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Background. Wogonin is a plant monoflavonoid and has been reported to induce apoptosis of cancer cells and show inhibitory
effect on cancer cell growth. However, the detailed and underlying molecular mechanisms are not elucidated. In this study, we
investigated the molecular and biological effects of wogonin in human ovarian A2780 cancer cells. Materials and Methods. We
determined the effects of wogonin on the changes of cell cycling and apoptotic responses of cells. Western blot analysis was used
to measure the effects of wogonin on protein expressions. Results. Our results showed that treatment with wogonin inhibited the
cancer cell proliferation, decreased the percentage of G0/G1 subpopulation, and reduced invasiveness of A2780 cells. Exposure
to wogonin also resulted in downregulated protein levels of estrogen receptor alpha (ER-𝛼), VEGF, Bcl-2, and Akt and increased
expressions of Bax and p53. In addition, exposure to wogonin increased caspase-3 cleavage and induced apoptosis in A2780 cells.
Our study further showed that MPP, a specific ER-𝛼 inhibitor, significantly enhanced antitumor effects of wogonin in A2780 cells.
Conclusion. Our results suggest a potential clinical impact of wogonin on management of ovarian cancer.

1. Introduction

Ovarian cancer is an estrogen-dependent disease and the
leading cause ofmortality in women, withmore than 204,000
cases diagnosed in the world every year. Eighty-five percent
of ovarian cancer is epithelial disease, and surgery is the first-
line treatment. Other treatment options such as radiation
therapy, hormonal therapy, and chemotherapy may also be
applied based on tumor stages [1, 2].

Estrogen stimulation plays vital role in cancer devel-
opment and progression, which is regulated by estrogen
receptor (ER-𝛼), for this disease [3–5]. ER-𝛼 mediates both
genomic signaling pathways and nongenomic signaling path-
ways, regulating cancer cell proliferation [6, 7]. Studies [8–
10] have also suggested a potential of ER-𝛼 overexpression
or increase of ER-𝛼/𝛽 expression ratio, on selective growth
advantage for ER-𝛼 positive cells during the development and
progression of ovarian cancer. Indeed, exposure to exogenous
estrogen was found to promote the viability of ER-positive
ovarian cancer cell lines [11, 12]. For example, Choi et al.
[13] reported that overexpression of ER-𝛼, but not ER-𝛽,
significantly promoted the growth of ovarian carcinoma

A2780 and OVCAR-3 cells, and silencing of ER-𝛼 expression
dramatically reduced cell growth of ovarian cancer BG-1
cells.Thus, targeting estrogen receptor (ER) signaling became
a clinical management for ovarian cancer patient. To this
setting, tamoxifen, as an agent of selective estrogen receptor
modulator (SERM), has been used to treat ovarian stromal
tumors. However, tamoxifenmay cause severe adverse effects
such as increased risk of serious blood clots due to its
weak estrogen activity, and the resistance developed during
tamoxifen treatment is another clinical challenge [14–16].
Therefore, there is urgent need to develop novel agents
targeting and intervening in ER signaling for ovarian cancer
treatment with lower toxic and minimized adverse effects to
improve clinical outcomes for this disease.

Flavonoids are a class of plant secondary metabolites
and polyphenolic compounds that can be taken from nat-
ural products [17]. Flavonoids were found to be able to
act as antitumor and antioxidant agents [18, 19]. Of them,
wogonin from traditional Chinese herb Scutellaria baicalensis
Georgi has been widely used and researched for allergic and
inflammatory diseases with its medication effects of potential
“cleansing heat” and “removing toxins” [20, 21]. Previous
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studies have shown inhibitory effects ofwogonin on anumber
of different cancerous cells [22, 23]. The mechanisms of its
anticancer activities include modulation of p53 signaling
pathway [24, 25], inducing G1 phase arrest [26], antitumor
angiogenesis by inhibition of VEGF [27, 28], and inhibition
of apoptosis through the mitochondrial pathway [29]. In
addition, a study also demonstrated the antiproliferative
activities of wogonin in epithelial ovarian carcinoma (EOC)
cells and six primary cultured EOC with disease stages III-
IV, and the observed inhibitions on cell growth were reported
through phytochemicals-induced cell-cycle modulation and
apoptosis induction [1]. These studies indicate that wogonin
is a new anticancer agent with enhancement of the curative
effect on chemoinsensitive tumors that may clinically benefit
ovarian cancer patients.

In this study, we present data showing the detailed mech-
anisms by which wogonin modulate the ER-𝛼 signaling
pathway and inhibit cancer cell growth of ovarian carcinoma.

2. Materials and Methods

2.1. Reagents. A2780 cells were purchased from Sigma-
Aldrich Co. (St Louis, MO) and were cultured in RPMI-1640
medium supplemented with 10% fetal bovine serum (FBS,
Gibco). Cells were tested with a Cell Culture Contamination
DetectionKit (ThermoFisher Scientific) and results appeared
negative for mycoplasma contamination. Wogonin, with a
chemical structure shown in Figure 1(a), was purchased
from Aokebio (Beijing, China). Methylpiperidinopyrazole
(MPP) was purchased from Apexbio. The antibodies were
from Abcam (Akt, 𝛽-actin), Proteintech (caspase-3, cleaved-
caspase-3, cyclin D1, CDK4, and CDK6), Santa Cruz Biotech-
nology (ER-𝛼), and Cell Signaling Technology (Bcl-2, Bax,
VEGF, and p53).

2.2. Cell Viability Analysis. Cells were plated in 96-well plates
(5 × 103 cells/well). 24 hours later, cells were exposed to in-
creasing concentrations of wogonin and/or MPP, and DMSO
was included as control. MTT assay was performed for mea-
suring cell viability according to manufacturer’s instruction
(Promega, USA).

2.3. Invasion Assay. After treatment with wogonin or MPP
for 48 hours, 5 × 104 cells were seeded in cell culture inserts
with 1% FBS. Culture medium with 10% FBS was placed
outside the chambers. Cells that invaded the attractant of
10% FBSmediumwere visualized and counted after 48 h.The
method was previously reported [30].

2.4. Clonogenic Assay. Cells were plated in 60mm dishes
(1000/dish) and were treated with different concentrations
of wogonin or MPP for 48 hours. Cells were cultured for
two additional weeks. Colonies (>50 cells) were stained
with crystal violet prior to being counted under an inverted
microscope [30].

2.5. Wound Scratch Assay. Cultured cells in confluent mono-
layer were wounded using a needle to scratch the surface.
Cells were then exposed to wogonin for 48 h. Cell movement
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Figure 1: Wogonin inhibits cancer cell growth of A2780 ovarian
cancer cells. (a) The chemical structure of the active form of
5,7-dihydroxy-8-methoxyflavone (named as wogonin). (b) Graphs
showing the inhibitory effects of wogonin on proliferation of
A2780 cells. Data present average results from three independent
experiment; SD means the standard deviation (𝑛 = 3).

and initial wounding were imaged and analyzed by Image J
software.

2.6. Apoptosis Assay. Log-phase growing cells were treated
with wogonin for 48 hours. The cells were collected and
washed with PBS and were then incubated with staining
buffer containing Annexin V-FITC and PI according toman-
ufacturer’s instruction (BD Pharmingen, number 556547);
apoptotic cells (FITC+/PI−) were quantified by flow cytome-
try.

For fluorescence microscopy analysis, cells were seeded
in 96-well plates at 5 × 103/well and were then exposed to
different doses of wogonin and MPP for 48 hours. After
treatment, 5 𝜇g/ml Hoechst 33342 and 10 𝜇g/ml PI were
added to the cultured cells. 40 minutes later, cells were
collected, and fluorescence microscopy analysis was used for
assessment of cell morphology.

2.7. Cell-Cycle Analysis. Cells were plated in 6-well plates
at 2.0 × 105/well. 24 hours later, cells were treated with
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different concentrations of wogonin for 48 hours. Cells were
then collected and fixed with 70% ethanol (prepared by
PBS) at −4∘C. The fixed cells were incubated with RNase A
(100 𝜇g/mL) and PI (50𝜇g/mL) in PBS for 30min. The cell
cycling was determined using flow cytometry analysis with
CXP software, and results were analyzed with Cytomics� FC
500 software (Beckman).

2.8. Western Blot Analysis. A2780 cells were collected and
lysed with RIPA lysis buffer (Beyotime, China) containing
1mM PMSF. 25𝜇g of cell lysate was loaded onto 10% SDS-
polyacrylamide gels for immunoblot analysis. All primary
antibodies were used at 1 : 500 to 1 : 1000 dilutions in this
study, and beta-actin was included for equal protein loading
[31].

2.9. Statistical Analysis. Statistical analyses were performed
by Student’s 𝑡-test with one-way ANOVA (𝑃 < 0.05) [32].

3. Results

3.1. Antitumor Effects of Wogonin on A2780 Ovarian Cancer
Cells. We first examined effects of wogonin on cell prolifer-
ation of A2780 cells. In this experiment, we used DMSO as
control. Our results showed that wogonin dramatically inhib-
ited cell proliferation of A2780 cells, and the inhibitory effect
of wogonin on A2780 cells is dependent on the dose of
wogonin (Figure 1(b)).

3.2. Wogonin Decreased Invasiveness and Migration of A2780
Cells. We next determined the effects of wogonin on inva-
siveness and migration of A2780 cells. With invasion assay
andwound scratch assay, we found that treatmentwithwogo-
nin dramatically decreased cancer cell capabilities of invasion
and migration, and these inhibitory effects are also dose-
dependent (Figures 2(a)–2(c)).

We further tested the potential enhancement of antitu-
mor effects of wogonin in ovarian cancer cells where ER-𝛼
signaling was blocked by treatment of methylpiperidinopyra-
zole (MPP), and our results showed that MPP significantly
enhanced the inhibitory effects of wogonin on invasiveness
and clonogenic survival of A2780 cells (Figures 2(c)–2(e)).
Of interest, Western blot analysis (Figure 2(f)) showed that
wogonin also downregulates ER-𝛼 expression. These results
suggest that ER-𝛼 signaling pathway might interact with the
inhibitory effects of wogonin on cancer cell invasiveness and
migration of A2780 cells. In addition, our results further
showed that exposure to wogonin increased p53 expression
and decreased the protein level of VEGF (Figure 2(f)).

3.3. Wogonin Induces Apoptosis in A2780 Cells. To determine
the potential apoptosis and death as the inhibitory effect of
wogonin and MPP in A2780 cells, we performed Annexin
V-FITC staining in cells with treatment of wogonin and
MPP. Our results (Figure 3(a)) showed that treatment with
wogonin or MPP increased both early and late apoptosis in
A2780 cells. Of note, the combination of wogonin with MPP
resulted in significant increase of the apoptosis-induction
effect of wogonin in A2780 cells. Microscopy analyses with

fluorescence staining of Hoechst 33342 and PI also demon-
strated identical morphological changes of A2780 cells. We
detected nuclear modifications of fragmentation and chro-
matin condensation in cells that were treated with wogonin,
and our results suggested these changes are dependent on the
dose of wogonin (Figure 3(b)).

The Bcl-2 and caspase cascade play essential roles in bal-
ancing antiapoptosis and proapoptosis of cells and integrate
a wide range of diverse upstream survival and death signals
to determine the fate of cells. In A2780 cells treated with
wogonin or MPP, we detected decreased levels of Akt and
Bcl-2 (Figure 3(c)). However, exposure to wogonin or MPP
increased Bax protein level and caspase-3 cleavage. These
results suggest that wogonin and MPP can regulate the
expression of Bcl-2 family proteins and the activation of
caspase cascade, resulting in increase of apoptosis in ovarian
cancer cells.

3.4. Wogonin Causes Cell-Cycle Arrest in A2780 Ovarian
Cancer Cells. Recent studies have shown that wogonin can
also induce cell-cycle arrest through the regulation of the
expression of cell-cycle regulators in various cancers. In this
study, we determined the cell cycling change of A2780 cells
when cells were treated with wogonin and MPP. Our results
showed that both wogonin and MPP treatments (48 hours)
led to dramatic decrease of the G0/G1 subpopulation of
A2780 cells (Figures 4(a) and 4(b)). Western blot analysis
(Figure 4(c)) further revealed that treatment with wogonin
or MPP reduced expressions of G0/G1 phase-related proteins
cyclin D1, CDK4, and CDK6. We also found that combined
treatment with wogonin and MPP reduced G0/G1 phase and
decreased the expressions of cyclin D1, CDK4, and CDK6.

4. Discussion

One of the major clinic challenges in treating cancer is to
optimize the therapeutic strategy with maximizing therapy
efficacy and minimizing adverse effects in patients [33]. To
this setting, traditional Chinese medicines (TCM) have been
considered as a resource for selection of novel anticancer
drugs.

Previous studies have reported that plant flavonoids
possess antitumor and anti-inflammatory effects. Studies also
revealed that wogonin induces apoptosis through the modu-
lation of apoptotic factors [34, 35] and induces change of cell
cycling by regulation of the cyclin D1 expression in human
breast cancer [36]. The histopathogenesis of ovarian cancer
is very similar to that of breast cancer with the potential
of estrogen and its receptors, such as ER-𝛼, as carcinogens.
However, the correlation of wogonin and ER-𝛼 expression
has not been demonstrated in ovarian cancer. Our present
data show that wogonin inhibits cancer cell proliferation and
reduces clonogenic survival ability of ovarian cancer cells.
Treatment with wogonin also decreases the percentage of
G0/G1 subpopulation. Of interest, we observed downreg-
ulated expression of ER-𝛼 in A2780 cells when cells were
exposed to wogonin, suggesting that the antitumor activity
of wogonin may interact with ER-𝛼 signaling. In clinical
practice, estrogen receptor is recognized as a prognostic
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Figure 2: Combination effects of wogonin and MPP on cancer cell invasion and clonogenic survival in A2780 ovarian cancer cells. ((a) and
(b)) Wogonin inhibits A2780 ovarian cancer cells migration. Representative images of wound scratch assay showing the effect of wogonin on
cell migration. Graph showing the change of inhibition ratio for wound scratch rehealing. (c) Invasion assay. Representative images showing
the effect of wogonin on cancer cell invasiveness. (d) Combined effects of wogonin andMPP on clonogenic survival of A2780 ovarian cancer
cells. Representative images showing the surviving colonies. (e) Graphs showing the changes of clonogenic survival fraction. The error bars
represent the standard error, ∗𝑃 < 0.05 versus control group and #

𝑃 < 0.05 versus wogonin + MPP group, 𝑛 = 3. (f) Western blot analysis
showing the effects of wogonin and MPP on ER-𝛼, VEGF, and p53 protein expression in A2780 ovarian cancer cells. 𝛽-Actin was included as
a loading control. Data present average results from three independent experiments; SD means the standard deviation (𝑛 = 3).
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Figure 3: Wogonin treatment induces apoptosis in A2780 ovarian cancer cells. (a) Representative images showing apoptosis detected with
AnnexinV-FITCandPI staining inA2780 cells. Percentage of the bottom right quadrant and the top right quadrant showing the representative
events of early and late apoptosis, respectively. (b) Representative images of fluorescence microscopy analysis showing the effects of treatment
with wogonin, MPP, and the combination on nuclei apoptosis and cell necrosis in A2780 cells. Cells were stained with Hoechst and PI, and
imageswere taken undermagnification of×200. (c)Theprotein expression ofAkt, Bcl-2,Bax, cytochromeC, caspase-3, and cleaved-caspase-3.
𝛽-Actin was included as a loading control.

factor for breast cancer and a critical reference for clinical
management of breast cancer. Although no prognostic value
for ER expression has been suggested for ovarian cancers, up
to 60% of ovarian epithelial tumors were reported to have ER
overexpression, suggesting a potential of regulatory effects of
estrogen signaling for deployment and progression of ovarian
cancer, and thus targeting ER-𝛼 signalingmay benefit ovarian
cancer patients. To this setting, our results suggest wogonin
may act on estrogen signaling as a novel therapeutic agent for
ovarian tumor treatment.

Several cancer-related proteins, such as p53 and VEGF,
play vital roles in cancer development and progression.These
proteins are valuable therapeutic targets for cancer treatment
[37, 38]. In this study, our results showed that treatments
with wogonin, or wogonin combined with MPP, resulted in
dramatic increase of p53 protein expression and decrease of
VEGF protein expression in A2780 cells. In addition, much

effort in screening of TCM as novel therapeutic agents for
cancer treatment has been devoted to testing the capability of
TCM for apoptosis induction in cancer cells and in xenograft
tumors. Apoptosis is a vital phenomenon that controls cancer
cell growth and survival. When cancer cells enter apoptosis,
mitochondrial cell death and death receptor pathways are two
major pathways that are involved in cancer cell programmed
death. In mitochondrial cell death signaling, the accumula-
tion of Bcl-2 family proteins and the ratio of Bax/Bcl-2 in
mitochondrial membrane determine the potential release of
cytochrome C from the intermembrane space of mitochon-
dria to cytoplasm, where it promotes the formation of the
apoptosome and activates the caspase cascade that leads to
cell apoptosis [39, 40]. However, ER-𝛼 signaling can protect
cells from apoptosis [41]. Of interest, we revealed in this study
that wogonin not only modulates expression of Bcl-2 family
protein, allowing cell entering apoptosis, but also modulates
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Figure 4: Effects of wogonin on cell cycling distribution of A2780 ovarian cancer cells. (a) Representative results of the flow cytometry
analysis with A2780 cells treated with or without wogonin combined with MPP. (b) Graphs showing the changes of the percentage for each
cell cycle in A2780 cells. (c) Representative results of Western blot analysis showing the effects of wogonin on the expression of cyclin D1,
CDK4, and CDK6. Data present average results from three independent experiments; SD means the standard deviation (𝑛 = 3). ∗𝑃 < 0.05
and ∗∗𝑃 < 0.01 versus control group.

ER-𝛼 expression to reduce protection activity of estrogen on
apoptosis in ovarian cancer cells. On the other hand, ER-𝛼
activation regulates expressions of cell-cycle-related proteins,
such as cyclin D1 [42]. Cyclin D1 is a regulatory subunit
of cyclin-dependent kinases CDK4 and CDK6 and is a key
element controlling transition of cells from G1 phase and
S phase [43–45]. Of interest, our results also showed that
wogonin alone or combined with MPP reduced the protein
levels of cyclin D1, CDK4, and CDK6. Taken together, these
results also suggest that wogonin can act as an epigenetic
therapy agent for ovarian cancer.

In conclusion, the present data suggests a potential clini-
cal impact of wogonin for ovarian cancer patients. However,
further investigation of wogonin as an anticancer drug
candidate is needed.
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