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Abstract: Sulfur mustard (SM) is a harmful warfare agent that poses a serious threat to human health
and the environment. Thus, the design of porous materials capable of sensing and/or capturing SM is
of utmost importance. In this paper, the interactions of SM and its derivatives with ethylpillar[5]arene
(EtP[5]) and the interactions between SM and a variety of host macrocycles were investigated through
molecular docking calculations and non-covalent interaction (NCI) analysis. The electronic quantum
parameters were computed to assess the chemical sensing properties of the studied hosts toward SM.
It was found that dispersion interactions contributed significantly to the overall complexation energy,
leading to the stabilization of the investigated systems. DFT energy computations showed that SM
was more efficiently complexed with DCMP[5] than the other hosts studied here. Furthermore, the
studied macrocyclic containers could be used as host-based chemical sensors or receptors for SM.
These findings could motivate experimenters to design efficient sensing and capturing materials for
the detection of SM and its derivatives.

Keywords: non-covalent interactions; sulfur mustard; macrocycles; DFT-D4; inclusion com
plex; sensing

1. Introduction

Ethylene dichloride sulfide (bis(2-chloroethyl) sulfide) commonly known as sulfur
mustard (SM) is a cytotoxic chemical compound with an oily liquid appearance belonging
to the category of mass destruction weapons [1–3]. SM was first prepared in 1822 by César
Despretz, however, it was not used until 1917 during the First World War [4]. SM is a
highly toxic agent that attacks clammy skin, tissues, and airways, causing severe blisters
and chemical burns to the eyes and mucous membranes, as well as long-term genetic
damage [5,6]. In addition to its effects on health, SM is dangerous for the environment and
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can cause harmful effects on aquatic organisms. In this regard, addressing the problem of
this chemical warfare agent and its derivatives is of particular importance.

Some decontamination processes have been developed to eliminate the SM such as
chemical degradation by hydrolysis or oxidation [7,8]. An alternative strategy, based on the
complexation of harmful substances [9–12] by macrocyclic systems offers new perspectives
to address the issue of capturing and storing hazardous substances. Supramolecular chem-
istry is mainly concerned with the study of the host-guest complexes in which two or more
neutral or charged molecules bind to each other via non-covalent interactions [13–15]; these
interactions are the main driving forces of the complexation process, which leads to the
modification of the physicochemical properties of host-guest complexes [16–20]. Among
the supramolecular systems, cyclodextrins [21,22], cucurbiturils [23–25], calixarenes [26–29],
and pillararenes [30–32] are the most studied host compounds. Moreover, self-assembled
supramolecular architectures and nanostructures [33–38] play a key role in nanotechnolo-
gies and bioengineering.

In this context, Li et. Al. [39] conducted an experimental study in which per-ethylated
pillar[5]arene (EtP[5]) host was used as a macrocyclic receptor for the recognition of the SM
and its derivatives. The authors observed a strong binding and capture abilities toward
SM and its stimulants with proven stability for a period of time (at least six months in the
crystals) and discussed the mechanism of the interactions between (EtP[5]) and the guests
SM, 2-chloroethyl ethyl sulfide (S1), bis(2-chloroethyl) ether (S2), 2-chloroethyl ethyl ether
(S3), 1,5-dichloropentane (S4), and 1-chloropentane (S5). The optimized structures of SM
and its stimulants (S1–S5) are represented in Figure 1.
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Figure 1. Optimized molecular structures of the guests: SM, S1, S2, S3, S4, and S5. Atom colors:
chlorine (green); oxygen (red); carbon (grey); sulfur (yellow) and hydrogen (white).

From Figure 1, it is clear that S2 and S4 have a similar structure to that of SM, with the
central sulfur atom replaced by oxygen or carbon atoms, respectively. The guests S3 and S5
are the monofunctional analogs of S2 and S4. X-ray diffraction showed that EtP[5] forms 1:1
inclusion complex with all the guests (SM-S5). The inclusion process is mainly driven by
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multiple C–H···π/Cl/S/O interactions. As a limitation of the study, the crystalline EtP[5]
cannot be used for the degradation of SM. Therefore, it is interesting to functionalize the
macrocyclic host systems as a strategy for the detoxification of SM [40], which may result
in increasing the interaction energy and time storage.

Computational chemistry plays a crucial role in the field of host–guest complex-
ation chemistry as an efficient tool for investigating the mechanism of the inclusion
process [41–44] and for the prediction of new host molecules that can efficiently encapsu-
late the drug guests [45,46]. In this work, we present a DFT-D4 study of the host-guest
interactions between the per-ethylated pillar[5]arene and SM and its simulants. Another
important point of interest was to investigate the possible complexation of SM with several
macrocyclic systems including functionalized pillar[5]arenes. Furthermore, different com-
putational tools were used to analyze the structural, electronic, and sensing properties as
well as the intermolecular interactions responsible for the stability of the formed complexes.
We believe that this work will be useful for future experimental investigations aiming
at capturing or sensing SM and its derivatives or analogs [47,48] using functionalized
macrocyclic hosts.

2. Computational Methods

Full geometry optimization and energy calculations were performed using the re-
cently developed meta-generalized-gradient approximation (mGGA) composite method
r2SCAN-3c [49–57] combined with a modified version of the def2-TZVP basis set [58]
denoted def2-mTZVPP [49]. A geometrical counterpoise correction (gCP) for the intra- and
inter-molecular basis set superposition error was employed [59], as well as the Grimme
dispersion term based on tight-binding partial charges (D4) [60–62] that was applied to
account for the dispersion correction. All the DFT calculations were carried out with
the ORCA program package (version 5.0.0) [63–65] in the gas phase. The complexation
process between SM and its simulants and EtP[5] was also evaluated in o-xylene using the
conductor-like polarizable continuum model (CPCM) [66,67]. The complexation energy
(Ecomplexation) for the SM and its derivatives with the studied macrocyclic hosts is computed
by the following equation:

Ecomplexation = E(complex) − (E(host) + E(guest)) (1)

where E(host) is the energy of the host molecule, E(complex) is the energy of the host-guest
complex, and E(guest) is the energy of the guest molecule.

3. Results and Discussion
3.1. Interaction of SM and Its Simulants with EtP[5]

The starting geometries for the DFT geometry optimization of SM@EtP[5], S1@EtP[5],
S2@EtP[5], S3@EtP[5], S4@EtP[5], and S5@EtP[5] complexes were retrieved from the crystal
X-ray structures [39], corresponding, respectively, to the following assigned CCDC numbers
1831237 [68], 1884850 [69], 1831239 [70], 1884851 [71], 1831240 [72], and 1884852 [73].

3.1.1. Structural and Energetic Properties

The optimized geometry and the values of the nearest intermolecular distances be-
tween SM and EtP[5] in SM@EtP[5] are visualized with Mercury 4.0 program [74] and
presented in Table 1. The host-guest process is consisting of 1:1 ratio, in which non-covalent
interactions play an important role in the stabilization of the formed complexes.

From a comparison of the experimental and optimized SM@EtP[5] complex geome-
tries shown in Table 1, it is quite clear that the experimentally observed C–H···π/S/Cl
intermolecular distances are reasonably reproduced in the gas phase by the r2SCAN-3c
composite method. The sum of the deviations from the C–H . . . π experimental inter-
molecular distances noted ∆B in Table 1, obtained with r2SCAN-3c is 0.58 Å. The C–H···Cl
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and particularly the C–H···S hydrogen bond lengths are better predicted by r2SCAN-3c
(∆BC-H . . . Cl = 0.36 Å, ∆BC-H . . . S = 0.21 Å).

Table 1. Experimental and computed nearest intermolecular distances (Å) of SM@EtP[5]
complex. (The values in brackets represent the difference between the computed and the
experimental distances).

Interaction Interaction
Distance r2SCAN-3c Exp. [39] Gas-Phase Optimized Geometries

C–H···π

Ba 2.82 (0.01) 2.81

Nanomaterials 2022, 12, x FOR PEER REVIEW 4 of 17 

Table 1. Experimental and computed nearest intermolecular distances (Å) of SM@EtP[5] complex. 

(The values in brackets represent the difference between the computed and the experimental dis-

tances).

Interaction 
Interaction 

Distance 
r2SCAN-3c Exp. [39] Gas-Phase Optimized Geometries 

C–H···π 

Ba 2.82 (0.01) 2.81 

Bb 2.55 (0.13) 2.68 

Bc 2.56 (0.18) 2.74 

Bd 2.70 (0.26) 2.96 

∆B 0.58 - 

C–H···Cl 

Be 3.02 (0.20) 3.22 

Bf 3.05 (0.03) 3.08 

Bg 3.35 (0.01) 3.34 

Bh 3.14 (0.06) 3.20 

Bi 3.19 (0.04) 3.15 

Bj 3.34 (0.02) (3.32) 

∆B 0.36 - 

C–H···S 

Bk 3.24 (0.08) 3.32 

Bl 3.01 (0.11) 3.12 

Bm 3.18 (0.02) 3.16 

∆B 0.21 - 

From a comparison of the experimental and optimized SM@EtP[5] complex geome-

tries shown in Table 1, it is quite clear that the experimentally observed C–H···π/S/Cl in-

termolecular distances are reasonably reproduced in the gas phase by the r2SCAN-3c com-

posite method. The sum of the deviations from the C–H…π experimental intermolecular 

Bb 2.55 (0.13) 2.68

Bc 2.56 (0.18) 2.74

Bd 2.70 (0.26) 2.96

∆B 0.58 -

C–H···Cl

Be 3.02 (0.20) 3.22

Nanomaterials 2022, 12, x FOR PEER REVIEW 4 of 17 
 

 

Table 1. Experimental and computed nearest intermolecular distances (Å) of SM@EtP[5] complex. 

(The values in brackets represent the difference between the computed and the experimental dis-

tances). 

Interaction 
Interaction 

Distance 
r2SCAN-3c Exp. [39] Gas-Phase Optimized Geometries 

C–H···π 

Ba 2.82 (0.01) 2.81  

Bb 2.55 (0.13) 2.68 

Bc 2.56 (0.18) 2.74 

Bd 2.70 (0.26) 2.96 

∆B 0.58 - 

C–H···Cl   

Be 3.02 (0.20) 3.22  

Bf 3.05 (0.03) 3.08 

Bg 3.35 (0.01) 3.34 

Bh 3.14 (0.06) 3.20 

Bi 3.19 (0.04) 3.15 

Bj 3.34 (0.02)  (3.32) 

∆B 0.36 - 

C–H···S   

Bk 3.24 (0.08) 3.32  

Bl 3.01 (0.11) 3.12 

Bm 3.18 (0.02) 3.16 

∆B 0.21 - 

From a comparison of the experimental and optimized SM@EtP[5] complex geome-

tries shown in Table 1, it is quite clear that the experimentally observed C–H···π/S/Cl in-

termolecular distances are reasonably reproduced in the gas phase by the r2SCAN-3c com-

posite method. The sum of the deviations from the C–H…π experimental intermolecular 

Bf 3.05 (0.03) 3.08

Bg 3.35 (0.01) 3.34

Bh 3.14 (0.06) 3.20

Bi 3.19 (0.04) 3.15

Bj 3.34 (0.02) (3.32)

∆B 0.36 -

C–H···S

Bk 3.24 (0.08) 3.32

Nanomaterials 2022, 12, x FOR PEER REVIEW 4 of 17 
 

 

Table 1. Experimental and computed nearest intermolecular distances (Å) of SM@EtP[5] complex. 

(The values in brackets represent the difference between the computed and the experimental dis-

tances). 

Interaction 
Interaction 

Distance 
r2SCAN-3c Exp. [39] Gas-Phase Optimized Geometries 

C–H···π 

Ba 2.82 (0.01) 2.81  

Bb 2.55 (0.13) 2.68 

Bc 2.56 (0.18) 2.74 

Bd 2.70 (0.26) 2.96 

∆B 0.58 - 

C–H···Cl   

Be 3.02 (0.20) 3.22  

Bf 3.05 (0.03) 3.08 

Bg 3.35 (0.01) 3.34 

Bh 3.14 (0.06) 3.20 

Bi 3.19 (0.04) 3.15 

Bj 3.34 (0.02)  (3.32) 

∆B 0.36 - 

C–H···S   

Bk 3.24 (0.08) 3.32  

Bl 3.01 (0.11) 3.12 

Bm 3.18 (0.02) 3.16 

∆B 0.21 - 

From a comparison of the experimental and optimized SM@EtP[5] complex geome-

tries shown in Table 1, it is quite clear that the experimentally observed C–H···π/S/Cl in-

termolecular distances are reasonably reproduced in the gas phase by the r2SCAN-3c com-

posite method. The sum of the deviations from the C–H…π experimental intermolecular 

Bl 3.01 (0.11) 3.12

Bm 3.18 (0.02) 3.16

∆B 0.21 -

In addition to the geometric parameters, the complexation energies were calculated
with r2SCAN-3c in gas and o-xylene media (Table 2). The gas-phase dispersion-corrected
energies were also evaluated and listed in Table 2.

Table 2. Calculated complexation and dispersion-corrected energies (kJ/mol) and experimental
values of association constants in M−1.

Complex r2SCAN-3c
(Gas Phase)

r2SCAN-3c
(O-Xylene)

r2SCAN-3c Gas Phase
Dispersion Energy

Association
Constants (M−1) [39]

SM@EtP[5] −141 −114.44 −55.48 6.2 × 103

S1@EtP[5] −122.74 −105.69 −51.03 2.9 × 102

S2@EtP[5] −133.76 −113.01 −50.31 1.3 × 103

S3@EtP[5] −110.36 −97.43 −46.66 67

S4@EtP[5] −144.92 −118.35 −53.72 1.8 × 104

S5@EtP[5] −119.69 −103.09 −50.09 7.9 × 102

Based on the association constant values of the six complexes determined by Li et al. [39],
the ranking in the decreasing order follows the sequence Ka (S4) > Ka (SM) > Ka (S2) >
Ka (S5) > Ka (S1) > Ka (S3). The same trend was observed (both in the gas phase and in
o-xylene) by the calculated complexation energies with r2SCAN-3c except for S1@EtP[5]
and S5@EtP[5]. Gas-phase complexation energies are −144.92, −141, −133.8, −122.74,
−119.69, and −110.36 kJ/mol for S4@EtP[5], SM@EtP[5], S2@EtP[5], S1@EtP[5], S5@EtP[5],
and S3@EtP[5], respectively. The computed complexation energies in o-xylene are found to
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be less negative. The results show that r2SCAN-3c calculations are in good agreement with
the experimental association constants. From a structural and energetic point of view, the
r2SCAN-3c describes well the systems studied in this work and will be therefore employed
for subsequent calculations. The calculated dispersion energies with r2SCAN-3c functional
in gas phase for SM@EtP[5], S1@EtP[5], S2@EtP[5], S3@EtP[5], S4@EtP[5], and S5@EtP[5] are,
respectively, −55.48, −51.03, −50.31, −46.66, −53.72, and −50.09 kJ/mol (Table 2). The most
stable complexes SM@EtP[5] and S4@EtP[5] have the highest dispersion energies of −55.48
and −53.72 kJ/mol whereas the less stable complex S3@EtP[5] has the lowest dispersion
energy (−46.66 kJ/mol), indicating that dispersion interactions contribute significantly to the
formation and stabilization of the complexes.

3.1.2. Electronic Properties of SM, S1, S2, S3, S4, and S5@EtP[5] Complexes

For EtP[5] and all formed complexes, the chemical parameters such as frontier molec-
ular orbitals (HOMO and LUMO), HOMO-LUMO energy gap [75,76], the percentage of
HOMO–LUMO gap variation |∆Eg|% [77] and the dipole moment (µ) [78] were calculated
in gas phase using r2SCAN-3c functional. The results are reported in Table 3.

Table 3. Calculated chemical parameters for EtP[5] and all complexes using r2SCAN-3c in the
gas phase.

Complex HOMO (eV) LUMO (eV) |H-L| gap (eV) |∆Eg| % µ (Debye)

EtP[5] −4.38 −0.87 3.51 - 0.06

SM@EtP[5] −4.44 −1.06 3.38 3.85 3.44

S1@EtP[5] −4.43 −0.95 3.48 0.84 1.87

S2@EtP[5] −4.47 −1.01 3.46 1.42 0.88

S3@EtP[5] −4.41 −0.97 3.44 1.99 1.87

S4@EtP[5] −4.44 −1.07 3.37 3.99 2.11

S5@EtP[5] −4.43 −0.98 3.45 1.71 1.82

As shown in Table 3, the HOMO, LUMO and HOMO-LUMO (H-L) gap energies are
slightly varied upon the complexation of SM and its stimulants with EtP[5], however, the
percentage of variation of HOMO–LUMO gap and the electric dipole moment of the two
most stable complexes (SM@EtP[5] and S4@EtP[5]) are the highest among all complexes.
The variation of |H-L| energy gap of SM@EtP[5] and S4@EtP[5] decreased, respectively,
by 3.85 and 3.99 % after the complexation of SM and S4.

3.1.3. NCI-RDG and IGMH Analysis of the Host-Guest Interactions

The identification of intra- and intermolecular interactions in supramolecular chem-
istry is important for quantifying the non-covalent forces responsible for the host-guest
recognition [79].

Non-covalent interaction (NCI) analysis of reduced density gradient (RDG) [80] and
independent gradient model based on Hirshfeld partition (IGMH) [81] can provide in-
sights into the nature of host-guest interactions through the drawing of 3D color-filled
isosurfaces representative of the occurring interactions, where blue, green, and red indicate,
respectively, strong attractive interactions, van der Waals interactions and steric clashes.

The NCI-RDG isosurfaces (left figures of Figure 2) of all complexes and their scatter
plots (right figures of Figure 2) were plotted with an isovalue of 0.5 a.u. in Figure 2. The
NCI-RDG and IGM isosurfaces were visualized by VMD 1.9.3 program [82] through the
outputs of Multiwfn 3.8 [83].
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The visual characterization of NCI-RDG isosurfaces shows the presence of green-
colored and light brown regions (left figures of Figure 2) in the interval [−0.015, 0.01 a.u.],
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indicating that weak dispersive forces are dominant in stabilizing the complex formation
between SM and its stimulants, and the EtP[5] host. For SM@EtP[5], the peak occurring
near −0.015 a.u. indicates mainly C-H···H-C and C-H···O intramolecular interactions,
whereas the peaks in the range of −0.01 to 0.00 a.u. consist of mostly C-H···H-C, S···π,
C-H···Cl, C-H···S, C-H···O and C-H···π intermolecular interactions. Similar conclusions
are drawn using IGMH analysis (Supplementary data Figure S1).

DFT calculations show that the methylene groups are involved in the intermolecular
interactions, indeed, the complex S4@EtP[5] with the highest number of methylene groups
(Five CH2 groups) showed the highest complexation energy, followed by SM@EtP[5],
S2@EtP[5], and S5@EtP[5] each with four CH2 groups and S1@EtP[5], and S3@EtP[5]
complexes each with three CH2 groups. These findings suggest a strong correlation between
C–H···π intermolecular interactions and the stability of the formed complexes [84]. The
lower complexation energies of S2@EtP[5] and S3@EtP[5] in comparison, respectively, with
SM@EtP[5], S4@EtP[5], and S1@EtP[5], S5@EtP[5] are due to the absence of intermolecular
interactions between the central oxygen atom of S2 and S3 and the benzene moieties of
EtP[5].

Due to their additive effect, the weak attractive C–H···π interactions play a key role as
an important driving force in the inclusion process of SM and its derivatives within EtP[5].

DFT results indicated that weak hydrogen and halogen bonding (C–H···S, C–H···O
and C–H···Cl) was overall observed in the studied complexes.

3.2. Interactions between SM and Different Macrocyclic Hosts

The interaction of SM with eight macrocyclic hosts namely, pillar[5]arene (P[5]) [85],
methylpillar[5]arene (MeP[5]) [32], Deca(carboxymethoxy)pillar[5]arene (DCMP[5]) [86–88],
Pillar[5]quinone (P[5]Q) [89], mono(2,5-diamino-1,4-benzoquinone)pillar[5]arene (DAP[5]) [90],
cucurbit[6]uril (CB[6]) [91], calix[5]arene (CX[5]) [92,93] and β-cyclodextrin (β-CD) [94,95] was
studied computationally in gas phase using the r2SCAN-3c composite method. The most stable
inclusion complexes were calculated based on the method elaborated by Liu and Guo [96].
The center of the guest and the host was set as the center of the coordination system, then SM
was translated along the Z-axis from −10 to +10 Å with 2 Å step as shown in Figure 3. The
complexation energies computed with r2SCAN-3c in gas phase as a function of the Z coordinate
are displayed in Table 4. The optimized structures exhibit negative complexation energies,
indicating an energetic favored process.

The most stable configurations for SM@P[5], SM@MeP[5], SM@DCMP[5], SM@P[5]Q,
SM@DAP[5], SM@CB[6], SM@CX[5], and SM@β-CD with respective energies of −126.79,
−113.16, −155.26, −90.77, −116.51, −96.94, −71.42 and −89.07 kJ/mol are located, re-
spectively, at Z = −2 Å, Z = 0 Å, Z = 0 Å, Z = +8 Å, Z = −2 Å, Z = +4 Å, Z = +8 Å, and
Z = +2 Å (Table 4). The geometries of the eight most stable complexes are visualized in
Figure 3 using GaussView 5 software [97].

Among the studied hosts, the most important complexation energy was observed for
DCMP[5] (−155.3 kJ/mol), which displays the highest complexation energy.

The SM guest is fully entrapped in the DCMP[5] cavity. The analysis of the nearest
intermolecular distances occurring in the optimized structure of SM@DCMP[5] shows that
there are four C–H···π interactions between the methylene groups of SM and the benzene
moieties of DCMP[5], with distances ranging from 2.89 to 3.06 Å (Figure 4). Ea· chlorine
atom of SM forms two C–H···Cl hydrogen bonds with the methylene moieties attached to
the terminal -COOH groups of DCMP[5] at distances of 2.90 and 3.15 Å. Eleven C–H···O
hydrogen bonds ranging from 2.67 to 3.20 Å were also observed between the –(CH2)–
moieties of SM and the oxygen atoms of the –COOH groups of the host. However, no short
C–H···S contacts were found between SM and DCMP[5].
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1 
 

 

Figure 3. Coordinate systems of the complexation process of SM and eight macrocyclic molecules
and the molecular structures of the most stable host-guest complexes. Atom colors: chlorine (green);
oxygen (red); carbon (grey); sulfur (yellow); nitrogen (blue) and hydrogen (white).

Table 4. Complexation energies (kJ/mol) between SM and the eight studied macrocycles calculated
with r2SCAN-3c in the gas phase.

Position (Å) SM@P[5] SM@MeP[5] SM@DCMP[5] SM@P[5]Q SM@DAP[5] SM@CB[6] SM@CX[5] SM@β-CD

−10 −54.25 −29.41 −83.32 −90.51 −44.74 −72.12 −32.35 −56.82
−8 −77.19 −109.80 −121.57 −74.96 −71.12 −68.88 −32.77 −52.10
−6 −77.28 −110.00 −121.66 −90.53 −114.52 −75.41 −51.72 −51.61
−4 −123.65 −109.99 −118.70 −87.29 −112.35 −96.42 - −54.82
−2 −126.79 −110.00 −120.90 −85.67 −116.51 −96.44 - −55.36
0 −123.62 −113.16 −155.26 −86.63 −112.37 −96.80 - −79.49

+2 −101.89 −109.90 −128.54 −90.23 −114.22 −95.76 - −89.07
+4 −101.97 −109.92 −118.63 −90.38 −114.18 −96.94 - −87.11
+6 −101.67 −109.93 −122.04 −90.33 −114.32 −75.28 −71.41 −85.58
+8 −99.42 −109.66 −80.91 −90.77 −37.20 −69.12 −71.42 −81.01

+10 −99.40 −29.50 −85.44 −90.69 −96.49 −73.44 −53.95 −78.78

3.2.1. Electronic and Chemical Sensing Properties

Due to their efficiency and cost-effectiveness, macrocyclic host systems with cavities
are relevant materials for sensing applications in medicine, biology, and environmental
monitoring. The performance of such materials can be improved by introducing in their
structures specific functional groups that enhance intermolecular interactions such as
C–H···π, π–π, halogen and hydrogen bonding between the host and the guest molecules.
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Figure 4. CH···π, CH···Cl and CH···O hydrogen bonding interactions in the complex SM@DCMP[5].

The host systems selected in this study have more functional groups and could ex-
hibit improved sensing properties towards SM. The electronic quantum parameters such
as HOMO and LUMO energies, HOMO–LUMO energy gap (|∆E|gap), as well as the
percentage of variation of HOMO–LUMO gap were calculated in the gas phase with the
r2SCAN-3c composite method for the host molecules and their complexes with SM, are
reported in Table 5.

Table 5. Calculated HOMO, LUMO, HOMO-LUMO energy gap and the percentage of variation of
HOMO–LUMO gap of studied complexes with r2SCAN-3c in gas phase.

Host/Complex Electronic Chemical Parameters

EHOMO (eV) ELUMO (eV) |∆E|gap (eV) ∆Eg %

β-CD −6.14 −0.03 6.11
23.73SM@β-CD −5.98 −1.32 4.66

CB[6] −5.82 −0.07 5.75
30.78SM@CB[6] −4.21 −0.23 3.98

P[5] −4.54 −1.49 3.05
0.00SM@P[5] −4.70 −1.65 3.05

MeP[5] −4.44 −0.92 3.52
6.82SM@MeP[5] −4.40 −1.12 3.28

DCMP[5] −5.10 −1.79 3.31
4.83SM@DCMP[5] −5.23 −1.76 3.47

DAP[5] −4.56 −3.01 1.55
9.03SM@DAP[5] −4.56 −2.87 1.69

CX[5] −5.44 −1.26 4.18
14.35SM@CX[5] −5.14 −1.56 3.58

P[5]Q −6.68 −4.73 1.95
51.28SM@P[5]Q −5.88 −4.93 0.95

The results of Table 5 show that after complexation of SM with host molecules, the
|H-L| gap of SM@β-CD, SM@CB[6], SM@MeP[5], SM@CX[5] and SM@P[5]Q complexes
decreases, respectively, from 6.11, 5.75, 3.52, 4.18, and 1.95 eV to 4.66, 3.98, 3.28, 3.58 and
0.95 eV, whereas it increases for SM@DCMP[5] and SM@DAP[5] complexes from 3.31 and
1.55 eV to 3.47 and 1.69 eV, respectively. However, the encapsulation of SM in P[5] does not
affect the HOMO-LUMO gap energy.
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The percentage variation in HOMO–LUMO gap |∆Egap| upon the SM inclusion
varies by 51.28, 30.78, 23.73, and 14.35 %, respectively, for SM@P[5]Q, SM@CB[6], SM@β-
CD, and SM@CX[5] complexes, thus showing the potential of these macrocycles as a
promising candidate for electronic sensing of SM.

A pictorial representation of frontier molecular orbitals (HOMO and LUMO) of SM@β-
CD, SM@CB[6], SM@CX[5] and SM@P[5]Q using AVOGADRO [98,99] is illustrated in
Figure 5.
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Figure 5. The frontier molecular orbitals (HOMO and LUMO) of SM@β-CD, SM@CB[6], SM@CX[5],
and SM@P[5]Q obtained from r2SCAN-3c gas-phase calculations. Atom colors: chlorine (green);
oxygen (red); carbon (grey); sulfur (yellow); nitrogen (blue) and hydrogen (white).

The HOMO and LUMO of SM@P[5], SM@DAP[5], SM@MeP[5], and SM@DCMP[5]
are presented in Supplementary Figure S2.
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The HOMO levels of SM@CB[6], SM@CX[5], and SM@P[5]Q complexes are mainly
localized on SM and LUMO levels are localized on the host molecules (CB[6], CX[5], and
P[5]Q), whereas the reverse is true for SM@β-CD complex. It is important to underline that
the HOMO energies of SM@β-CD, SM@CB[6], SM@CX[5], and SM@P[5]Q increase from
−6.14, −5.82, −5.44, and −6.68 eV to −5.98, −4.21, −5.14, and −5.88 eV and the LUMO
energies decrease from −0.03, −0.07, −1.26, and −4.73 eV to −1.32, −0.23, −1.56, and
−4.93 eV, respectively, this destabilization of HOMO energies and stabilization of LUMO
energies leads to a significant reduction of the |H-L| gap and, therefore, the increase of the
sensitivity and reactivity of β-CD, CB[6], CX[5] and P[5]Q hosts towards SM.

3.2.2. NCI-RDG Analysis of SM@DCMP[5] Complex

The results of NCI-RDG analysis show that in addition to the peaks (Figure 6) ap-
pearing between −0.01 and 0.00 a.u of C-H···H-C, S···π, C-H···Cl, C-H···O, and C-H···π
intermolecular interactions, the complex SM@DCMP[5] exhibit mainly C-H···H-C, C-H···O-
C, and C-H···O-H intramolecular interactions in the range (−0.03, −0.02 a.u.). The spikes
appearing at ~−0.03 a.u. in Figure 6 (right) correspond to the intramolecular hydrogen
bonds as revealed by the presence of four blue-colored disc-shaped isosurfaces (Figure 6-
left) with O· · ·H distances less than 2.0 Å (1.87, 1.87, 1.92, and 1.92 Å). Thus, these in-
tramolecular hydrogen bonds contribute to stabilizing the complex SM@DCMP[5]. It is
worth mentioning that the carboxyl end groups are remarkably pointing to the interior of
DCMP[5] cavity upon the SM inclusion, allowing, therefore, the formation of a circular
intramolecular hydrogen-bond network. Moreover, the SM is totally sequestered in the
cavity of DCMP[5].

Nanomaterials 2022, 12, x FOR PEER REVIEW 13 of 17 
 

 

leads to a significant reduction of the |H-L| gap and, therefore, the increase of the sensi-

tivity and reactivity of β-CD, CB[6], CX[5] and P[5]Q hosts towards SM. 

3.2.2. NCI-RDG Analysis of SM@DCMP[5] Complex 

The results of NCI-RDG analysis show that in addition to the peaks (Figure 6) ap-

pearing between −0.01 and 0.00 a.u of C-H···H-C, S···π, C-H···Cl, C-H···O, and C-H···π in-

termolecular interactions, the complex SM@DCMP[5] exhibit mainly C-H···H-C, C-H···O-

C, and C-H···O-H intramolecular interactions in the range (−0.03, −0.02 a.u.). The spikes 

appearing at ~ −0.03 a.u. in Figure 6 (right) correspond to the intramolecular hydrogen 

bonds as revealed by the presence of four blue-colored disc-shaped isosurfaces (Figure 6-

left) with O⋯H distances less than 2.0 Å (1.87, 1.87, 1.92, and 1.92 Å). Thus, these intramo-

lecular hydrogen bonds contribute to stabilizing the complex SM@DCMP[5]. It is worth 

mentioning that the carboxyl end groups are remarkably pointing to the interior of 

DCMP[5] cavity upon the SM inclusion, allowing, therefore, the formation of a circular 

intramolecular hydrogen-bond network. Moreover, the SM is totally sequestered in the 

cavity of DCMP[5]. 

 

Figure 6. NCI-RDG isosurface (isovalue 0.5 a.u.) (left) and scatter plot (right) of SM@DCMP[5]. 

4. Conclusions 

The present investigation aimed at providing an insight into the in-depth under-

standing of the interactions governing the structure and host-guest complexation of sulfur 

mustard and its derivatives with different macrocyclic systems using the newly devel-

oped composite method r2SCAN-3c. The analysis of the obtained results comes to the fol-

lowing conclusions: 

• The r2SCAN-3c method can reproduce satisfactorily the crystalline structures of 

SM@EtP[5], S1@EtP[5], S2@EtP[5], S3@EtP[5], S4@EtP[5], and S5@EtP[5] complexes. 

• The complexation energies calculated using r2SCAN-3c correlate with the experi-

mental association constants. 

• The major forces that contribute to the stability of the formed complexes involve C-

H···H-C, C-H···O intramolecular interactions and C-H···H-C, S···π, C-H···Cl, C-H···S, 

C-H···O and C-H···π intermolecular interactions as revealed by NCI-RDG and IGM 

analysis. 

• The macrocycles CB[6], β-CD, CX[5] and particularly P[5]Q show great potential as 

sensors for sulfur mustard. 

• Among the studied complexes, SM@DCMP[5] was the most stable with the highest 

complexation energy of −155.26 kJ/mol, its high stability is due to the occurrence of 

additional intramolecular hydrogen bonds in DCMP[5]. 

Figure 6. NCI-RDG isosurface (isovalue 0.5 a.u.) (left) and scatter plot (right) of SM@DCMP[5].

4. Conclusions

The present investigation aimed at providing an insight into the in-depth under-
standing of the interactions governing the structure and host-guest complexation of sulfur
mustard and its derivatives with different macrocyclic systems using the newly devel-
oped composite method r2SCAN-3c. The analysis of the obtained results comes to the
following conclusions:

• The r2SCAN-3c method can reproduce satisfactorily the crystalline structures of
SM@EtP[5], S1@EtP[5], S2@EtP[5], S3@EtP[5], S4@EtP[5], and S5@EtP[5] complexes.

• The complexation energies calculated using r2SCAN-3c correlate with the experimental
association constants.

• The major forces that contribute to the stability of the formed complexes involve
C-H···H-C, C-H···O intramolecular interactions and C-H···H-C, S···π, C-H···Cl, C-
H···S, C-H···O and C-H···π intermolecular interactions as revealed by NCI-RDG and
IGM analysis.
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• The macrocycles CB[6], β-CD, CX[5] and particularly P[5]Q show great potential as
sensors for sulfur mustard.

• Among the studied complexes, SM@DCMP[5] was the most stable with the highest
complexation energy of −155.26 kJ/mol, its high stability is due to the occurrence of
additional intramolecular hydrogen bonds in DCMP[5].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12152517/s1, Figure S1: IGMH isosurfaces (isovalue 0.007
a.u.) (upper figures) and scatter plots (lower figures) of SM@EtP[5], S1@EtP[5], S2@EtP[5], S3@EtP[5],
S4@EtP[5] and S5@EtP[5]; Figure S2: The frontier molecular orbitals (HOMO and LUMO) of SM@P[5],
SM@DAP[5], SM@MeP[5] and SM@DCMP[5] obtained from r2SCAN-3c gas phase calculations.
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