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Abstract: Compared with diastolic blood pressure (DBP) and systolic blood pressure (SBP), the
blood pressure (BP) waveform contains richer physiological information that can be used for disease
diagnosis. However, most models based on photoplethysmogram (PPG) signals can only estimate
SBP and DBP and are susceptible to noise signals. We focus on estimating the BP waveform rather
than discrete BP values. We propose a model based on a generalized regression neural network
to estimate the BP waveform, SBP and DBP. This model takes the raw PPG signal as input and BP
waveform as output. The SBP and DBP are extracted from the estimated BP waveform. In addition,
the model contains encoders and decoders, and their role is to be responsible for the conversion
between the time domain and frequency domain of the waveform. The prediction results of our
model show that the mean absolute error is 3.96 ± 5.36 mmHg for SBP and 2.39 ± 3.28 mmHg for
DBP, the root mean square error is 5.54 for SBP and 3.45 for DBP. These results fulfill the Association
for the Advancement of Medical Instrumentation (AAMI) standard and obtain grade A according
to the British Hypertension Society (BHS) standard. The results show that the proposed model can
effectively estimate the BP waveform only using the raw PPG signal.

Keywords: blood pressure waveform; photoplethysmogram; neural network; blood pressure estimation;
harmonic

1. Introduction

Blood pressure (BP) is an important physiological index for diagnosing diseases, ob-
serving changes in the condition and judging the effect of treatment. There are many
cardiovascular diseases that can increase or decrease blood pressure, such as atheroscle-
rosis [1], Renal Artery Stenosis [2], chronic malnutrition [3], and mitral valve stenosis [4].
Raised blood pressure is known as hypertension, and reduced blood pressure is known
as hypotension. Many investigations in arterial hemodynamics have indicated that the
human blood pressure waveform contains more information than diastolic blood pressure
(DBP) and systolic blood pressure (SBP), and this information includes indices describing
left ventricular systolic function and arterial properties [5]. Therefore, it is necessary to
measure or estimate SBP, DBP and BP waveform (continuous BP) at the same time.

Sphygmomanometers are currently widely used BP measuring instruments. These
instruments measure BP via an inflatable cuff across the arm of a patient and BP is deter-
mined at the height of the mercury column [6]. However, this approach is uncomfortable
and prohibits continuous BP measuring due to physical constraints. The measurement
result of this method is the most accurate, but it is uncomfortable and cannot measure
continuous BP. Continuous blood pressure measurement can be achieved in an invasive
(intra-arterial) way. However, it is an expensive and invasive procedure and carries an
increased risk of complications [7]. Recently, BP estimation methods based on PPG have
been widely studied. This method is noninvasive, simple and easy to implement [8].

Photoplethysmography (PPG) is a simple and low-cost optical technique that can be
used to detect blood volume changes in the microvascular bed of tissue [9]. Currently,
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many smart wearable devices have built-in PPG sensors, which are widely used to measure
heart rate (HR), heart rate variability (HRV), and oxygen saturation (SpO2) [10]. PPG
waveform reflects the change of blood volume at the measurement position, which is
closely related to the change of BP. Therefore, PPG can be used as a potential method to
monitor continuous BP.

There are two kinds of approaches for estimating BP based on PPG, using either
the PPG signal only or PPG signal along with other signals (e.g., electrocardiogram) [11].
In [12–15], Pulse Transit Time (PTT)-based methods are carried out. PTT is the time
interval between the R-peak of an electrocardiogram (ECG) and the point with maximum
gradient on the rising edge of the PPG [16]. Thus, it requires ECG and PPG measurements
simultaneously, but it is difficult to ensure the synchronization of the signal, because the
signal processing time of each device is different. When using ECG signal and PPG signal
to obtain pulse arrival time (PAT) or PTT, their calculation methods are similar [17]. BP
knowingly correlates with the pulse wave velocity (PWV) [11], thus many studies [18–21]
use PWV as the feature parameter to estimate BP. The PWV requires not only calculating
PTT or PAT but also measuring the distance between the heart and the index finger, which
differs from one person to another [8].

Regarding the algorithms mentioned above, although the results obtained are satisfac-
tory, two signals of the ECG signal and PPG signal are needed, and some algorithms need to
obtain ECG and PPG signals synchronously, which is not convenient enough. Considering
that the computational burden is less, it is more convenient to estimate BP with only one
signal. Therefore, many researchers try to estimate BP using only PPG signals.

In [8,22–24], machine learning (ML) algorithms have been used to estimate BP from
a PPG signal. In these studies, it is necessary to use the features of the ppg signal as the
input of the ML model to estimate DBP and SBP. However, motion artifacts are often found
diminishing the signal quality, which causes feature extraction failure [11]. In order to
avoid the influence of feature extraction failure, some studies [11,25,26] try to estimate
BP using the raw signal. In [25], the first and second derivatives of the PPG signal are
used as the input of a modified ResNet-GRU-based network to estimate DBP and SBP.
However, the ResNet-GRU-based model is computationally expensive as the learning
efficiency of gated recurrent unit (GRU) is low and converges slowly [27]. In order to
overcome this shortcoming, Harfiya [11] replaced the ResNet-GRU-based network with an
LSTM-based network. However, these two algorithms need to obtain two derivatives of
the raw signal; hence, the computational burden is relatively large. In addition, the ABP-
Net is proposed based on fully convolutional neural networks (CNN) in [28]; ABP-Net
has good performance in predicting the BP waveform, but it still needs the first and
second derivatives of the raw PPG signal as input. Another research work [26], used
two CNN to extract morphological features from each PPG segment and then estimated
SBP and DBP separately. However, the model consists of multiple networks, which is
computationally expensive.

In this study, we propose a model based on a generalized regression neural network
(GRNN) to estimate the BP waveform (continuous BP) from the raw PPG signal and extract
DBP and SBP from the estimated BP waveform. The model consists of an encoder, GRNN
network and decoder. The encoder is responsible for decomposing the PPG signal into
N harmonics. The GRNN takes the N harmonics of the PPG signal as input and outputs
the N harmonics of the BP signal. Finally, the decoder is responsible for converting the
output of GRNN into a time-domain waveform of BP. Our model can not only predict
the BP waveform but also provide a frequency domain feature of the BP waveform. The
frequency domain feature of the BP waveform is also required by some researches. For
example, Zhang [29] used the N harmonics of the BP waveform to study the propagation
and reflection of the pulse wave; Li and Wei [30] used the N harmonics of the peripheral
BP waveform to study the diagnosis of arterial stenosis; Arvanaghi et al. [31] used arterial
BP based on discrete wavelet transform to study the classification of cardiac arrhythmias.
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The advantages of this study include:

1. Estimating continuous and noninvasive BP waveforms directly from the raw PPG
signal only, and there is no need for the first and second derivatives of the PPG signal;

2. The input of the GRNN net is the amplitude and phase angle of the PPG signal in
a specific frequency, no PPG signal features are required, and the model has a low
computational burden;

3. Our method can not only estimate DBP and SBP but also estimate the BP waveform
and frequency domain feature of the BP waveform.

Our article is organized in the following manner. Section 2 explains the data sources,
data preprocessing, model composition, and experimental settings. In Section 3, the experi-
mental results are discussed and the different methods are compared. Section 4 discusses
and summarizes the experimental results, and Section 5 concludes this study.

2. Materials and Methods

The physiological signal data used in this article comes from the Multiparameter
Intelligent Monitoring in Intensive Care II (MIMIC II) online database [32] provided by the
PhysioNet organization. The database can provide invasive Intra-Arterial BP signals and
PPG signals collected from fingertips. There are 12,000 subjects in the database, and each
instance consists of a PPG signal and a synchronously measured BP signal. The sampling
frequency of both signals is 125 Hz. It should be noted that this database obtains data from
the intensive care unit (ICU), which may contain abnormal BP signals due to the influence
of drugs [33]. Therefore, it is necessary to preprocess the data in the database. After data
processing, 3183 subjects were reserved for further experiments. In addition, since each
record has a varying record duration, only the first 1000 samples of each instance are kept,
as some of the records in the database possess a maximum of 1000 samples.

2.1. Data Preprocessing
2.1.1. Wave Filtering

There is high-frequency and low-frequency noise in the PPG signals, so the first step
of signal preprocessing is filtering. According to previous studies [11,20], the third-order
Bass bandpass filter is used, and the range of the passband is from 0.5 to 8 Hz.

2.1.2. Abnormal Signal Elimination

• The subjects with very high BP or very low BP were removed. To ensure that SBP is
less than 180 and more than 80, DBP is less than 130 and more than 60.

• Affected by changes in sensor position or movement, some PPG waveforms are
irregular in the subjects. These abnormal PPG signals can be removed by the automatic
detection algorithm of the PPG systolic peak in the heartpy toolkit [34]. Some examples
of irregular PPG waveforms are shown in Figure 1.

• Due to the influence of drugs, sensor movement and other factors, there are some
abnormal BP waveform signals in the subjects. These abnormal signals can also be
removed with the heartpy toolkit [34]. Some examples of abnormal BP waveforms are
shown in Figure 2.
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Figure 1. Abnormal PPG signals with irregular waveform.
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Figure 2. Abnormal BP signals with irregular waveform.
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2.1.3. Single-Period Waveform Extraction

In order to obtain the amplitude and phase angle of the signal conveniently, it is
necessary to extract the single-period PPG signal and BP signal from the periodic signal.
An example of a single-period waveform extraction is shown in Figure 3, and the waveform
between the two Feet is extracted. In addition, it is necessary to perform a Pearson’s
correlation detection on the extracted single-period PPG and BP signals to determine the
degree of similarity between PPG and BP signals in terms of morphology. Signals with
an average Pearson’s correlation coefficient r less than 0.8 are removed. The Pearson’s
correlation coefficient r is calculated as follows [35]:

r =
n ∑ PB−∑ P ∑ B√

n ∑ P2 − (∑ P)2 −
√

n ∑ B2 − (∑ B)2
(1)

where P is the single-period PPG signal and B is the single-period signal.

0 100 200 300 400 500 600 700 800 900 1000

Samples

-1

0

1

2

A
m

p
li

tu
d

e

PPG

Foot

0 100 200 300 400 500 600 700 800 900 1000

Samples

60

80

100

120

140

B
P

 (
m

m
H

g
)

BP

Foot

Figure 3. Example of single-period waveform extraction: the waveform between the two feet is extracted.

The final data set consists of 9549 signal groups, and each of them is attributed a
unique ID. In addition, each group of signals includes a PPG signal and a corresponding
BP signal. All these signals are extracted from 3183 subjects. Then, the final data set is
randomly divided into three groups: 75% for training, 15% for verification, and 15% for
testing. Figure 4 shows the histogram distribution of the DBP values and SBP values in the
final data set.
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Figure 4. Histogram of DBP values and SBP values in the final data set.
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2.2. GRNN-Based Model

The model based on GRNN consists of an encoder, GRNN network and decoder. The
encoder is responsible for encoding the single-period PPG signal into the N harmonics.
The N harmonic of the PPG is used as the input of GRNN to estimate the N harmonics of
the BP signal. The decoder is responsible for encoding the N harmonics of the BP signal
into the time domain waveform of BP.

2.2.1. Encoder and Decoder

As is known to all, if any periodic signal satisfies the Dirichri conditions, this periodic
signal can be expanded into a Fourier series. Obviously, the PPG signal (p(t)) is a periodic
signal that satisfies Dirichri conditions, so it can be expanded into a Fourier series:

P(t) = P0 +
N

∑
n=1

(Pncos(nω0t) + ϕn) (2)

where P0 is the DC component. ω0 = 2π
T is the angular frequency of the fundamental

frequency, T is the period of the PPG signal. N is the number of harmonics. Pn is the
amplitude of the nth harmonic. ϕn is the phase angle of the nth harmonic.

After bandpass filtering, the frequency range of the PPG signal is [0.5, 8]. This means
that the PPG signal does not contain a DC component. Let N = 9, then Equation (2) can be
rewritten as:

P(t) =
9

∑
n=1

(Pncos(nω0t) + ϕn) (3)

Therefore, the single-period PPG signal can be encoded as an array Pencoder :

Pencoder = [P1, P2, · · · , P9, ϕ1, ϕ2, · · · , ϕ9] (4)

Similarly, the BP signal B(t) can also be expanded into series:

B(t) = B0 +
N

∑
n=1

(Bncos(nω
(B)
0 t) + φn) (5)

where B0 is the DC component. ω
(B)
0 = 2π

T(B) is the angular frequency of the fundamental

frequency, T(B) is the period of the BP signal. N = 17 is the number of harmonics. Here,
the value of N is consistent with the prior study [29], so that the predicted BP waveform of
our model can be used for more research. Bn is the amplitude of the nth harmonic, φn is
the phase angle of the nth harmonic. Then, the single-period BP signal can be encoded as
an array Bencoder :

Bencoder = [B1, B2, · · · , B17, φ1, φ2, · · · , φ17] (6)

The parameters Pencoder and Bencoder can be obtained by the least squares curve fitting.
The least squares method is a mathematical optimization technique that finds the best

function match of the data by minimizing the sum of squares of errors. The criterion for
selecting the best-fitting curve can be determined to minimize the total fitting error (i.e.,
the total residual).

To determine the parameter Pencoder as an example, there is a set of data (ti, P(ti)), and
it is known in advance that they should satisfy a certain functional relationship f (ti, P(ti)),
such as Equation (3). Based on this known information, some parameters (Pencoder) need
to be determined. Then, the goal is to find a set of Pencoder that minimizes the value of the
following function S:

S(Pencoder) =
m

∑
i=1

(P(ti)− f (ti, P(ti)))
2 (7)

When the error is the smallest, the coefficient at this time is the best fitting state.
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Only BP signals need to decode, since Bencoder is the output of GRNN. The BP wave-
forms can be obtained by taking Bencoder into Equation (5).

2.2.2. GRNN

GRNN was proposed by D.F.Specht in 1991 [36], and it is a modified form of a radial
basis network (RBF). GRNN is based on non-parametric regression, using sample data
as a posterior condition, performing Parzen non-parametric estimation, and calculating
the network output according to the principle of maximum probability. GRNN is based
on RBF, so it has good nonlinear approximation performance. Therefore, GRNN is very
suitable for approximation from Pencoder to Bencoder. The difference between GRNN and
RBF is that there is an extra layer of summation, and the weight connection between the
hidden layer and the output layer is removed.

The GRNN structure diagram is shown in Figure 5. It consists of:

1. The input layer, which is fully connected with the pattern layer. The number of nodes
is equal to the feature dimension of the sample;

2. The pattern layer, the number of nodes is equal to the number of training samples,
the pattern function can be calculated as:

pi = exp
[
− (x− µi)

T(x− µi)

2δ2

]
(8)

where x is input vector, µi is the training vector corresponding to the i-th neuron, δ is
a hyperparameter of the model and needs to be set in advance.

3. The summation layer, the number of nodes is one more than the output sample
dimension. The output of the summation layer is divided into two parts. The output
of the first node is the arithmetic sum SD of the output of the mode layer, and the
output of the remaining nodes is the weighted sum SNj of the output of the mode layer.

4. The output layer, the number of nodes in the output layer is equal to the dimension of
the output vector. The output of each node is equal to the output of the corresponding
summation layer divided by the output of the first node of the summation layer.

Input

Layer

Pattern 

Layer

Summation 

Layer

Output

Layer

Figure 5. The GRNN structure.

In our model, the input vector x = Pencoder, the output vector y = Bencoder, n is the
number of training samples and k = 17. Then we will take the calculation process of B1
(the first element in Bencoder) as an example to explain how to obtain Bencoder from Pencoder.
The first step is to calculate the transfer function t fi of the pattern layer:

t fi = exp

[
−
(P(B1)

encoder − Pi
encoder)

T(P(B1)
encoder − Pi

encoder)

2δ2

]
, i = 1, 2, · · · , n (9)
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where Pi
encoder is the Pencoder corresponding to the ith training sample, and P(B1)

encoder is the
Pencoder corresponding to the test sample where B1 is located

The second step needs to solve SD and SN1:

SD =
n

∑
i=1

Pi =
n

∑
i=1

exp

[
−
(P(B1)

encoder − Pi
encoder)

T(P(B1)
encoder − Pi

encoder)

2δ2

]
(10)

SN1 =
n

∑
i=1

ωi1Pi =
n

∑
i=1

ωi1exp

[
−
(P(B1)

encoder − Pi
encoder)

T(P(B1)
encoder − Pi

encoder)

2δ2

]
(11)

where ωi1 the first element in Bencoder corresponding to the ith training sample.
Finally, B1 can be obtained from:

B1 =
SN1

SD
(12)

2.2.3. Model Setup

In our proposed model, the parameter δ of GRNN is set to 0.001. Our GRNN model
was generated by the MATLABr software toolbox R2017b. The block diagram of our
proposed model is shown in Figure 6. In our experiment, a desktop computer with intel
core i7-10700k @3.8 GHz, 32 GB RAM and NVIDIA GTX 2080 Ti 11 GB graphics card was
used. The average time to obtain each BP waveform was about 0.4 s.

Figure 6. The block diagram of our proposed model.

3. Results

The results of the model are evaluated by the mean absolute error (MAE) and the root
mean square error (RMSE), which are calculated in Equations (13) and (14), respectively.

MAE =
1
N

N

∑
i=1
|di| (13)

RMSE =

√√√√ 1
N

N

∑
i=1

d2
i (14)

where d is the error, which is the difference between the model output and the actual value.
N is the number of samples.

In Table 1, all the studies use PPG and BP signals from the same database (MIMIC II).
However, some models (SVR, ERM and GDNN) need to extract features of the PPG signal
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as input, while other methods do not. Reference [37] proposed 14 new features based on
the five characteristic points of the second derivative of the PPG signal and combined
the new features with the conventional 21 time-scale PPG features for training an SVR.
The reported result shows 40% accuracy improvement as compared with a conventional
21-feature based neural network method. Reference [22] selects 59 features as the input
of GDNN to estimate SBP and DBP. Among all the models listed in the table, this model
achieves the best results, and its SBP and DBP prediction errors are the smallest. However, it
cannot estimate the BP waveform, which limits the application of this model. Reference [8]
proposed a 7-feature based enhanced regression model. Although this model requires
fewer features, the DBP prediction error is larger. In [38], an end-to-end deep learning
algorithm with an attention mechanism was proposed to estimate BP. The method does
not require a feature extraction process, but the accuracy of this method is worse than the
method proposed in Reference [39]. Reference [39] uses the raw PPG signal as the input of
CNN to estimate the ABP waveform and obtain a smaller MAE. However, their RSME is
higher than other models that use the raw PPG signal. This indicates that the prediction
error dispersion of the model is relatively high. Reference [11] developed an LSTM-based
autoencoder model to estimate the whole waveform of BP. The input to the model is the
PPG signal and its first and second derivatives. Their RMSE is better than ours, but MAE
is higher. Moreover, our model is simpler to construct and has less computational burden,
and our model can also provide the frequency domain characteristics of the BP signal.

Table 1. Performance comparison between different BP estimation models.

Model
SBP(mmHg) DBP(mmHg)

MAE RMSE MAE RMSE

Support Vector Regression (SVR) [37] 8.54 10.9 4.34 5.8
Generalized Deep Neural Network (GDNN) [22] 3.21 4.63 2.23 3.21
Enhanced regression model (ERM) [8] 4.24 5.06 4.81 6.37
Long Short-Term Memory (LSTM) [11] 4.05 5.25 2.41 3.17
End-To-End Deep Learning Architecture(ETE) [38] 4.06 5.42 3.33 4.30
Convolutional neural network (CNN) [39] 3.68 5.75 1.97 3.52
Our model 3.96 5.54 2.39 3.45

The comparison of our proposed model results with the British Hypertension So-
ciety (BHS) Standard is shown in Table 2. This standard grades the BP measurement
system, based on the cumulative error, to be less than their three different thresholds (5,
10, and 15 mmHg) [40]. According to this standard, the BP estimation from our proposed
GRNN-based model is obviously consistent with the grade A for both SBP and DBP.

Table 2. Comparison result with BHS Standard.

Cumulative Error Percentage

Error ≤5 mmHg ≤10 mmHg ≤15 mmHg

Our result SBP 80.1% 93.9% 97.6%
DBP 93.9% 98.1% 99.2%

BHS
Grade A 60% 85% 95%
Grade B 50% 75% 90%
Grade C 40% 65% 85%

The comparison of our proposed model results with the Association for the Advance-
ment of Medical Instrumentation (AAMI) Standard [41] is shown in Table 3. The standard
stipulates that the average prediction result error and standard deviation error (STD) of
85 subjects must be lower than 5 and 8 mmHg, respectively. The prediction results of our
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model meet all the above criteria. The MAE and STD for predicting SBP are 3.96 and 5.36,
respectively, and the MAE and STD for predicting DBP are 2.39 and 3.28, respectively.

Table 3. Comparison result with AAMI Standard.

MAE STD Subjects

Our result SBP 3.96 5.36 3183
DBP 2.39 3.28 3183

AAMI <5 <8 >85

4. Discussion

A PPG signal is widely used to obtain the information of cardiovascular systems
and respiratory systems because of its noninvasive and versatility [11]. In recent years,
it has become a trend to use only PPG signals to estimate BP signals. For non-ideal PPG
signals, it is impractical to extract the time-domain waveform characteristics. Therefore,
we propose a GRNN model for estimating the BP waveform with the raw PPG signal as
input. Because both PPG signals and BP signals can be regarded as a superposition of
N harmonics, we encode the PPG signal and the BP signal into the amplitude and phase
angle (Pencoder and Bencoder) of the N harmonics using the least squares method. In this way,
the mapping problem between the PPG waveform and BP waveform can be converted
into a mapping problem between Pencoder and Bencoder. This greatly reduces the difficulty
of modeling machine learning models. Linear regression plots of the (a) SBP and (b) DBP
results are shown in Figure 7. The results show that the correlation coefficient R = 0.96
between the target SBP and the predicted SBP, the equation of the linear fitting:

SBPprediction = 0.91 ∗ SBPtarget + 14 (15)

where SBPprediction is the predicted SBP value of the model, and SBPtarget is the target SBP
value. The correlation coefficient R = 0.97 between the target DBP and the predicted DBP,
the equation of the linear fitting:

DBPprediction = 0.99 ∗ DBPtarget + 2 (16)

where DBPprediction is the predicted DBP value of the model, and DBPtarget is the target
DBP value, which indicates that the prediction results are basically accurate except for a
few cases.
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Figure 7. Linear regression plot of the (a) SBP and (b) DBP result.

The prediction error statistics of SBP and DBP are shown in Figure 8. It can be seen
from the figure that the error distribution is around the zero value and basically conforms



Sensors 2021, 21, 7207 11 of 15

to the normal distribution. Two Bland–Altman plots have been reported in order to test the
consistency of the estimated value with the target value. The Bland–Altman plot for SBP
Prediction and DBP Prediction is shown in Figure 9. The 95% limits of consistency span
the segment from µ− 1.96δ to µ + 1.96δ (shown using dashed lines), where µ and δ are
the mean and standard deviation of the prediction error, respectively. For SBP and DBP,
this limit translates to [−9.10, 11.92] and [−5.28, 7.58] mmHg, respectively. It can be seen
from the Bland–Altman plots that most of the prediction errors are within the consistency
limit, and the distribution of the errors outside the consistency limit conforms to the BHS
standard (Tabel 2) and AAMI standard (Table 3). Therefore, it can be considered that the
prediction values are in good consistency with the target value.
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Figure 8. The prediction error of (a) SBP and (b) DBP.

Figure 9. Bland–Altman Plot for (a) SBP prediction and (b) DBP prediction.

Compared with other models listed in Table 1, the prediction results of our proposed
model are not the best. However, compared with the feature-based model, our model has
the advantage of being able to estimate the BP waveform.

Figure 10 shows the result of our BP waveform prediction using the proposed model,
which has a high similarity with the target waveform from the source data set. It shows
that the proposed model not only predicts SBP and DBP accurately but also predicts the BP
waveform accurately. Since the Pearson’s correlation coefficient can be used to measure
the similarity between two time series data [39], we estimated the Pearson’s correlation
coefficient (r) between the predicted and target BP waveforms in order to evaluate the
prediction results of the BP waveform. The distribution of r has been shown in Figure 11.
The figure shows that most of the r values are in [0.9, 1], which indicates that most of the
predicted BP waveforms have a high correlation with the target BP waveforms. This r is
also estimated in the [39], and Table 4 lists our and their results. The comparison results
show that the performance of our model is close to that of the CNN model [39]. The
value of the 25th and 75th percentile of r indicates that our model predicted most of the
waveform accurately.
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Figure 10. Examples of BP waveform prediction results of the proposed model. These subgraphs are
randomly selected targets and predicted BP waveforms of (a) segment ID 287, (b) segment ID 1199,
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Figure 11. Distribution of Pearson’s correlation coefficient between target and estimated BP waveform.

Table 4. Comparison of BP waveform prediction performance between our model and CNN model.

Evaluation Factor CNN Model [39] Our Model

Average r 0.993 0.981
Minimum r 0.262 0.321
Maximum r 0.999 0.999
25th percentile of r 0.989 0.976
75th percentile of r 0.996 0.992

The estimated waveform contains more physiological information than SBP and DBP,
which is helpful for the diagnosis of cardiovascular diseases. Compared with other models
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that can estimate the BP waveform, our MAE is better than Reference [11], and our RSME
is better than Reference [39]. In addition, our model is easier to build and has a lower cost.

However, about 75% of the data in the database is removed in the data preprocessing
stage. As a result, the amount of data used is less and the breadth is insufficient, which
may lead to poor robustness of the proposed model. Based on this, future studies should
focus on finding additional data sources and develop more complex models to adapt to
abnormal signals.

5. Conclusions

A model based on GRNN is proposed, which uses the PPG signal to estimate the BP
waveform. Considering that the PPG signal feature may fail to be extracted, our model
uses the raw PPG signal as input. The predicted BP waveform of the model is highly
correlated with the target BP waveform. Moreover, the model can also provide a fairly
accurate estimation result of SBP and DBP, which can meet the requirements of the AAMI
standard. According to the BHS standard, the SBP and DBP estimation results of our model
both achieve Grade A. In the future, the studies should focus on finding additional data
sources and develop more complex models to adapt to abnormal signals.

Author Contributions: Conceptualization, Z.L. and W.H.; methodology, Z.L.; validation, Z.L. and
W.H.; data curation, Z.L.; writing—original draft preparation, Z.L.; writing—review and editing,
Z.L.; supervision, W.H.; funding acquisition, W.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No. 61501070).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: A publicly available dataset (MIMIC II) was used in this study, which
can be found here: https://archive.ics.uci.edu/ml/datasets/Cuff-Less+Blood+Pressure+Estimation
(accessed on 25 July 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jain, K.; Jain, S.; Guha, A.; Patra, A. An approach to early stage detection of atherosclerosis using arterial blood pressure

measurements. Biomed. Signal Process. Control 2021, 68, 102594. [CrossRef]
2. Courand, P.Y.; Dinic, M.; Lorthioir, A.; Bobrie, G.; Grataloup, C.; Denarié, N.; Soulat, G.; Mousseaux, E.; Sapoval, M.;

Azizi, M.; et al. Resistant hypertension and atherosclerotic renal artery stenosis: Effects of angioplasty on ambulatory blood
pressure. A retrospective uncontrolled single-center study. Hypertension 2019, 74, 1516–152. [CrossRef] [PubMed]

3. Kocyigit, S.; Aydin, A. Improvement of nutritional status enhances cognitive and physical functions in older adults with
orthostatic hypotension. Nutrition 2021, 90, 111261. [CrossRef] [PubMed]

4. Luckner, G.; Margreiter, J.; Jochberger, S.; Mayr, V.; Luger, T.; Voelckel, W.; Mayr, A.J.; Dünser, M.W. Systolic anterior motion of
the mitral valve with left ventricular outflow tract obstruction: Three cases of acute perioperative hypotension in noncardiac
surgery. Anesth. Analg. 2005, 100, 1594–1598. [CrossRef]

5. Karamanoglu, M. A system for analysis of arterial blood pressure waveforms in humans. Comput. Biomed. Res. 1997, 30, 244–255.
[CrossRef]

6. Park, S.H.; Park, Y.S. Can an automatic oscillometric device replace a mercury sphygmomanometer on blood pressure measure-
ment? A systematic review and meta-analysis. Blood Press. Monit. 2019, 24, 265–276. [CrossRef]
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