{\beta}$ 2) subtypes (Lazar, 1993). Thyroid hormones have been shown to increase the number of mitochondria and to induce the expression of mitochondrial proteins encoded by both nuclear and mitochondrial genes (Das and Harris, 1991; Soboll, 1993a; Iglesias et al., 1995; Wrutniak et al., 1995; Meehan and Kennedy, 1997; Schonfeld et al., 1997). Isolated mitochondria from hyperthyroid cells exhibit enhanced substrate cycling and increased oxygen (O₂) consumption (Soboll, 1993b). Thyroid hormone also affects the mitochondrial membrane potential ($\Delta\Psi$) through the expression of mitochondrial proteins (Soboll, 1993a,b). Collectively, these long-term effects take days or weeks to manifest and are thought to be mediated by nuclear and mitochondrial transcriptional regulation.

Increasing evidence suggests that thyroid hormone exerts nontranscriptional effects on mitochondrial metabolism. Initial studies demonstrated that treatment of cells with 3,5,3'-triiodothyronine (T₃) results in a rapid increase in O₂ consumption and ATP production in rat liver mitochondria (Sterling, 1980). These effects persisted in the presence of protein synthesis inhibitors, suggesting that the mechanism of action was non-

Correspondence to James D. Lechleiter: lechleiter@uthscsa.edu

N. Saelim's current address is: Dept. of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Pitsanulok, Thailand, 65000.

L.M. John's current address is: Pfizer, Inc., CVMD Biology, Groton, CT 06340. Abbreviations used in this paper: ANT, adenine nucleotide translocator; DBD, DNA binding domain; $\Delta\Psi$, mitochondrial membrane potential; IP₃, inositol 1,4,5-trisphosphate; MBS, modified barth's solution; O₂, oxygen; pBOX, three amino acid sequence within the DNA binding domain that recognizes specific DNA binding sequences; RA, 9-cis retinoic acid; rTR_a1, rat thyroid hormone receptor alpha subtype 1; rTR_a\DeltaF1, shortened form of rat TR_a1; Ru₃₆₀, ruthenium 360; RXR, retinoid X receptor; SEAP, secreted placental alkaline phosphatase; T₃, 3,5,3'-tri-iodothyronine; TMRE, tetramethylrhodamine ethyl ester; TR, thyroid receptor; TRE, thyroid hormone response element; xTR_pA1, Xenopus thyroid hormone receptor beta subtype A1.

transcriptional. Sterling and coworkers (Sterling, 1980; Sterling and Brenner, 1995) additionally demonstrated that exposure of mitochondria to T₃, isolated from rat hepatocytes, increased both ATP production and O₂ consumption. Acute exposure of isolated mitochondria to thyroid hormone has also been reported to increase ΔpH and to increase mitochondrial Ca²⁺ efflux (Sterling et al., 1980; Crespo-Armas and Mowbray, 1987; Soboll, 1993a). Mitochondrial localization of TRs was originally reported by Sterling and coworkers (Sterling, 1991). Later, Ardail et al. (1993) identified two high affinity T₃ binding proteins in rat liver mitochondria. Wrutniak et al. (1995) and Casas et al. (1999) reported the presence of a high affinity (\sim 43 kD) T₃ binding protein in rat liver mitochondrial matrix extracts, which was identified as an NH2 terminus shortened form of rat TRa1 $(rTR_{\alpha}\Delta F1)$. The full-length form of the rat thyroid hormone receptor alpha subtype 1 (rTR $_{\alpha}$ 1) is predominantly localized to the nucleus where it binds to DNA response elements and regulates transcriptional events (Wrutniak et al., 1995). Wrutniak (Wrutniak et al., 1995) suggested that the mitochondrial form of the rTR may be involved in mitochondrial transcriptional activity.

Intracellular Ca²⁺ signaling has been intimately linked to mitochondrial metabolism. Several dehydrogenases within the citric acid cycle are Ca²⁺ dependent (McCormack and Denton, 1989). Ca^{2+} uptake into the mitochondria is a passive process driven by the mitochondrial $\Delta \Psi$ and occurs via the Ca²⁺ uniporter. Because of the low Ca2+ affinity of the uniporter, high cytosolic Ca²⁺ concentrations are required to cause significant mitochondrial Ca²⁺ uptake. Under physiological conditions, these concentrations only occur near an open ion channel pore. Consequently, close physical proximity between the ER and mitochondria is required for significant mitochondrial Ca²⁺ uptake (Rizzuto et al., 1998, 1999). Work from our laboratory also demonstrated that mitochondrial Ca²⁺ uptake itself modulated inositol 1,4,5-trisphosphate (IP₃)-Ca²⁺ release (Jouaville et al., 1995). Subsequently, Hajnoczky et al. (1995) demonstrated that IP₃-mediated Ca²⁺ oscillations efficiently stimulated mitochondrial metabolism. The local Ca²⁺ signaling between the ER and mitochondria has now been supported by many other investigators (Simpson and Russell, 1996; Hajnoczky et al., 1999; Szalai et al., 2000). Control of mitochondrial metabolism by matrix Ca²⁺ appears to be a fundamental mechanism whereby cells meet their energy requirements.

Xenopus laevis oocytes do not express detectable levels of endogenous TRs (Banker et al., 1991; Kawahara et al., 1991; Eliceiri and Brown, 1994). Induction of TR expression in *Xenopus laevis* occurs during the embryonic stages of development (Yaoita and Brown, 1990; Banker et al., 1991; Kawahara et al., 1991; Eliceiri and Brown, 1994). Consequently, *Xenopus* oocytes offer a unique model system to study the effects of thyroid hormones and their receptors on intracellular Ca²⁺ signaling and mitochondrial metabolism.

We present evidence demonstrating that thyroid hormone-activated TRs acutely regulate mitochondrial metabolism and, thereby, Ca^{2+} wave activity. Only expression of the NH₂ terminus-truncated forms of TR that target the mitochondria were effective at stimulating mitochondria. Transcriptionally inactive TRs were fully capable of modulating Ca^{2+} wave activity. These observations suggest an acute nontranscriptional pathway for modulation of intracellular Ca^{2+} signaling via thyroid hormone receptor-stimulated mitochondrial metabolism.

Results

T₃·stimulated TR_βA1s modulate IP₃· mediated Ca²⁺ wave activity

Acute nongenomic effects of thyroid hormones occur within minutes of ligand treatment (Hummerich and Soboll, 1989). To examine the importance of TRs on the nongenomic modulation of intracellular Ca²⁺ signaling, stage VI Xenopus oocytes were injected with mRNA encoding the Xenopus thyroid hormone receptor betz subtype A1 (xTR_BA1) as described previously (Camacho and Lechleiter, 2000). Expression of xTR_BA1 was confirmed by Western blot analysis, 2-3 d after mRNA injection (Fig. 1). The Ca^{2+} indicator dye was injected into oocytes 30-45 min before confocal imaging. When oocytes were injected with IP₃, we observed repetitive Ca^{2+} wave activity with interwave periods of 6.62 \pm 0.20 s (n = 70; Fig. 1). When $xTR_{B}A1$ expressing oocytes were treated with T₃ 10 min before IP₃ injection, the Ca²⁺ wave periodicity increased significantly to 8.40 \pm 0.30 s (Fig. 1, a and c; n = 24, P < 0.0001 ANOVA single factor). Treatment of oocytes with T₃ by itself did not induce Ca²⁺ release and no detectable changes in basal intracellular Ca²⁺ concentrations were observed. Application of T₃ ligand to nonexpressing control oocytes, had no effect on the

T₃-bound TR_βA1 increases IP₃-induced Ca²⁺ Figure 1. wave period. (a) Spatial-temporal stacks of IP₃ (~300 nM)induced Ca2+ wave activity in a representative control (water injected) oocyte, a T₃-treated (100 nM) oocyte expressing $TR_{\beta}A1$ and a T_3 (100 nM) treated oocyte. Each image is $745 \times 745 \mu m$. (b) Western blot showing expression of TR_BA1. Protein extracts from all groups were collected and loaded at 0.5 oocytes per lane onto 10% SDS-PAGE. The membrane was probed with a monoclonal mouse anti-human TRs antibody (MA1-215) and labeled with an HRP-conjugated secondary antibody. (c) Histogram of average interwave period for each group of oocytes. n values in parentheses represent the total number of oocytes pooled from at least two frogs. Error bars correspond to the mean \pm SEM. The asterisks (**) denote a statistic significant difference (ANOVA single factor, P < 0.0001).

Figure 2. Transcriptional activity of TR_BA1 requires $xRXR_{\alpha}$ and both cognate ligands. Transcriptional activity was monitored with the TRE-reporter vector, pSEAP ^(TRE). (a) Lanes 1 and 2 are negative (pSEAP^(-ve)) and positive (pSEAP^(+ve)) vector controls. Oocytes expressing $TR_{\beta}A1$ or $TR_{\beta}A1$ plus xRXR_{α} were incubated with 100 nM T₃ (lanes 3–5) plus 100 nM RA (lane 5) for 3 d. Cytosolic extracts from each group of oocytes was prepared and loaded onto a 10% SDS-PAGE at 2.5 oocytes equivalents per lane. SEAP was detected with the polyclonal rabbit anti-human SEAP antibody and an HRP-conjugated secondary antibody. The SP labeled arrow indicates SEAP immunoreactivity, which was present only in oocytes expressing $TR_{B}A1$ and $xRXR_{\alpha}$ exposed to both T_{3} and RA. (b) Transcriptional activity of TR_BA1 requires the pBOX within the DBD and the NLS. Oocytes expressing xTR_BA1 Δ pBox-NLS and xRXR_{α} show no SEAP immunoreactivity when incubated with T₃ (lane 6) or T₃ plus RA (lane 7). Western blot analysis shows that xRXR_{α}, TR_{β}A1, and xTR_{β}A1 Δ pBox-NLS are expressed at comparable levels (Western blots below lanes 4-7). $TR_{B}A1$ and $xTR_{B}A1\Delta pBox-NLS$ were detected with the monoclonal mouse anti-human TRs antibody (MA1-215). xRXR_{α} was detected with a polyclonal rabbit anti-human RXR antibody (Sc-774).

Ca²⁺ interwave period (6.38 ± 0.34 s, n = 27, Fig. 1, a and c). Similarly, xTR_βA1 expressing oocytes without T₃ treatment exhibited no change in Ca²⁺ wave periodicity (6.97 ± 0.24 s, n = 35). Peak Ca²⁺ wave amplitudes (Δ F/F) for xTR_βA1expressing oocytes exposed to T₃ (0.69 ± 0.04, n = 29) was also significantly higher than that of control oocytes exposed to T₃ (0.55 ± 0.04, n = 20; P < 0.05, *t* test). We conclude from these data that T_3 -stimulated $xTR_\beta A1$ acutely modulates IP₃mediated Ca²⁺ wave activity and that both thyroid hormone and receptor expression are required for these effects.

Transcriptional activity of $TR_{\beta}A1$ is undetectable in the absence of xRXR

Classically, activated thyroid hormone receptors heterodimerize to initiate transcription responses. Retinoid X receptor (RXR) is the most common dimerization partner that binds to the thyroid hormone response element (TRE; Leid et al., 1992; Bhat et al., 1994; Wong and Shi, 1995). To investigate the transcriptional activity of $xTR_{\beta}A1$, we coinjected oocytes with xTR_BA1 mRNA and a plasmid reporting vector containing a TRE system with two direct repeats (DR4) upstream of the secreted placental alkaline phosphatase (SEAP) gene (p-TRE-SEAP; CLONTECH Laboratories, Inc.). If the hormone receptor dimerizes and binds to the TRE enhancer, the oocyte expresses SEAP, which is secreted into the medium. mRNAinjected oocytes were continuously bathed in T₃ (100 nM) for 3 d and the presence of SEAP was subsequently quantified by Western blot analysis and used as a marker for transcriptional activity. Using this TRE-reporting system, we observed no transcriptional activity in oocytes expressing the xTR_BA1 protein by itself (Fig. 2 a, lane 3). However, when we coexpressed $xRXR_{\alpha}$ with $xTR_{\beta}A1$ and oocytes were incubated with T₃ (100) nM) and 9-cis retinoic acid (RA; 100 nM) for 3 d, SEAP expression was significantly increased (Fig. 2 a, lane 5). Note that $xTR_{\beta}A1/xRXR_{\alpha}$ -mediated transcription requires both ligands, T₃ and RA (Fig. 2 a, lanes 4 and 5). These data indicate that stimulation of xTR_BA1 by T₃ does not initiate detectable transcription in Xenopus oocytes.

Acute modulation of Ca^{2+} signaling does not require heterodimerization with RXR To test whether heterodimerization of $xTR_{\beta}A1$ with $xRXR_{\alpha}$ affects the acute modulation of Ca^{2+} activity, we coinjected oocytes with both $xRXR_{\alpha}$ and $xTR_{\beta}A1$ mRNA and confirmed protein expression levels using Western analysis 2–3 d after injection of mRNA (Fig. 3 b). Oocytes were loaded with Ca^{2+} indicator dye and confocally imaged. Oocytes coexpressing $xTR_{\beta}A1$ and

Figure 3. Acute modulation of Ca²⁺ signaling does not require heterodimerization of TR_pA1 with xRXR_a. (a) Spatial-temporal stacks of IP₃-induced Ca²⁺ wave activity in control occytes compared with occytes expressing TR_pA1 or TR_pA1 with xRXR_a. T₃ (100 nM) and RA (100 nM) were added as indicated 10–15 min before injection with IP₃ (~300 nM). Scale is the same as Fig. 1. (b) Western blots of occytes expressing TR_pA1 and xRXR_a. Primary and secondary antibodies were identical to those used in Figs. 1 and 2. (c). Histogram of average interwave period (second) of each group of occytes. The asterisks (**) denote a statistic significance using ANOVA single factor (P < 0.0001). Values in parentheses represent the number of occytes. xRXR_α were initially exposed to both T₃ (100 nM) and RA (100 nM) 10 min before injection with IP₃ (~300 nM). The average Ca²⁺ interwave period for xTR_βA1-expressing oocytes was 6.58 ± 0.26 s (n = 67), whereas that of xRXR_α/xTR_βA1 coexpressing oocytes was 6.72 ± 0.31 s (n = 82; Fig. 3, a and c). These values were not significantly different from each other (P = 0.22), but were both significantly larger than values in the control oocytes that exhibited an average Ca²⁺ interwave period of 5.90 ± 0.43 s (n = 55, ANOVA single factor, P < 0.0001; Fig. 3, a and c). We conclude that the xRXR_α coexpression does not affect the ability of T₃-bound xTR_βA1 to modulate Ca²⁺ signaling.

The DNA binding domain and NLS of TR_{β}A1 are not required for acute affects on Ca²⁺ signaling

The ability of T_3 -bound xTR_BA1 to rapidly modulate Ca²⁺ activity suggested a nontranscriptional mechanism of action. Our strategy to test this hypothesis was to delete the DNA binding domain (DBD) and mutate the NLS from the thyroid hormone receptor and test whether the mutant receptors were (a) transcriptionally inactive and (b) still effective at modulating Ca²⁺ signaling. Oocytes were injected with the p-TRE-SEAP plasmid reporting vector. This reporting system requires heterodimerization of $xRXR_{\alpha}$ and $xTR_{\beta}A1$ to transactivate the reporter gene (Fig. 2 a). Consequently, test oocytes were coinjected with xRXR mRNA with mRNA encoding either wildtype $xTR_{\beta}A1$ (control), mutant $xTR_{\beta}A1$ lacking the NLS $(xTR_{\beta}A1-\Delta NLS)$, or the mutant lacking both the NLS and the pBOX ($xTR_{B}A1\Delta pBox-NLS$). Once injected, oocytes were continuously bathed in T₃ (100 nM) and RA (100 nM) for 3 d. Expression levels of $xTR_{B}A1$ mutants and $xRXR_{\alpha}$ groups were comparable to $xTR_{\beta}A1$ and $xRXR_{\alpha}$ groups (Fig. 2 b, bottom). Using the expression of SEAP as a marker for transcriptional activity, we confirmed that oocytes expressing the $xTR_{\beta}A1$ mutants and $xRXR_{\alpha}$ proteins were transcriptionally inactive, whereas oocytes expressing wild-type xTR_BA1 and $xRXR_{\alpha}$ proteins exhibited strong transcriptional activity (Fig. 2, lanes 7 and 5).

Subsequently, we tested whether the transcriptionally inactive $xTR_{\beta}A1$ mutants could still acutely regulate Ca²⁺ signaling. Oocytes were injected with xTR_BA1 mRNA or its mutants and protein expression levels were confirmed using Western analysis 2-3 d after injection (Fig. 4 c). Oocytes expressing xTR_BA1 or the mutants were exposed to T₃ (100 nM) 10 min before injection with IP₃ (\sim 300 nM). Ca²⁺ activity was confocally imaged, as described above. The average Ca²⁺ interwave period for the control group (water-injected oocytes) was 6.6 \pm 0.20 s (n = 70), which was significantly shorter than that in the $xTR_{\beta}A1$ expressing oocytes (8.40 \pm 0.30 s, n = 40; ANOVA single factor, P < 0.0001; Fig. 4 b, d; Fig. 1. More importantly, regulation of the Ca²⁺ wave period in oocytes expressing either the single mutant xTR_BA1- Δ NLS (9.6 \pm 0.48 s, n = 24) or the double mutant, xTR_BA1 Δ pBox-NLS (8.4 \pm 0.28 s; n = 24) was indistinguishable from oocytes expressing wild-type $xTR_{\beta}A1$ (Fig. 4, b and d). We conclude from these data that neither the pBOX nor the NLS of TR_BA1 is required for acute regulation of Ca^{2+} signaling.

T_3 -bound $TR_\beta A1$ appears to regulate Ca^{2+} signaling by increasing mitochondrial respiration

We reported previously that pyruvate/malate-energized mitochondria increase the amplitude and interwave period of IP₃induced Ca²⁺ waves in *Xenopus* oocytes (Jouaville et al., 1995). These effects on Ca²⁺ wave activity were similar to those observed in TR_BA1 overexpressing oocytes with acute T₃ incubation (Fig. 1). Sterling and colleagues (Sterling, 1980) initially reported that T₃ increases mitochondrial metabolism, particularly oxidative phosphorylation, in less than 30 min. Consequently, we hypothesized that the regulation of Ca²⁺ signaling by T₃-activated xTR_BA1 was mediated by its acute modulation of mitochondrial metabolism, which, in turn, increased mitochondrial Ca²⁺ uptake. Our strategy to test this hypothesis was threefold. First, we examined the effect of T_3 on $\Delta \Psi$ in TR_BA1 expressing oocytes using the potential sensitive dye tetramethylrhodamine ethyl ester (TMRE). Oocytes were bathed in 200 nM TMRE for 5 min before imaging fluorescence with two-

C-terminus

TR_aA1

NLS

DBD

N-terminus

Figure 4. The pBOX and NLSs of TR_pA1 are not required for the acute regulation of Ca²⁺ signaling. (a) Schematic figure depicting the position of the pBOX deletion in the DBD and the NLS modification within TR_pA1. (b) Spatialtemporal stack of IP₃-induced Ca²⁺ wave activity in control oocytes compared with oocytes expressing TR mutants Δ pBox-NLS and Δ NLS. Oocytes expressing the TR mutants were incubated with T₃ (100 nM) 10–15 min before IP₃ (~300 nM) injections. (c) Western blot analysis confirming comparable levels of protein expression for both wildtype and mutant TR_pA1. (d) Histogram of the average Ca²⁺ wave periods for each group of oocytes (n values are in parentheses). Statistic significance over control oocytes is indicated by the asterisks (**; ANOVA single factor, P < 0.0001).

Figure 5. **T**₃ stimulation of oocytes expressing TR_pA1 increases the $\Delta\Psi$. (a) Images of mitochondria labeled with the potential sensitive dye TMRE. The oocytes are expressing TR_pA1 and have been exposed to T₃ for the indicated amount of time. Images are 50 × 100 μ m. (b) Histogram of the log of mitochondrial TMRE fluorescence (F_{mito}) divided by the cytosolic fluorescence (F_{cyto}) at the indicated times of T₃ exposure. Values in parentheses refers to the number of mitochondrion analyzed. Statistical significance is indicated by the asterisks (**; ANOVA single factor, P < 0.001).

photon excitation (800 nm). $\Delta\Psi$ was estimated by monitoring Log(F_{mito}/F_{cyto}) where F_{mito} is the fluorescence intensity of individual mitochondria and F_{cyto} is the cytosolic fluorescence (Farkas et al., 1989). We found that T_3 significantly increased $\Delta\Psi$ from a resting value of 0.33 ± 0.01 (n=75) to 0.44 ± 0.01 (n=92, P < 0.0001) at 5 min and to 0.48 ± 0.02 (n=48, P < 0.0001) at 25 min (Fig. 5). These data suggest that T_3 -bound TR_{\beta}A1 regulates Ca^{2+} signaling by increasing $\Delta\Psi$. Second, we injected a subgroup of the TR_{\beta}A1-expressing oocytes with ruthenium 360 (Ru_{360}; Calbiochem, $\sim 1 \ \mu M$ final concentration), a polycation that inhibits the electrogenic mitochondrial Ca^{2+} uniporter (Ying et al., 1991) $\sim 60 \ min before IP_3$ injection and Ca^{2+} imaging. A control group of TR_{\beta}A1-expressing oocytes were injected with buffer only. We found that Ru_{360} treatment

completely inhibited the affect of T₃-bound TR_βA1 on Ca²⁺ wave activity (Fig. 6). Untreated TR_βA1 expressing oocytes exhibited the expected increase in wave periodicity (7.65 ± 0.4 s, n = 11) when preexposed to T₃ for 10 min. However, the average wave period of Ru₃₆₀-treated TR_βA1 expressing oocytes was only 5.75 ± 0.22 s (n = 13) when preexposed to T₃. The Ru₃₆₀-treated average was nearly identical to untreated control oocytes (5.59 ± 0.04 s, n = 4) as well as Ru₃₆₀-treated nonexpressing oocytes (5.53 ± 0.4 s, n = 3). These data are consistent with the hypothesis that T₃-bound TR_βA1 regulates Ca²⁺ signaling by increasing mitochondrial Ca²⁺ uptake via an increase in $\Delta\Psi$.

Third, we directly test whether thyroid hormone receptor together with T₃ stimulates mitochondrial respiration. Xenopus oocytes were injected with TR_BA1 mRNA or water and incubated for 3 d. The rate of O_2 consumption was measured as an indicator of respiration. 200 oocytes in each group were loaded into a 2-ml O₂ probe chamber filled with modified barth's solution (MBS) solution. After 15 min of stabilization, the medium was exchanged with fresh MBS and O2 consumption was monitored for 30 min. The medium was exchanged a third time with MBS containing 100 nM T₃ and O₂ consumption was followed for another 30 min (Fig. 7, a and b). After this protocol, the rate of O₂ consumption in water-injected oocytes after T₃ exposure was 0.42 ± 0.25 nmol/min (n = 8). In contrast, the rate of O₂ consumption in TR_BA1-injected oocytes after T₃ exposure was significantly increased to 1.68 \pm 0.52 nmol/min (n = 4, P < 0.05). These data support the hypothesis that a T_3 / $TR_{\beta}A1$ mediated increase in mitochondrial respiration was responsible for the modulation of IP₃-mediated Ca²⁺ wave activity.

TRs targeted to the mitochondria are required for a T_3 -stimulated increase in respiration and the regulation of Ca^{2+} signaling

 T_3 treatment has previously been reported to increase mitochondrial metabolism (Sterling et al., 1980; Soboll, 1993a).

Figure 7. **T**₃ stimulation of oocytes expressing TR_BA1 increases O₂ consumption. (a) Plots of O₂ levels in oocytes as labeled (n = 200 oocytes per group). (b) Histogram represents average change of O₂ consumption rates (before and after T₃ exposure) in control and xTR_BA1 groups. Statistical significance is indicated by the asterisk (*; t test, P < 0.05).

Our data suggest that the acute effects of T_3 on mitochondrial metabolism are likely to be mediated by T_3 -activated thyroid hormone receptors. A truncated form of rat $TR_{\alpha}1$ (rTR_{α}1 Δ F) has been shown to localize to mitochondria matrix (Ardail et al., 1993; Wrutniak et al., 1995; Casas et al., 1999). Furthermore, the NH₂ terminus of the *Xenopus* TR_{β}A1 that we used throughout this work has a high homology to the NH₂ terminus of rTR_{α}1 Δ F (Fig. 8 a). Our strategy in this experiment was to test whether mitochondrial targeting of TRs was necessary to modulate Ca²⁺ signaling. First, we examined the cellular targeting of xTR_{β}A1, rTR_{α}1, and rTR_{α}1 Δ F by injecting *Xenopus* oocytes with their respective mRNAs. After 3 d of expression, mitochondria were isolated

Figure 8. Xenopus $TR_{\beta}A1$ and NH_2 -terminal truncated rat $TR_{\alpha}1$ (r $TR_{\alpha}1\Delta F$) localize to mitochondria. (a) Schematic diagram of TRs showing that $rTR_{\alpha}1\Delta F$ and $xTR_{\beta}A1$ have a similar NH_2 terminus. (b and c) Western blots of $TR_{\alpha}1$, $rTR_{\alpha}1\Delta F$, and $xTR_{\beta}A1$ expression in whole oocytes and mitochondrial extracts respectively. FL, full-length receptor; SH, shortened form of the receptor. Extracts were prepared from 300 oocytes in each group. All oocytes were exposed to 100 nM T_3 for at least 15 min before organelle extraction. TRs were immunoprecipitated with a monoclonal mouse anti-human TRs antibody (MA1-215), captured with immobilized protein G, concentrated, and loaded onto a 10% SDS-PAGE. An HRP-conjugated secondary antibody was used for visualization.

Figure 9. **NH₂-terminal truncated rat TR**_a**1** (**rTR**_a**1**Δ**F**) stimulates **O**₂ consumption. (a) Plots of O₂ levels for oocytes expressing full-length rTR_a**1** with and without T₃ compared with oocytes expressing the NH₂-terminal truncated rTR_a**1**ΔF with or without T₃. Protocols used were identical to those described in Fig. 7. (b) Histogram of the average change of the O₂ consumption rates after T₃ exposure in rTR_a**1** versus rTR_a**1**ΔF groups. The asterisk (*) indicates statistical significance (*t* test, P < 0.05).

by centrifugation. Whole oocyte extract (minus mitochondria) and mitochondrial extract from each group were subjected to immunoprecipitation using a TR antibody (MA1-215; Affinity BioReagents, Inc.). The immunocomplexes (TRs/MA1-215) were loaded onto a 10% SDS-PAGE gel for Western blot analysis. As shown in Fig. 8 c, only $xTR_{\beta}A1$ and $rTR_{\alpha}1\Delta F$ were detected in the mitochondria extracts. Full-length $rTR_{\alpha}1$ did not localize to mitochondria. These results are consistent with previous reports (Ardail et al., 1993; Wrutniak et al., 1995; Casas et al., 1999). Our next step was to compare the rate of O₂ consumption for oocytes expressing either rTR_{α}1 or rTR_{α}1 Δ F (Fig. 9). Consistent with its mitochondrial targeting, the rate of O₂ consumption in $rTR_{\alpha}1\Delta F$ expressing oocytes after T₃ exposure was significantly increased 1.88 \pm 0.35 nmol/min (n = 3, P < 0.05). In contrast, the rate of O₂ consumption in oocytes expressing the full-length $rTR_{\alpha}1$ was not significantly affected by T₃ exposure $(-0.16 \pm 0.55, n = 3)$. We conclude that mitochondrial targeting of TRs is required for a T₃ mediated increase in mitochondrial respiration.

Finally, we tested whether targeting of TRs to mitochondria was required to regulate Ca²⁺ signaling. As before, oocytes were injected with either full-length rTR_a1 or NH₂ terminus-truncated rTR_a1 Δ F mRNAs. Protein expression levels were measured 2–3 d after injection (Fig. 10 b). Ca²⁺ activity was confocally imaged 10 min after treatment with T₃ (100 nM). We found that the average Ca²⁺ interwave period for rTR_a1 Δ Finjected oocytes was 8.8 ± 0.26 s (n = 24), which was significantly higher (ANOVA single factor, P < 0.01) than fulllength rTR_a1-expressing oocytes (7.9 ± 0.38 s, n = 22) and the water-injected control group (7.2 ± 0.24 s; n = 30; Fig. 10, a and c). Together, these data strongly indicate that the regulation of Ca²⁺ signaling by T₃-activated TRs requires their localization within mitochondria.

Figure 10. The truncated rTR_a1\DeltaF regulates intracellular Ca²⁺ release. (a) Spatio-temporal stacks of IP₃-induced Ca²⁺ wave activity in control oocytes compared with oocytes expressing rTR_a1\DeltaF or rTR_a1\DeltaF. TR expressing ocytes were treated with 100 nM T₃ 10–15 min before IP₃ (~300 nM) injections and confocal imaging. (b) Western blots of rTR_a1 and rTR_a1\DeltaF expression levels in experimental oocytes. (c) Histogram of the average interwave periods for each group (*n* values in parentheses). Note that rTR_a1\DeltaF has significantly longer periods even though its expression levels are lower than those of full length rTR_a1. The asterisks (**) indicate statistical significance with P < 0.01 using ANOVA single factor.

Discussion

In this work, we report that the acute exposure of oocytes expressing mitochondrially targeted TR to T₃ regulates IP₃-mediated Ca²⁺ wave activity. We observed a T₃-bound TR induced increase in the Ca²⁺ wave period and amplitude. These changes in Ca^{2+} activity were similar to those observed in *Xenopus* oocytes when mitochondria were energized with respiratory chain substrates (Jouaville et al., 1995). In that report, the modulation of IP₃-mediated Ca²⁺ release was due to an increase in mitochondrial Ca²⁺ uptake via an increase in the $\Delta\Psi$. Our current work is consistent with this model because we could inhibit the effects of T₃-bound TRs by inhibiting mitochondrial Ca²⁺ uptake with Ru₃₆₀. We also directly demonstrated that T₃ exposure increased $\Delta \Psi$ in oocytes expressing TRs. An increase in $\Delta \Psi$ could be attributed to either a direct effect on electron transport or to a decrease in proton leak (Gunter and Pfeiffer, 1990; Gunter and Gunter, 1994; Gunter et al., 1998). The application of T₃ to mitochondria has been reported to decrease proton leak in several preparations (Crespo-Armas and Mowbray, 1987; Soboll, 1993a). However, we found that T₃ exposure increases O₂ consumption in TR-expressing oocytes. An increase in the rate of O_2 consumption is not consistent with a decrease in proton leak. Together, our data favors the conclusion that T₃bound TR regulates Ca^{2+} activity by increasing $\Delta \Psi$ via an increase in proton pumping by the respiratory chain.

Application of thyroid hormones to mitochondria has long been known to increase metabolism (Sterling, 1980). Mitochondria were also known to be target organelles of T₃ accumulation in cells (Sterling et al., 1984; Morel et al., 1996). However, a mitochondrial hormone receptor that mediated these effects has never been conclusively identified. Sterling (1986, 1991) initially suggested that the adenine nucleotide translocator (ANT) bound to T₃ with high affinity. Romani et al. (1996) also suggested that thyroid hormone had its specific mitochondrial target site at the matrix side of ANT. They found that bongkrekic acid, a membrane-permeant inhibitor of ANT, blocked a thyroid hormone-induced release of Mg²⁺ from mitochondria. On the other hand, Wrutniak and coworkers (Wrutniak-Cabello et al., 2001) found no evidence demonstrating a direct interaction between ANT and T_3 . Our data indicate that ANT alone is not the thyroid hormone receptor that mediates the regulation of mitochondrial metabolism. Rather, our data reveal that a mitochondrial targeted TR is a required element of acute thyroid hormone regulation of metabolism. The use of *Xenopus* oocytes in these experiments was crucial in this determination because oocytes do not express endogenous TRs (Yaoita and Brown, 1990; Kawahara et al., 1991). The ubiquitous expression of endogenous TRs would have hidden this finding in earlier studies.

The ability of specific thyroid hormone receptors to target mitochondria has been demonstrated by other investigators. A truncated form of rat $TR_{\alpha}1$ ($rTR_{\alpha}1\Delta F$) and not its full-length form, localized to the matrix of mitochondria (Ardail et al., 1993; Wrutniak et al., 1995; Casas et al., 1999). Our work corroborated these reports and further demonstrated that the $xTR_{\beta}A1$, which is highly similar to $rTR_{\alpha}1\Delta F$, targeted the mitochondria. Casas and coworkers (Casas et al., 1999) reported that mitochondrial activity was stimulated by overexpression of p43 (mitochondria-targeted, truncated-TR_{α}), which in turn, stimulated mitochondrial genome transcription of some enzyme units that played a role in the respiratory chain. The p43 protein had the same affinity to T_3 as the full-length TR_{α} to bind to the D-loop of two mt-TREs in the mitochondria, leading to mitochondrial protein synthesis (Casas et al., 1999). Their data suggested that p43 bound to mt-TREs as a homodimer because no RXR-isoform in the mitochondrial extract was detected (Casas et al., 1999). Hadzic suggested that the NH₂ terminus of TRs plays a role in TR-homodimerization in mitochondria (Hadzic et al., 1998). Together, these studies demonstrated that mitochondrial-targeted TRs could regulate mitochondrial metabolism by initiating transcription. However, our results cannot be accounted for by this mechanism of action. Specifically, transcriptionally inactive TR mutants modulated Ca²⁺ wave activity with the same efficacy as the wild type, $xTR_{\beta}A1$. We confirmed that $xRXR_{\alpha}$ was required for $xTR_{\beta}A1$ to transactivate a reporter gene in our system, but more importantly, the presence of xRXR did not affect the ability of $xTR_{B}A1$ to modulate Ca²⁺ activity. Thus, we concluded that the mechanism by which T_3 -activated TRs regulate Ca^{2+1} signaling cannot be attributed to transcription.

Nongenomic effects of various steroid receptors have been reported for mineralocorticoids (Moura and Worcel, 1984; Zhou and Bubien, 2001), glucocorticoids (Borski, 2000; Borski et al., 2002), gonadal steroids (Pietras and Szego, 1975; Wasserman et al., 1980; Lieberherr and Grosse, 1994; Guo et al., 2002a,b; Minshall et al., 2002), vitamin D3 (Sergeev and Rhoten, 1995), and thyroid hormone (Hummerich and Soboll, 1989; Davis and Davis, 1996, 2002; Rojas et al., 2003). Most of these studies proposed the presence of specific membranebound receptors for nongenomic effects; however, specific receptors were not cloned or identified. For thyroid hormones in particular, Davis and Davis (2002) suggested that the mechanism of the nongenomic effects of thyroid hormone may not require TRs, and could involve actions of the hormone itself on signal transduction pathway via specific G protein-coupled protein. Recent work by Scanlan et al. (2004) identified an endogenous, rapid-acting derivative of thyroid hormone that is a potent agonist of the G protein-coupled trace amine receptor (TAR1). Activation of TAR1 increased cAMP production, which in turn, would active protein kinase A and phosphorylation of multiple proteins in cells. Our results do not exclude a potential role of second messenger systems in the mechanism of action of T_3 on mitochondria. Rather, they demonstrate that classic TRs, those that have long been known to regulate gene transcription, will also acutely regulate mitochondrial activity when bound with T₃. Stimulation is dependent on mitochondrial targeting of the TR, but not on its ability to initiate transcription. Together, these observations reveal a nontranscriptional pathway for modulation of intracellular Ca²⁺ signaling via T₃/TR-stimulated mitochondrial metabolism.

The discovery of T₃/TR-regulated Ca²⁺ signaling is potentially important for several reasons. First, any process that acutely regulates intracellular Ca2+ release will impact the multitude of Ca²⁺-sensitive cellular processes ranging from contractility and secretion to proteolysis and cell death. Second, the ability of a steroid hormone to increase proton pumping provides a rapid method to increase metabolism in response to short-term energy requirements; for example, during increased neuronal activity or during a transient increase in muscle activity. Third, and potentially more importantly, a rapid increase in mitochondrial Ca²⁺ uptake could protect cells under conditions of stress. Mitochondria have long been recognized for their capacity to sequester large Ca²⁺ concentrations under pathological conditions (Gunter et al., 1994). The ability to transiently remove Ca^{2+} from the cytosol could be used to minimize tissue damage after stroke in neuronal tissue or to reduce the instability of cardiac cells after periods of hypoxia. Clearly, the identification of a mitochondrial receptor for thyroid hormone-induced increases in metabolism offers a new pharmacological target from which it will be possible to regulate a broad range of physiological and pathological processes.

Materials and methods

Expression vector construction

The coding fragments of rat TR_a1 cDNA, *Xenopus* RXR_a (a gift from R.M. Evans, The Howard Hughes Medical Institute, Chevy Chase, MD, and The Salk Institute for Biological Studies, La Jolla, CA) were amplified by PCR

with a forward primer 5'-acgtggatccatggaacagaagccaagcaaggtg-3' (for rTR_a1), 5'-acgtggatccatgagttcagcagccatggaacacaacat-3' (for xRXR_a) containing a BamHI site, and a reverse primer, 5'-atcgaagcttttagacttcctgatccaagaactc-3' (for rTR_a1), 5'-atcgaagcttttagatttagacttcctgatccaagaact-3' (for xRXR_a) containing a HinDIII site. The PCR products were then subcloned into the *Xenopus* oocyte expression vector, pGEM-HeNot between the BamHI and HinDIII sites (Camacho and Lechleiter, 1995). All restriction enzymes were purchased from Life Technologies. The truncated form of rTR_a · (rTR_a1 Δ F) was generated by PCR at the second ORF of rTR_a 1 containing a BamHI site, and a reverse primer, 5'-atcgaagcttttagattcctggatccaagtacc-3' containing a HinDIII site. The PCR product was placed into the pGEM-HeNot vector between the BamHI and HinDIII site.

Xenopus TR_BA1 was amplified by PCR with primers 5'-gctaggatccatggaagggtatatacccagctacttgg-3' and 5'-atcgaagcttctagtcctcaaacacttccaagaacagtggggg-3' and subcloned into vector pGEM-HeNot between the BamHI and HinDIII sites to create pGEM-HeNot-xTR_BA1. Xenopus mutant xTR $_{\!\scriptscriptstyle B}\!A1\text{-}\Delta NLS$ had its NLS removed by modifying the sequence from KR to AA. xTR_βA1ΔpBox-NLS had the same NLS modification as well as the pBOX deletion of CEGCK within the DBD. Both mutants were generated by QuikChange site-directed mutagenesis (Stratagene) using pGEM-HeNot-xTR_BA1 as a template. The forward primer for xTR_BA1NLS was 5'ggttttggatgacaacgcagctttggcaaaaagaaagc-3′ and the reverse complement primer was 5'-gctttctttttgccaaagctgcgttgtcatccaaaacc-3'. For the double mutation, pGEM-HeNot-xTR_BA1NLS was used as a template. The forward primer for xTR_BA1ΔpBox-NLS was 5'-gggtatcattatagatgtatcaccggctttttagaagaactattcag-3' and the reverse compliment primer was 5'-ctgaatagttcttctaaaaaagccggtgatacatctataatgataccc-3'. All mutations were confirmed by nucleotide sequencing (UTHSCSA DNA core facility).

In vitro transcriptions and oocyte protocols

Synthetic mRNA was prepared as described previously (Camacho and Lechleiter, 1995). In brief, the pGEM-HeNot vector containing cDNA template was linearized by a Notl restriction enzyme. From the linearized templates, mRNA was generated using the T7 promoter (MEGAscript; Ambion). Cap analogue, m⁷G(5')ppp(5'') (Ambion) was added to the reaction. The mRNA products were quantified by 1% agarose gel and spectrophotometry. RNase-free synthetic RNAs were resuspended at a concentration of 1.5–2.0 μ g/ μ l and stored in aliquots of 3 μ l at –80°C.

Stage VI oocytes were obtained from adult female *Xenopus laevis*. After defolliculation, oocytes were incubated in MBS (in mM: 88 NaCl, 1 KCl, 0.41 CaCl₂, 0.33 Ca(NO₃)₂, 0.82 MgSO₄, 2.40 NaHCO₃, 10 Hepes, pH 7.5) at 18°C. mRNA was injected into the oocytes by a 50 nL bolus using a positive pressure injector (Nanoject; Drummond Scientific Co.). Control oocytes were incubated at 18°C for 2–3 d to allow full expression of proteins in MBS supplemented with antibiotics streptomycin, penicillin, and fungizone (GIBCO-BRL). Media was changed daily. Unhealthy oocytes were discarded daily.

Imaging acquisition and analysis

Ca²⁺ wave activity was imaged as described previously (Camacho and Lechleiter, 1995). In brief, oocytes were injected with 50 nl of a fluorescent Ca²⁺ sensitive dye (0.25 mM, Oregon green BAPTA2-cell impermeant; Molecular Probes) and incubated for 30–60 min before the experiment. Images were acquired with a confocal laser-scanning microscope (model PCM2000; Nikon) attached to an inverted microscope (model PCM2000; Nikon). Each group of mRNA-injected oocytes was randomly assigned into two subgroups, one was exposed to 100 nM of T₃ for 10 min and the other was untreated with T₃. Ca²⁺ wave activity was initiated by injecting a 50-nl bolus of 6 μ M IP₃. The Ca²⁺ waves were analyzed with ANALYZE software (The Mayo Foundation, Rochester, MN). Statistical significance was calculated by either one-factor ANOVA or a *t* test as indicated.

 $\Delta\Psi$ was estimated as described previously (Lin and Lechleiter, 2002). In brief, 200 nM TMRE (Molecular Probes) was added to the bath and images were acquired with a 60 \times 1.4 NA objective on the Nikon PCM2000 custom adapted for two-photon imaging. TMRE was excited at 800 nm using a Ti-sapphire Coherent Mira 900 Laser pumped with a 5W Verdi laser (Coherent Inc.). Laser intensity was attenuated with a neutral-density filter wheel such that no detectable photobleaching of TMRE was observed.

Transcriptional activity assay

The transcriptional activity of TR and mutants were confirmed by using a reporting vector with the thyroid response element (TRE) as a cis-acting en-

hancer for the SEAP gene (Mercury Pathway Profiling SEAP System2; CLONTECH Laboratories, Inc.). The negative control vector (pSEAP^[-ve]) lacks the enhancer element, but contains a promoter and SEAP reporter gene. Oocytes in each group were injected with mRNA (0.5 μ g) and vector (0.5 μ g) as designated, and incubated in 1 ml MBS with 100 nM T₃, and/or RA for 3 d. Media was collected and replaced every 24 h for 3 d. Collected media from each group was pooled, concentrated (Amicon ultra 10000 MWCO; Millipore) to 40 μ l and run on a 10% SDS-PAGE. Oocyte cytosolic extract from each group was prepared and loaded onto 10% SDS-PAGE at amounts equivalent to 2.5 oocytes per lane. SEAP was detected with polyclonal rabbit anti–human SEAP antibody (Zymed Laboratories, Inc.). HRP-conjugated secondary antibody (Jackson ImmunoResearch Laboratories Inc.) was used and visualized by chemiluminescence (PerkinElmer).

Western blot analysis

Oocytes were washed twice times in homogenization buffer (in mM: 15 Tris-HCl, 140 NaCl, 250 sucrose, 1% Triton X-100, Complete protease inhibitor cocktail) at a concentration of 40 μ l/oocyte. Washed oocytes were homogenized and centrifuged at 4,500 g for 15 min at 4°C. The supernatant was collected and loaded at 0.5 oocytes per lane onto 10% SDS-PAGE. TRs and mutants were detected with monoclonal mouse antihuman TRs antibody (MA1-215; Affinity BioReagents, Inc.). xRXR_a was detected with polyclonal rabbit anti-human RXRs antibody (Sc-774; Santa Cruz Biotechnology, Inc.). HRP-conjugated secondary antibody (Jackson ImmunoResearch Laboratories Inc.) was used and visualized by chemiluminescence (PerkinElmer).

Cytosolic and mitochondrial extract preparations

300 oocytes in each group (water, $xTR_{\beta}A1$, $rTR_{\alpha}1$, $rTR_{\alpha}1\Delta F$) were allowed to express for 3 d and then treated with 100 nM T₃ for 15 min at RT. Oocytes were washed twice times with buffer A (in mM: 190 sorbitol, 1 CaCl₂, 10 TES, pH 7.4) and resuspended in buffer A at a final volume of 500 µl. Oocytes were sequentially homogenized with a hand-held homogenizer and centrifuged at 1,000 g for 5 min at 4°C. The supernatant was transferred to new tube and centrifuged at 14,000 g for 15 min at 4°C. Supernatant and pellet were collected separately. The pellet, which contained mitochondria, was washed several times with buffer B (in mM: 195 sorbitol, 5 EDTA, 5 TES, pH 7.4) and spun at 1,000 g for 5 min at 4°C to eliminate contaminants. The mitochondrial portion was finally obtained by centrifugation at 14,000 g for 15 min at 4°C. Mitochondria in each group were washed twice by resuspending in buffer B, centrifuged again at 14,000 g for 15 min at 4°C and lysed in the presence of 1% Triton X-100. The cytosolic fraction was centrifuged at 100,000 g for 15 min at 4°C to eliminate contaminating membranes.

O₂ consumption assay

A biological O₂ monitor (model 5300; YSI Inc.) was used to measure O₂ consumption. 200 oocytes in each group were loaded into a 2-ml O₂ probe chamber avoiding contact of the oocytes with the O₂ probe. 1.5 ml of MBS was added to the chamber and the system was allowed to stabilize for 15 min. The medium was subsequently exchanged with 1.25 ml of fresh MBS solution and O₂ consumption was monitored for 30 min. The media was exchanged again with MBS containing 100 nM T₃ and O₂ consumption was followed for the next 30 min. The slope of O₂ levels was calculated before and after the addition of T₃.

We wish to thank Elizabeth Muller and Julie Etzler for their helpful and thoughtful critiques of the manuscript.

This work was supported by National Institutes of Health grants R01 GM48451 and PO1 AG19316.

Submitted: 2 September 2004 Accepted: 17 September 2004

References

- Abbaticchio, G., R. Giorgino, F.M. Gentile, A. Cassano, F. Gattuccio, G. Orlando, and A. Ianni. 1981. Hormones in the seminal fluid. The transport proteins of the thyroid hormones. *Acta Eur. Fertil.* 12:307–311.
- Ardail, D., F. Lerme, J. Puymirat, and G. Morel. 1993. Evidence for the presence of α and β-related T3 receptors in rat liver mitochondria. *Eur. J. Cell Biol.* 62:105–113.
- Banker, D.E., J. Bigler, and R.N. Eisenman. 1991. The thyroid hormone receptor gene (c-erbA alpha) is expressed in advance of thyroid gland matura-

tion during the early embryonic development of *Xenopus laevis. Mol. Cell. Biol.* 11:5079–5089.

- Bhat, M.K., K. Ashizawa, and S.Y. Cheng. 1994. Phosphorylation enhances the target gene sequence-dependent dimerization of thyroid hormone receptor with retinoid X receptor. *Proc. Natl. Acad. Sci. USA*. 91:7927–7931.
- Borski, R.J. 2000. Nongenomic membrane actions of glucocorticoids in vertebrates. *Trends Endocrinol. Metab.* 11:427–436.
- Borski, R.J., G.N. Hyde, and S. Fruchtman. 2002. Signal transduction mechanisms mediating rapid, nongenomic effects of cortisol on prolactin release. *Steroids*. 67:539–548.
- Camacho, P., and J.D. Lechleiter. 1995. Calreticulin inhibits repetitive intracellular Ca²⁺ waves. *Cell*. 82:765–771.
- Camacho, P., and J.D. Lechleiter. 2000. Xenopus oocytes as a tool in calcium signaling research. In Methods in Calcium Signaling Research. J. Putney, editor. CRC Press, Boca Raton, FL. 157–181.
- Casas, F., P. Rochard, A. Rodier, I. Cassar-Malek, S. Marchal-Victorion, R.J. Wiesner, G. Cabello, and C. Wrutniak. 1999. A variant form of the nuclear triiodothyronine receptor c-ErbAalpha1 plays a direct role in regulation of mitochondrial RNA synthesis. *Mol. Cell. Biol.* 19:7913–7924.
- Crespo-Armas, A., and J. Mowbray. 1987. The rapid alteration by tri-iodo-L-thyronine in vivo of both theADP/O ratio and the apparent H+/O ratio in hypothyroid-rat liver mitochondria. *Biochem. J.* 241:657–661.
- Das, A.M., and D.A. Harris. 1991. Control of mitochondrial ATP synthase in rat cardiomyocytes: effects of thyroid hormone. *Biochim. Biophys. Acta.* 1096:284–290.
- Davis, P.J., and F.B. Davis. 1996. Nongenomic actions of thyroid hormone. *Thyroid*. 6:497–504.
- Davis, P.J., and F.B. Davis. 2002. Nongenomic actions of thyroid hormone on the heart. *Thyroid*. 12:459–466.
- Eliceiri, B.P., and D. Brown. 1994. Quantitation of endogenous thyroid hormone receptors alpha and beta during embryogenesis and metamorphosis in *Xenopus laevis. J. Biol. Chem.* 269:24459–24465.
- Farkas, D.L., M. Wei, P. Febbroriello, J.H. Carson, and L.M. Loew. 1989. Simultaneous imaging of cell and mitochondrial membrane potential. *Biophys. J.* 56:1053–1069.
- Gunter, K.K., and T.E. Gunter. 1994. Transport of calcium by mitochondria. J. Bioenerg. Biomembr. 26:471–485.
- Gunter, T.E., and D.R. Pfeiffer. 1990. Mechanisms by which mitochondria transport calcium. Am. J. Physiol. 258:C755–C786.
- Gunter, T.E., K.K. Gunter, S.S. Sheu, and C.E. Gavin. 1994. Mitochondrial Ca transport: physiological and pathological relevance. Am. J. Physiol. 267: C313–C339.
- Gunter, T.E., L. Buntinas, G.C. Sparagna, and K.K. Gunter. 1998. The Ca²⁺ transport mechanisms of mitochondria and Ca²⁺ uptake from physiological-type Ca²⁺ transients. *Biochim. Biophys. Acta*. 1366:5–15.
- Guo, Z., W.P. Benten, J. Krucken, and F. Wunderlich. 2002a. Nongenomic testosterone calcium signaling. Genotropic actions in androgen receptorfree macrophages. J. Biol. Chem. 277:29600–29607.
- Guo, Z., J. Krucken, W.P. Benten, and F. Wunderlich. 2002b. Estradiol-induced nongenomic calcium signaling regulates genotropic signaling in macrophages. J. Biol. Chem. 277:7044–7050.
- Hadzic, E., I. Habeos, B.M. Raaka, and H.H. Samuels. 1998. A novel multifunctional motif in the amino-terminal A/B domain of T3Ralpha modulates DNA binding and receptor dimerization. J. Biol. Chem. 273: 10270–10278.
- Hajnoczky, G., L.D. Robb-Gaspers, M.B. Seitz, and A.P. Thomas. 1995. Decoding of cytosolic calcium oscillations in the mitochondria. *Cell*. 82: 415–424.
- Hajnoczky, G., R. Hager, and A.P. Thomas. 1999. Mitochondria suppress local feedback activation of inositol 1,4,5-trisphosphate receptors by Ca²⁺. J. Biol. Chem. 274:14157–14162.
- Hummerich, H., and S. Soboll. 1989. Rapid stimulation of calcium uptake into rat liver by L-tri-iodothyronine. *Biochem. J.* 258:363–367.
- Ichikawa, K., and K. Hashizume. 1995. Thyroid hormone action in the cell. Endocr. J. 42:131–140.
- Iglesias, T., J. Caubin, A. Zaballos, J. Bernal, and A. Munoz. 1995. Identification of the mitochondrial NADH dehydrogenase subunit 3 (ND3) as a thyroid hormone regulated gene by whole genome PCR analysis. *Biochem. Biophys. Res. Commun.* 210:995–1000.
- Jouaville, L.S., F. Ichas, E.L. Holmuhamedov, P. Camacho, and J.D. Lechleiter. 1995. Synchronization of calcium waves by mitochondrial substrates in *Xenopus laevis* oocytes. *Nature*. 377:438–441.
- Kawahara, A., B.S. Baker, and J.R. Tata. 1991. Developmental and regional expression of thyroid hormone receptor genes during *Xenopus* metamorphosis. *Development*. 112:933–943.
- Lazar, M.A. 1993. Thyroid hormone receptors: multiple forms, multiple possi-

bilities. Endocr. Rev. 14:184-193.

- Leid, M., P. Kastner, R. Lyons, H. Nakshatri, M. Saunders, T. Zacharewski, J.Y. Chen, A. Staub, J.M. Garnier, S. Mader, et al. 1992. Purification, cloning, and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently. *Cell*. 68:377–395.
- Lieberherr, M., and B. Grosse. 1994. Androgens increase intracellular calcium concentration and inositol 1,4,5-trisphosphate and diacylglycerol formation via a pertussis toxin-sensitive G-protein. *J. Biol. Chem.* 269: 7217–7223.
- Lin, D.T., and J.D. Lechleiter. 2002. Mitochondrial targeted cyclophilin D protects cells from cell death by peptidyl prolyl isomerization. J. Biol. Chem. 277:31134–31141.
- McCormack, J.G., and R.M. Denton. 1989. The role of Ca²⁺ ions in the regulation of intramitochondrial metabolism and energy production in the rat heart. *Mol. Cell. Biochem.* 89:121–125.
- Meehan, J., and J.M. Kennedy. 1997. Influence of thyroid hormone on the tissue-specific expression of cytochrome c oxidase isoforms during cardiac development. *Biochem. J.* 327:155–160.
- Minshall, R.D., D. Pavcnik, D.L. Browne, and K. Hermsmeyer. 2002. Nongenomic vasodilator action of progesterone on primate coronary arteries. J. Appl. Physiol. 92:701–708.
- Morel, G., S. Ricard-Blum, and D. Ardail. 1996. Kinetics of internalization and subcellular binding sites for T3 in mouse liver. *Biol. Cell.* 86:167–174.
- Moura, A.M., and M. Worcel. 1984. Direct action of aldosterone on transmembrane 22Na efflux from arterial smooth muscle. Rapid and delayed effects. *Hypertension*. 6:425–430.
- Nagai, R., A. Zarain-Herzberg, C.J. Brandl, J. Fujii, M. Tada, D.H. MacLennan, N.R. Alpert, and M. Periasamy. 1989. Regulation of myocardial Ca²⁺-ATPase and phospholamban mRNA expression in response to pressure overload and thyroid hormone. *Proc. Natl. Acad. Sci. USA*. 86: 2966–2970.
- Oppenheimer, J.H., H.L. Schwartz, C.N. Mariash, W.B. Kinlaw, N.C. Wong, and H.C. Freake. 1987. Advances in our understanding of thyroid hormone action at the cellular level. *Endocr. Rev.* 8:288–308.
- Oppenheimer, J.H., H.L. Schwartz, and K.A. Strait. 1994. Thyroid hormone action 1994: the plot thickens. *Eur. J. Endocrinol.* 130:15–24.
- Pietras, R.J., and C.M. Szego. 1975. Endometrial cell calcium and oestrogen action. *Nature*. 253:357–359.
- Rizzuto, R., P. Pinton, W. Carrington, F.S. Fay, K.E. Fogarty, L.M. Lifshitz, R.A. Tuft, and T. Pozzan. 1998. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca²⁺ responses. *Science*. 280:1763–1766.
- Rizzuto, R., P. Pinton, M. Brini, A. Chiesa, L. Filippin, and T. Pozzan. 1999. Mitochondria as biosensors of calcium microdomains. *Cell Calcium*. 26: 193–199.
- Rojas, L.V., L. Bonilla, S. Baez, and J.A. Lasalde-Dominicci. 2003. Thyroid hormones regulate the frequency of miniature end-plate currents in pre- and prometamorphic stages of the tadpole tail. J. Neurosci. Res. 71:670–678.
- Romani, A., C. Marfella, and M. Lakshmanan. 1996. Mobilization of Mg²⁺ from rat heart and liver mitochondria following the interaction of thyroid hormone with the adenine nucleotide translocase. *Thyroid*. 6:513–519.
- Scanlan, T.S., K.L. Suchland, M.E. Hart, G. Chiellini, Y. Huang, P.J. Kruzich, S. Frascarelli, D.A. Crossley, J.R. Bunzow, S. Ronca-Testoni, et al. 2004. 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. *Nat. Med.* 10:638–642.
- Schonfeld, P., M.R. Wieckowski, and L. Wojtczak. 1997. Thyroid hormoneinduced expression of the ADP/ATP carrier and its effect on fatty acidinduced uncoupling of oxidative phosphorylation. *FEBS Lett.* 416:19–22.
- Sergeev, I.N., and W.B. Rhoten. 1995. 1,25-Dihydroxyvitamin D3 evokes oscillations of intracellular calcium in a pancreatic beta-cell line. *Endocrinol*ogy. 136:2852–2861.
- Simpson, P.B., and J.T. Russell. 1996. Mitochondrial support inositol 1,4,5-trisphosphate-mediated Ca²⁺ waves in cultured oligodendrocytes. J. Biol. Chem. 271:33493–33501.
- Soboll, S. 1993a. Long-term and short-term changes in mitochondrial parameters by thyroid hormones. *Biochem. Soc. Trans.* 21:799–803.
- Soboll, S. 1993b. Thyroid hormone action on mitochondrial energy transfer. *Biochim. Biophys. Acta.* 1144:1–16.
- Sterling, K. 1980. Rapid effects of triiodothyronine on the mitochondrial pathway in rat liver in vivo. *Science*. 210:340–342.
- Sterling, K. 1986. Direct thyroid hormone activation of mitochondria: the role of adenine nucleotide translocase. *Endocrinology*. 119:292–295.
- Sterling, K. 1991. Thyroid hormone action: identification of the mitochondrial thyroid hormone receptor as adenine nucleotide translocase. *Thyroid*. 1:167–171.

Sterling, K., and M.A. Brenner. 1995. Thyroid hormone action: effect of tri-

iodothyronine on mitochondrial adenine nucleotide translocase in vivo and in vitro. *Metabolism.* 44:193–199.

- Sterling, K., M.A. Brenner, and T. Sakurada. 1980. Rapid effect of triiodothyronine on the mitochondrial pathway in rat liver in vivo. *Science*. 210: 340–342.
- Sterling, K., G.A. Campbell, G.S. Taliadouros, and E.A. Nunez. 1984. Mitochondrial binding of triiodothyronine (T3). Demonstration by electronmicroscopic radioautography of dispersed liver cells. *Cell Tissue Res.* 236:321–325.
- Szalai, G., G. Csordas, B.M. Hantash, A.P. Thomas, and G. Hajnoczky. 2000. Calcium signal transmission between ryanodine receptors and mitochondria. J. Biol. Chem. 275:15305–15313.
- Wasserman, W.J., L.H. Pinto, C.M. O'Connor, and L.D. Smith. 1980. Progesterone induces a rapid increase in [Ca²⁺] in of *Xenopus laevis* oocytes. *Proc. Natl. Acad. Sci. USA*. 77:1534–1536.
- Wong, J., and Y.B. Shi. 1995. Coordinated regulation of and transcriptional activation by *Xenopus* thyroid hormone and retinoid X receptors. *J. Biol. Chem.* 270:18479–18483.
- Wrutniak, C., I. Cassar-Malek, S. Marchal, A. Rascle, S. Heusser, J.M. Keller, J. Flechon, M. Dauca, J. Samarut, J. Ghysdael, et al. 1995. A 43-kDa protein related to c-Erb A alpha 1 is located in the mitochondrial matrix of rat liver. J. Biol. Chem. 270:16347–16354.
- Wrutniak-Cabello, C., F. Casas, and G. Cabello. 2001. Thyroid hormone action in mitochondria. J. Mol. Endocrinol. 26:67–77.
- Yaoita, Y., and D.D. Brown. 1990. A correlation of thyroid hormone receptor gene expression with amphibian metamorphosis. *Genes Dev.* 4:1917–1924.
- Ying, W.L., J. Emerson, M.J. Clarke, and D.R. Sanadi. 1991. Inhibition of mitochondrial calcium ion transport by an oxo-bridged dinuclear ruthenium ammine complex. *Biochemistry*. 30:4949–4952.
- Zhou, Z.H., and J.K. Bubien. 2001. Nongenomic regulation of ENaC by aldosterone. Am. J. Physiol. Cell Physiol. 281:C1118–C1130.