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Conventional epidemiological studies of infections spreading through trade net-

works, e.g. via livestock movements, generally show that central large-size

holdings (hubs) should be preferentially surveyed and controlled in order to

reduce epidemic spread. However, epidemiological strategies alone may not

be economically optimal when costs of control are factored in together with

risks of market disruption from targeting core holdings in a supply chain.

Using extensive data on animal movements in supply chains for cattle and

swine in France, we introduce a method to identify effective strategies for pre-

venting outbreaks with limited budgets while minimizing the risk of market

disruptions. Our method involves the categorization of holdings based on pos-

ition along the supply chain and degree of market share. Our analyses suggest

that trade has a higher risk of propagating epidemics through cattle networks,

which are dominated by exchanges involving wholesalers, than for swine. We

assess the effectiveness of contrasting interventions from the perspectives of reg-

ulators and the market, using percolation analysis. We show that preferentially

targeting minor, non-central agents can outperform targeting of hubs when the

costs to stakeholders and the risks of market disturbance are considered. Our

study highlights the importance of assessing joint economic–epidemiological

risks in networks underlying pathogen propagation and trade.
1. Introduction
Trade is crucial for the economy, but can also drive infectious disease trans-

mission, sustaining epidemics locally and promoting potentially long-distance

introductions (e.g. [1]). Examples of markets that can contribute to epidemic out-

breaks include trade of livestock such as cattle [2], swine [3], and sheep [4];

prostitution [5]; and airline transportation [6]. In the epidemiological literature,

the contact structure underpinning pathogen spread through trading contacts is

usually described using network models (e.g. [7]). In such models, holdings

(e.g. farms) are represented by nodes that are interconnected by links that rep-

resent exchanges among holdings (e.g. movement of animals). In the past

decade, network-based models have become increasingly popular as means to

achieve a threefold objective: (i) to describe the contact structure spanned by

such markets (e.g. [1]), (ii) to assess the epidemic risk factors at the scale of
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individual holdings (e.g. [8]) and (iii) to design effective disease

control strategies (e.g. [9]). In particular, network analyses have

proved useful in identifying super-spreading holdings, usually

referred to as ‘hubs’, that should be preferentially subjected to

trade restrictions in order to prevent and mitigate epidemics.

The disruption of such core market players, however, can

cause economic shocks, a downside, which, to the best of our

knowledge, has not been considered in network-based, data-

driven epidemiological studies. Here, we consider the key,

but yet unaddressed question of evaluating the trade-off

between the commercial efficiencies of trade routes and their

vulnerabilities as routes for the transmission of economically

damaging pathogens. We investigate this trade-off for live-

stock-exchange markets in France, for which we have access

to extensive data.

The construction of network models of livestock markets

requires the use of records of animal movements. In the Euro-

pean Union (EU), for instance, exhaustive tracing of livestock

movement is available in many nationally maintained datasets,

originally for cattle since the 1990s (Council Directive 92/102/

EEC of 27 November 1992 on the identification and registration

of animals) and more recently for swine (Council Directive

2008/71/EC of 15 July 2008 on the identification and regis-

tration of pigs). In other countries, data with such levels of

detail may not be available because, for example, the data

may have been aggregated to comply with privacy laws, or

routine data collection may not be implemented at the farm

level. The architecture of animal movements is often extremely

rich and can be described by more or less simple network

models depending on the objective of the epidemiological

study [7]. In some cases, livestock-exchange network models

can account for: more than one type of node (e.g. farms

versus purely commercial holdings; e.g. [10]), direction of

exchange (animals are essentially shipped from selling to

buying holdings; e.g. [11]), weight of shipments (when the

number of animals shipped in one go varies; e.g. [1]), and

dynamical aspects (the shipment of animals occurs at certain

points in time; e.g. [7]). It follows that empirical livestock-

exchange networks exhibit key features shared by many

complex networks, namely they are multipartite, directed,

weighted and dynamic. Recent studies with network analyses

of livestock markets provide significant information on demo-

graphic aspects and vulnerability to pathogen transmission in

cattle and pig markets in several countries, especially where

detailed data are routinely collected, including cattle, for

example in the UK, Sweden, France and Italy [1,3,8,10] for

cattle and Sweden, France and Germany [3,12,13], for pigs.

There is increasing concern for the vulnerability of livestock

systems with very large-scale connectedness, for example, as

a result of open livestock trade among national markets such

as the trade among the 27 member states of the EU [14],

which includes movement of cattle, pigs, sheep, goats, poultry

and horses. There have also been attempts at assessing the

accuracy of epidemiological predictions in cases where

detailed records of livestock movement are not available [15].

Various determinants of the risk of transmission of infec-

tion, and hence disease, can be calculated depending on the

features included in a given network model. These determi-

nants of risk range from the total number of commercial

partners per agent (the total degree, e.g. [10]), the number of

premises that can be reached through successive temporally

compatible links [3] and the ability of each holding to preserve

its commercial partners over time (an ability referred to as
‘loyalty’ [16]). In the general case, any measure of network cen-

trality for a given holding can be used as an indicator of the

corresponding risk of contagion. By identifying potentially

highly contagious nodes, network analyses can inform the

effective prevention and control of infectious disease trans-

mission. It is general wisdom that such infectious ‘hubs’

should be targeted preferentially by the regulator (the public

authorities enforcing health policy, which sometimes pre-

cludes such hubs from exchanging) in order to prevent and

mitigate infectious disease outbreaks in exchange network

systems [17–20].

While the implementation of trade restrictions on key large-

size holdings could be effective in mitigating epidemic out-

breaks, it is often prohibitively costly to regulators and has

potentially severe economic impact on markets. Specifically,

the disruption of core market players through intensive

preventive measures can cause economic shock and render

such strategies inappropriate [21]. The promising alternative

of combining evaluation of economic and epidemiological

risks, however, remains a key gap in the literature [22]; this

is so, despite recent efforts mostly confined to theoretical

studies based on models coupling epidemiological dynamics

and economic aspects related to trade [23]. This gap is also

related to the absence of well-established measures of cost

effectiveness for managing livestock diseases [24].

Because the agents that are central to the market are also

likely to act as sources for epidemic spread, we expect that in

general there will be a strong association between economic

and epidemiological risks, some of which may be negative

(inverse) associations. In this study, we aim to identify efficient

strategies for preventing epidemics with minimal disruption to

markets and limited cost to the stakeholders such as regulators

and business owners. We introduce a market-based categoriz-

ation for aggregating the holdings based on economic as well

as structural network summaries, namely position along the
supply chain and market share or leadership. To study the econ-

omic–epidemiological implications of our categorization, we

analyse two datasets recording cattle and swine livestock move-

ment in France during 2005–2009 and 2010, respectively (§2).

We show that the market categories that we propose describe

livestock exchange intuitively and provide insights on the

underlying trading patterns (§3.1). Using these categories,

which are easy to implement because they are empirically

defined, we evaluate the joint economic–epidemiological

risks of epidemic outbreak and associated regulatory measures

(§3.2). We consider both the regulator’s and the market’s stand-

points and evaluate the effectiveness of different preventive

strategies that target agents in selected market categories

(§3.3). Both static and dynamical preventive strategies are

explored, whether based on real-time or past data. We con-

clude by summarizing our most important results and by

highlighting some perspectives for future work (§4).

The principal contribution of our study stems from

adopting data-driven epidemiological and economic stand-

points in order to evaluate control strategies against

pathogen spread in livestock trade markets. Our study also

contributes to the literature on network epidemiology by

identifying how the choice of optimal outbreak control strat-

egies may depend on the system considered (here cattle and

swine livestock exchanges). Specifically, the optimal strategy

identified does not necessarily rely on preferentially targeting

hubs, despite the latter being often regarded as an evidently

best approach.
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2. Material and methods
2.1. Trade networks and livestock exchange
Describing livestock exchange from a market-centric perspective

requires a preliminary exposition of core concepts, at the crossroad

of economics and network theory. After a brief introduction to

markets, we present the livestock-exchange data that we analyse

as trade networks.

2.1.1. Understanding markets from a network-centric perspective
As a first approximation, a market can be formally described as a

network composed of economic agents (e.g. individuals,

businesses or sovereign states) in interaction [25,26]. From a net-

work perspective, an agent corresponds to a node or vertex

interacting with other nodes through links or edges. From an econ-

omic perspective, an agent is an entity that pursues its own

interests through some kind of economic optimization. Agents

have generally divergent interests resolved through exchanges

and price definition [27].

Based on [28], we define some core concepts to describe markets

and their influence on epidemics. A market is made of supplying

agents, i.e. suppliers, and demanding agents, i.e. demanders. Agents

that are both supplying and demanding correspond to wholesalers.
Agents interact during transactions by exchanging goods that can

lead to disease transmission, where a transaction is a delivery

from a supplier to a demander. Trade flow is the number of products

(e.g. animals) traded from a supplier to a demander per unit time.

Provided that trade is the only route for transmission, trade flow

can be interpreted as the epidemiological contact rate (number of

transactions per time unit) weighted by contact intensity (number

of products exchanged per transaction).

Since the exchange of animals occurs from suppliers to deman-

ders but often not in the reverse direction, and since different

numbers of animals are shipped per transaction, we say that

exchanges are directed and weighted. It follows that trade flow has

a direction, e.g. we can dissociate in- and out-trade flows. We can

also calculate the total-trade flow, i.e. the sum of the in- and out-

trade flows. Hence, markets are described by directed and

weighted networks. Moreover, since exchanges occur at precise

points in time, markets form dynamical networks. Although more

realistic, dynamical networks are harder to analyse than static net-

works (obtained, for instance, by aggregating interactions over

time). In particular, the probability of outbreak emergence and

the resulting impact on a trade network are more difficult to

assess in time-varying than in static networks [29]. Here, we

consider both types of networks.

2.1.2. French livestock-exchange data described as
trade networks

We analyse and compare trade networks derived from two

datasets recording livestock exchange in France: the BDNI for

cattle (managed by the French Ministry in charge of Agriculture

(FMA)) over years 2005–2010, and BDPorc for swine (managed

by the French professional union BDPorc) in 2010. Each dataset

details movements of animals occurring in France among all econ-

omic agents involved in the supply chain, from strictly breeding

farms to slaughterhouses with various categories of structural

wholesalers in between (e.g. breeding–fattening farms, strictly fat-

tening farms, dealers). Data on imports and exports are also

available. Traceability is imposed by the regulator at different

scales: on individual animals in the case of cattle, and on batches

(sets of animals shipped from a seller to a demander during a trans-

action) in the case of swine. Hence, we extract individual-level

transactions directly from the cattle dataset. Moreover, we recon-

struct individual-level transactions for pigs based on a simple

matching process (see the electronic supplementary material, sec-

tion B.2 of [28], for details).
Our core network-based analyses are carried out at the

microeconomic business scale, i.e. agricultural holdings, as far

as national livestock exchange is concerned. The datasets allow

us to distinguish three groups of holdings: farms, i.e. agents

aiming to produce livestock; trading agents such as assembling

centres, i.e. agents aiming to exchange livestock; and the rest of
the world, a single entity aggregating all agents located outside

of France, which we use to assess the importance of international

restrictions on trade, as e.g. might occur in the case of a major

outbreak. Following the epidemiological literature [3], we neglect

slaughterhouses and movements to slaughterhouses from our

analyses since including these movements would underestimate

the risk of transmission associated with farms. However, we do

include foreign movements to and from France as they can con-

tribute to disease introduction, further dispersion on large

geographical scales and major economic disruptions. Though

we explored several temporal descriptions of networks (see the

electronic supplementary material), all analyses presented in

the main text are carried out on static networks aggregating

transactions at the yearly scale for the sake of simplicity.

2.2. Market-centric categorization of economic agents
for representing the trade networks

We introduce a generic categorization of economic agents appli-

cable to a variety of markets including livestock exchange. We

sort agents according to two types of market summaries: position
along the supply chain and market leadership, and then use these cat-

egories to define market categories. Let T ¼ ½t1, t2� represent the

period of time over which we aggregate the transactions. We

then use these aggregates to calculate the following summaries.

2.2.1. Position along the supply chain: flow polarity
Position along the supply chain is given by the overall direction

of trade flow, that we quantify by a summary referred to as flow
polarity and denoted fpa, and that is given for any agent a by the

difference of its in- and out-trade flows divided by its total-trade

flow over a particular time period T :

½flow polarity of agent a�ðT Þ ¼ fpaðT Þ

¼ ½in-trade flow to a�ðT Þ � ½out-trade flow from a�ðT Þ
½in-trade flow to a�ðT Þ þ ½out-trade flow from a�ðT Þ ,

ð2:1Þ

where [in-trade flow to a] (T Þ ¼ fin
a ðT Þ ¼

P
ifiaðT Þ and [out-trade

flow from a] (T Þ ¼ fout
a ðT Þ ¼

P
jfajðT Þ, with fijðT Þ the trade

flow from i to j over T and where sums are over all nodes exchan-

ging with a over the same period. By construction, �1 � fpa � 1

(2.1) and fpa can take any value between these two extremes. In

order to build discrete classes of agents based on flow polarity,

we introduce an empirical threshold e . 0 which can take either

predetermined values or be set equal to percentiles of a given dis-

tribution. Hence, agents a for which fpa , �e, fpa [ ½�e, e� and

fpa . e correspond to suppliers, wholesalers and demanders, respect-

ively. Flow polarity is an extension of the concept of hierarchy
[30,31] to weighted and dynamical networks.

2.2.2. Market leadership: flow share
Following marketing studies [32], we use flow share, i.e. the rela-

tive trade flow, to quantify market leadership. For any agent a, flow

share, denoted fsa, is defined as its total-trade flow over time

period T divided by the sum of total-trade flow for all agents

over T :

½flow share of agent a�ðT Þ ¼ fsaðT Þ

¼ ½in-trade flow to a�ðT Þ þ ½out-trade flow from a�ðT Þ
½total in-trade flow] þ ½total out-trade flow] ðT Þ ,

ð2:2Þ
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where ½total in-trade flow� ¼ FinðT Þ ¼
P

a f
in
a ðT Þ and

½total out-trade flow� ¼ FoutðT Þ ¼
P

af
out
a ðT Þ, with sums over

all active agents over T : Flow conservation implies that

FinðT Þ ¼ FoutðT Þ: By definition, 0 � fsa � 1 (2.2) andP
a fsa ¼ 1, where the sum is over all active agents in the

market during T : Similarly to flow polarity, we introduce two

empirical thresholds d1, d2 . 0 which can take either predeter-

mined values or be set equal to percentiles of a given

distribution. Agents a for which fsa , d1, fsa [ ½d1, d2� and

fsa . d2 are denoted nichers, followers and leaders, respectively.
rg
J.R.Soc.Interface

13:20151099
2.2.3. Definition of market categories using flow polarity and
flow share summaries

Market categories are defined based on a two-dimensional indi-

cator (fpa, fsa), i.e. by the combination of position along the

supply chain and market leadership: suppliers-nichers (SN),

suppliers-followers (SF), suppliers-leaders (SD), wholesalers-

nichers (WN), wholesalers-followers (WF), wholesalers-leaders

(WL), demanders-nichers (DN), demanders-followers (DF) and

demanders-leaders (DL). In addition to the categorization in

3 � 3 classes (with respect to the above definitions for fpa and

fsa), finer grids can be adopted for more detailed analysis.
2.3. Elaboration, choice and evaluation of targeted
control strategies

Based on the categorization of agents that we have introduced, we

consider preventive strategies that involve preferential targeting of

agents belonging to certain market categories. We evaluate generic

forms of interventions for outbreak control. Specific practical

examples of these interventions include preferential surveillance

and vaccination of the agents that are deemed most at risk. We pro-

ceed in three steps: firstly, we elaborate a general class of strategies

preferentially targeting agents belonging to specific market cat-

egories; secondly, we identify meaningful targeting strategies

by assessing which agents are most at risk according to network-

based summaries of economic and epidemiological risks; thirdly,

we evaluate indirectly, from an economic–epidemiological

perspective, how selected strategies influence systemic risk.
2.3.1. Preferential targeting of agents in specific market
categories

Let N denote the number of agents involved in at least one trade

event during the time interval T : The fraction Fn ¼ n/N of n
agents to be targeted is chosen according to strategy S (scenario

denoted ðFn; SÞ), which ranks each agent a from 1 to N according

to the decreasing values of a rank function, denoted Rðfpa, fsaÞ,
and based on the market categories as defined by fp and fs. We

define Rðfpa, fsaÞ as the product of functions RfpðfpaÞ and

RfsðfsaÞ:

Rðfpa, fsaÞ ¼ RfpðfpaÞ RfsðfsaÞ, with

RfpðfpaÞ ¼ ½2� ðfpa þ 1Þ�z
suppliers

½fpa þ 1�z
demanders

and RfsðfsaÞ ¼ ½maxðfsÞ � fsa�z
nichers

½fsa�z
leaders

,

9>>>=
>>>;

ð2:3Þ

where zsuppliers, zdemanders, znichers and zleaders � 0 are fixed par-

ameters representing the preferences of the regulator for

targeting specific market categories. As an example, wholesaling

leaders are surveyed preferentially when we set: zsuppliers ¼

zdemanders . 0, znichers¼ 0 and zleaders . 0. In the case when

two or more agents take the same value of R, we choose their rela-

tive orders uniformly at random. Note that the variability resulting

from this ranked ordering is weak, as confirmed by assessments of

each strategy over 100 random replicate targeting for both datasets.
2.3.2. Identification of specific targeted control strategies
To choose meaningful preventive strategies, i.e. to set a priori
appropriate values for zsuppliers, zdemanders, znichers and zleaders in

(2.3), we calculate various risk indicators per agent per market

category. We specify for each indicator whether it quantifies an

economic risk, an epidemiological risk or economic–epidemiological
risks. An economic risk is the risk of market disruptions caused

by the failure of an agent. An epidemiological risk is the risk for

a healthy agent to become contaminated and/or the risk of an

infected agent to further transmit an infection to other agents.

Economic-epidemiological risks are combined risks. In identifying

optimal interventions, we are specially interested in strategies

that minimize both economic and epidemiological risks.

First, we consider three risk indicators at the agent level: flow

polarity, flow share and trade flow (defined in §2.1 and 2.2).

We consider flow polarity is a measure of joint economic–

epidemiological risks, flow share constitutes a measure of

economic risk and trade flow quantifies epidemiological risk

(although the relationships between these measures are subject

to economic and epidemiological reinterpretations) [28,33,34].

We also calculate, for each market category, the values of two

additional indicators of epidemiological risk that are well docu-

mented in the network epidemiology literature: the proportion of
agents belonging to the largest strongly connected component (LSCC)

and the average betweenness centrality. The LSCC is the largest sub-

network of agents for which a directed path exists from any other

agent in the subnetwork. The betweeness centrality of a node is

the fraction of shortest paths that passes through this node (see

electronic supplementary material, section A.1 for details).

2.3.3. Evaluation of the targeted control strategies using multi-
criteria decision analyses

To evaluate targeting strategies, we carry out multi-criteria decision

analyses (MCDA) from an economic–epidemiological perspective.

The MCDA aim to find optimal strategies for reaching one or mul-

tiple objectives with minimal efforts, potentially considering

multiple objectives and types of effort simultaneously [35]. The

capacity of a strategy for mitigating a disease is measured through

prevention-effectiveness criteria, while the effort needed for reaching

a given effectiveness is measured through prevention cost criteria,

where all criteria are to be defined. An optimal strategy is one that

maximizes prevention effectiveness with minimal efforts. The strat-

egies considered in this studyare implemented by the regulator who

decides to target certain agents preferentially. In practice, the cost of

implementing control measures may fall on the regulator, the

business owners or other stakeholders of the market. However,

the perception of what is an optimal strategy is subjective. We

hence consider two complementary points of view when comparing

control strategies: the regulator’s and the market’s.

2.3.3.1. Prevention effectiveness: derivation from the LSCC
We define prevention effectiveness as the benefit to the market

stakeholders of implementing a preventive strategy, for instance,

the losses averted by avoiding an epidemic. The proportion of

agents belonging to the LSCC is a standard epidemiological

proxy to assess both the probability of disease invasion and the

epidemic final size [12,36]. Following node percolation exper-

iments [17], we measure the prevention effectiveness of a given

strategy S when targeting a proportion Fn of agents by the relative
decrease in the LSCC size of the network aggregated over the time

period T :

½prevention effectiveness�ðFn; SÞðT Þ
¼ ½relative decrease in the LSCC size] ðFn; SÞðT Þ,

¼ 1� ½number of agents remaining in the LSCC� ðFn; SÞðT Þ
½number of agents in the LSCC without prevention� ðT Þ :

ð2:4Þ
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To assess the robustness of our findings based on the LSCC, we

also use, in the electronic supplementary material, the average

infection chain as an alternative proxy for prevention effectiveness

[2,3,11]. In contrast with the LSCC, the average infection chain has

the advantage of taking into account the sequence of dates when

exchanges occur over time period T (and hence of considering

only temporally compatible paths between agents). However,

because of the considerable computation time required, calculation

of the average infection chain is only performed for rather

small networks. We also explore the influence of postponing

the implementation of a given strategy S (see the electronic

supplementary material, section A.2 for more details).

2.3.3.2. Prevention costs: relative costs to the regulator and

market distortions
We define multiple prevention costs, as the relative costs to the
regulator and consequent market distortions. Relative costs to the regu-
lator are costs incurred by the regulator when, e.g. implementing a

preventive control strategy. Market distortions are potential dama-

ging impacts on the market that result directly or indirectly from

implementation of a preventive control strategy.

First, we detail relative costs to the regulator. When imple-

menting a strategy S over time period T , we assume the

regulator may incur two types of costs: an agent cost and a flow
cost. In common with others [17], though explicitly rather than

implicitly, we assume the agent cost is proportional to Fn for any

strategy S: The flow cost is also expected to increase with Fn but

to be highly variable depending on the underlying strategy S:
Here, in line with [28], we assume the flow cost is proportional

to ðSafsaÞðFn; SÞ (T ), which is the total flow share of the fraction

Fn of agents targeted in strategy S: In practice, since we are inter-

ested in ranking a set of strategies, we measure relative rather than
absolute costs: we hence directly track Fn and ðSafsaÞðFn; SÞ(T ),

which take values in [0,1], as proxies for economic risk.

Second, we specify market distortions. Any preventive strat-

egy implemented by the regulator is expected to cause market

disruptions. Here, by analogy with our market categories, we

consider two types of economic risk proxies to measure disrup-

tions to the market: disruption to the overall flow polarity and

disruption to the overall flow share. Disruption to the overall flow
polarity, denoted mðFn; SÞðT Þ, is measured as the relative

mismatch between overall in- and out-flows:

mðFn;SÞðT Þ

¼ ðF
inðF0;SÞ�FinðFn;SÞÞðT Þ�ðFoutðF0;SÞ�FoutðFn;SÞÞðT Þ

ðFinðF0;SÞ�FinðFn;SÞÞðT ÞþðFoutðF0;SÞ�FoutðFn;SÞÞðT Þ

����
����,

ð2:5Þ

where FinðFk; SÞðT Þ and FoutðFk; SÞðT Þ are the total in- and

out-flows distorted when a fraction Fk of agents are targeted

according to strategy S: As specified in §2.2.2, flow conserva-

tion implies FinðF0; SÞðT Þ ¼ FoutðF0; SÞðT Þ: By construction,

mðFn; SÞðT Þ takes values in [0,1]. Disruption to the overall flow
share is assessed by ðSafsaÞðFn; SÞðT Þ, the total flow share targeted

and hence potentially disrupted when a fraction Fn of agents is tar-

geted according to strategy S: Note that the same value of

ðSafsaÞðFn; SÞðT Þ is used as a proxy for two differing quantities:

flow cost (incurred by the regulator while implementing a strategy)

and disruption to the overall flow share (which reflects a particular

market disruption induced by the regulator’s intervention).

2.3.3.3. Practical implementation of the MCDA
Multiple criteria decision analyses are carried out over time

period T , which we set to start in 2009 for cattle and 2010 for

swine. To account for potential delays in the collection of data

necessary to calculate flow polarity fpa (2.1) and flow share fsa

(2.2), we explore two contrasting cases: the real-time scenario or
the deferred scenario, respectively, where the regulator has access

to real-time data or deferred data, respectively, so fpa and fsa

can be calculated based on T or based on T � dt (with dt repre-

senting the delay of data collection), respectively. We set dt ¼ 1

year, a deliberately large value for data collection. For each strat-

egy explored, the relative decrease in the LSCC size is evaluated

at increasing values of Fn. For each value of Fn, we keep track of

the proxy for prevention effectiveness (the relative decrease in

the LSCC size (2.4)), and of the four proxies for prevention

costs: the two relative costs to the regulator (relative agent cost

Fn and flow cost ðSafsaÞðFn; SÞðT Þ); and two measures of

market distortions (disruption to the overall flow polarity

mðFn; SÞðT Þ (2.5) and disruption to the overall flow share

ðSafsaÞðFn; SÞðT Þ).
3. Results and discussion
3.1. Analyses and representation of trade networks

using market categories
Considering the French datasets for livestock movements of

cattle and swine, we categorize agents with similar market

characteristics, according to position along the supply chain,

quantified by flow polarity (figure 1a,c), and market leader-

ship, quantified by flow share (figure 1b,d ). Agents with

similar ranks in flow polarity and flow share belong to the

same market category (figure 2a). Since market categories are

relatively invariant over time (electronic supplementary

material, section B.1, figure S1), we focus our subsequent

analyses based on 2009 for cattle and 2010 for swine.

We notice suppliers and demanders are overly represented

in the cattle and swine markets, respectively (figure 1a). Since

demanders act as epidemiological dead-ends, our analyses

suggest that the cattle market is riskier than the swine

market, a result in agreement with [12]. According to the distri-

bution of flow share, the swine market is less scattered than the

cattle market (figure 1b). For instance, the median flow share is

1024.4 in swine in 2010 and only 1026.0 in cattle in 2009, i.e. the

median flow share in the swine market is 40 times larger than

in the cattle market. This indicates a larger economic risk

associated with the failure of a typical swine agent compared

with the failure of a typical cattle agent.

To shed light on the practical meaning of flow polarity

and flow share, we analyse the correspondence between stan-

dard market groups and our market categories (figure 1c,d ).

For cattle, we remark that farms and trading agents corre-

spond to suppliers and wholesalers, while for swine, farms

and trading agents rather correspond to wholesalers-to-

demanders (figure 1c). For both cattle and swine, French

exchanges with the rest of the world essentially correspond

to exports, i.e. the rest of the world acts as a strict demander.

Concerning flow share for cattle and swine, farms and

trading agents correspond to nichers-to-followers and fol-

lowers-to-leaders, respectively (figure 1d ). The rest of the

world represents a considerable flow share (about 13% for

cattle and 4% for swine) and can be described as a major

market leader for both trade systems.

We compare the cattle and swine markets using the market

categories defined in figure 2a. In the cattle market, the pro-

portion of leaders is small, irrespective to the flow polarity.

The most represented market categories are SN and SF,

with no significant difference between nichers and followers.

In the swine market, the largest proportions of agents are in
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the SF and DF market categories, illustrating the fact that fol-

lowers exhibit a polarized activity most of the time. These

distributions are modified when scrutinizing the LSCC.

Indeed, for both cattle and swine, the proportion of agents

belonging to the LSCC increases with increasing flow share

(figure 2b), implying that the epidemiological risk associated

with leaders is larger than that associated with nichers.

This trend is confirmed by the distribution of average

betweenness centrality among market categories (electronic

supplementary material, section B.2, figure S2). For a given

flow share, both risk indicators, i.e. the LSCC and betweeness

centrality, typically have larger values for agents with negli-

gible flow polarity, which suggests that wholesalers are

probably stronger epidemiological drivers than suppliers, a

finding in agreement with the theoretical results reported in

[30,31]. We also notice, in line with [12], that the proportion

of agents belonging to the LSCC is larger in cattle than in

swine, which suggests that there is greater epidemiological

risk associated with trade in cattle markets.

The use of market categories also enables comparison

of connection patterns in the cattle and swine markets
(figure 3). In the cattle market, the total-trade flow is relatively

large for the WF and WL categories. Also, exchanges to and

from wholesalers (irrespective of flow polarity) and within cat-

egories WF and WL are clearly over-represented in this market,

thus generating structural loops and potentially infectious

feedback. By contrast, there is a larger number of exchanges

in the swine market than in the cattle market that involve

direct transactions from suppliers to demanders, particularly

from SF to DF, which leads to a trading structure with a limited

number of potentially infectious feedback routes. Again, this

result suggests that the swine market is less prone to epidemic

spread compared with the cattle market.

3.2. Identification of targeted control strategies based
on risk assessment per agent per market category

Particular preventive strategies are selected from preliminary

risk assessments (§2.3.2). By definition, trade flow per capita
increases with flow share for both cattle and swine, implying

larger economic–epidemiological risks per capita associated

with leaders compared to nichers. Flow polarity does not
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seem to influence trade flow significantly, especially in cattle

(figure 3). Also note that in cattle, wholesalers have compara-

tively larger trade flows than the other categories. As in

§3.1, this outcome suggests that wholesalers are stronger

epidemiological drivers than suppliers.

At the scale of market categories, WL are more connected

(figure 3), have a larger betweenness centrality (electronic

supplementary material, section B.2) and are more likely to

belong to the LSCC than SN (figure 2). This latter point ren-

ders WL representative both in the cattle and in the swine

markets, although for the swine market WL agents are not

involved in large volumes of trade (figure 3b). The swine

market is driven mainly by trade flows from SF and SL to

DF, which suggests that the epidemiological risk could be

confined to only a few market categories. We therefore

expect the cattle market to be at a greater epidemiological

risk compared with the swine market, a finding in agreement

with the results reported in §3.1 and in a previous study [28].

Taken together, our results corroborate, in agreement

with the literature, that WL appear to act as infectious

super-spreaders. WL, as market leaders, are also associated
with major economic risks in case of failure. Like WL, SN

can act as infection sources and are associated with epidemio-

logical risk. However, in contrast with WL, SN have minor

market importance and are less likely to induce market dis-

ruptions when disturbed. From a network perspective, WL

(SN) can therefore be described as ‘hubs’ (anti-hubs), i.e.

agents with a large (low) number of links compared with

the average number of links per agent [37]. We therefore

evaluate two contrasting strategies: the preferential targeting

of hubs, i.e. WL, and the preferential targeting of anti-hubs,

i.e. SN. The strategies targeting WL first (SN first) are referred

to as the WL strategies (the SN strategies). In practice, we set

zsuppliers ¼ zdemanders ¼ 1, znichers ¼ 0 and zleaders ¼ 1 in (2.3)

for the WL strategies, and zsuppliers ¼ 1, zdemanders ¼ 0,

znichers ¼ 1 and zleaders ¼ 0 in (2.3) for the SN strategies.

3.3. Evaluation of the targeted control strategies using
multi-criteria decision analyses

Based on the results from the risk assessment (3.2), our

MCDA focus on strategies preferentially targeting WL
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agents compared with strategies preferentially targeting SN

agents. The relative performances of these strategies are com-

pared for both markets using various criteria (as defined in

§2.3.3).

We start by introducing results from the regulator’s point

of view (i.e. quantifying agent costs and flow costs). WL strat-

egies appear always to be more effective than SN strategies

provided that the overall prevention cost is driven by the frac-

tion of agents targeted (plain black curves in figures 4a,c and

5a,c). Under these conditions, we recover the commonly

accepted wisdom that preferentially targeting the most cen-

tral nodes in a heterogeneous network is the best way

to mitigate an epidemic [17], where centrality of the nodes

is determined by having large betweeness centrality and

probability of belonging to the LSCC.

However, if the overall prevention cost is driven instead by

the fraction of targeted flow, the SN strategies can be more
efficacious than the WL strategies as seen in cattle (plain grey

curves in figure 4a,c) but not in swine (plain grey curves in

figure 5a,c). An example of a strategy driven by the fraction

of targeted flow (total animals to be protected per time unit)

would be an initiative whereby diagnostic tests would be dis-

tributed to farmers purchasing livestock in order to test

biological samples from the animals purchased. This appar-

ently counterintuitive result stems from the structure of the

cattle network (figure 3a) and may not be so surprising:

when applying tests at purchase, it may be better to cover

both a large geographical and topological space (the ‘area’ cov-

ered by a network), i.e. to dispatch a constant number of tests to

a very large number of premises with very small flow shares,

rather than to a very small number of holdings with very

large flow shares.

From the market’s point of view, when targeting agents to

prevent epidemics, the regulator will necessarily induce
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distortions to the market (figures 4b,d and 5b,d ). Typical

disruptions of the market include shifts in price, removal

and later reintroduction of suppliers and demanders and/

or local and global depletions in supply and demand

stocks. Disruptions can be induced by infection and sub-

sequent eradication of contaminated stock for sanitation or

other preventive measures [28]. At first sight, it seems

impossible to attain an optimal situation where epidemics

are at low risk without affecting the market. Some strategies

appear better than others though: while the SN strategies can

induce fewer distortions than the WL strategies for most

levels of prevention-effectiveness in cattle (figure 4b,d ), the

WL strategies are always the best in swine (figure 5b,d ).

These results suggest that cattle and swine markets, while

both corresponding to heterogeneous livestock-exchange

networks, require differing preventive measures.

Introduction of delays in the collection of data to design

preventive strategies has little effect on our results (dashed

versus plain curves in figures 4 and 5). Our conclusions are

also not affected by the use of an alternative measurement

of prevention effectiveness with an epidemiological risk
proxy accounting for the time-varying nature of the network

(i.e. the succession of transactions and hence of network links

over time) nor by the inclusion of time lags in the implemen-

tation of preventive strategies (electronic supplementary

material, section B.3).

Taken together, our results suggest that the WL strategies

are not always the best. In particular for the cattle market,

when costs of prevention are driven by the number of ani-

mals to target, the SN strategies perform better than the

WL strategies.
4. Conclusion
Regulators tasked with managing disease outbreaks are

generally constrained by limited resources [38]. Therefore,

prioritizing interventions under limited resources is essential

to achieve effective prevention and control of epidemic

outbreaks. Typical targeted preventive measures include

vaccination of risky agents, and risk-based surveillance

such as blood-tests for identifying cryptic infectious cases,
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in particular for purchased animals in livestock-exchange

markets. Targeted prevention is particularly relevant for a

national regulator aiming to eradicate or control a disease

in order to generate subsequent commercial benefits or to

maintain a disease-free status to satisfy the requirements

of the international animal health code. Acquiring or main-

taining an internationally recognized disease-free status is

associated with major benefits such as capacity to export

livestock and reduction of control burdens. For instance,

according to the FMA, surveillance measures of bovine

tuberculosis, including on-farm visits and systematic

animal testing, cost the French state as much as 20 million

euros over the period 2010–2011 [39]. In this context, our

analyses suggest that while the risk of epidemic introduc-

tion in France due to contaminated livestock imports

appears limited, the economic risk associated with potential

sanitary bans on French exports is important and could lead

to major market disruptions. This outcome is consistent

with a recent analysis of total-trade flows of livestock

between EU countries [14].

While we build on an already rich literature that applies

network analyses to inform health policies, in particular for

the animal sector, we depart from existing studies by introdu-

cing a market-based categorization to analyse and protect

trade networks propagating epidemics. Our market-based
categorization, which we have found to be relatively stable

over time, can intuitively describe market structure and inter-

action mechanisms. It can also be used to quantify joint

economic–epidemiological risks, and hence to evaluate pre-

vention strategies that target particular market categories,

thereby concentrating resource application to confined sec-

tors of the system at risk. In particular, when both the

standpoints of the regulator and of the market are taken

into account, we find that preferentially targeting SN,

which are anti-hubs, can, in some cases, outperform the pre-

ferential targeting of WL, i.e. hubs. The preferential targeting

of hubs appears to be systematically more effective when we

only consider the regulator’s point of view and assume that

intervention costs are proportional to the number of econ-

omic agents to be protected. In summary, our study

suggests that multiple perspectives should be adopted

when evaluating targeted preventive strategies, a finding

with general implications for epidemiological and ecological

studies aiming at prioritizing interventions for maintaining

healthy and diverse (eco-)systems.

Achieving the best epidemiological outcome under a con-

strained regulatory budget has been addressed by others, for

example, through optimal control theory [40]. A typical objective

of optimal control theory consists of finding an optimal amount

of treatment at each time step to minimize the total number of
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infected animals during the course of an epidemic without

exceeding a fixed budget. However, prior to the market-centric

analyses introduced here, the influence of epidemics and sub-

sequent regulatory measures on market functioning at the

microeconomic scale were largely unknown [28]. Although we

do not consider here a coupled dynamic model of infectious dis-

ease and economics dynamics (as proposed in a recent study

based on theoretical modelling un-parametrized by data [23]),

our study constitutes a first step towards understanding the

likely impacts of epidemics on trade. At the interface between

the data-motivated approach adopted here and the proof-of-con-

cept approach exposed in [28], the elaboration of agent-based,

economic–epidemiological models integrating temporal feed-

backs will be the subject of future work. While we have

focused our applications to animal health policy, our empirical

formulation to identify market categories can aid the analysis

of highly complex networks with multiple node types, and

directed, weighted and dynamical links. We believe that the fra-

mework we have proposed can provide wider valuable insights

to uncover the mechanisms underpinning joint disease and

exchange dynamics.
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