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Abstract: Recently, the muscle-type nicotinic acetylcholine receptors (nAChRs) have been pursued
as a potential target of several diseases, including myogenic disorders, muscle dystrophies and
myasthenia gravis, etc. α-conotoxin GI isolated from Conus geographus selectively and potently
inhibited the muscle-type nAChRs which can be developed as a tool to study them. Herein, alanine
scanning mutagenesis was used to reveal the structure–activity relationship (SAR) between GI and
mouse α1β1δε nAChRs. The Pro5, Gly8, Arg9, and Tyr11 were proved to be the critical residues for
receptor inhibiting as the alanine (Ala) replacement led to a significant potency loss on mouse α1β1δε
nAChR. On the contrary, substituting Asn4, His10 and Ser12 with Ala respectively did not affect
its activity. Interestingly, the [E1A] GI analogue exhibited a three-fold potency for mouse α1β1δε
nAChR, whereas it obviously decreased potency at rat α9α10 nAChR compared to wildtype GI.
Molecular dynamic simulations also suggest that loop2 of GI significantly affects the interaction with
α1β1δε nAChR, and Tyr11 of GI is a critical residue binding with three hydrophobic amino acids of
the δ subunit, including Leu93, Tyr95 and Leu103. Our research elucidates the interaction of GI and
mouse α1β1δε nAChR in detail that will help to develop the novel analogues of GI.

Keywords: muscle-type nAChRs; α-conotoxin GI; structure-activity relationship; electrophysiological study;
molecular dynamic simulations

1. Introduction

Nicotinic acetylcholine receptors (nAChRs) are a member of ligand-gated ion channels that
mediate the fast excitatory cholinergic neurotransmission in the central and peripheral nervous
system [1–3]. In vertebrates, nAChRs are classified into muscle-type and neuronal-type nAChRs
based on their primary sites of expression. The muscle-type nAChRs are found at the neuromuscular
junction, and they mediate neuromuscular transmission at the neuromuscular junction (NMJ) [4,5].
Noticeably, muscle-type receptors from fetal muscle are composed of a combination of α1β1δγ subunits
whereas those from adult muscle have the composition of α1β1δε subunit. Previous research revealed
that the muscle-type nAChRs were implicated in pathophysiology conditions, including myasthenia
gravis, rhabdomyosarcoma, muscle dystrophies, and muscle atrophy [6–8].

Conus is a genus of marine gastropod molluscs which is estimated to have 700 different species
distributing in tropical and sub-tropical oceans [9,10]. These gastropods armed with deadly venoms
can capture worms, fishes or other mollusks. The venoms are composed of different kinds of
bioactive peptides which are named as conotoxins [11,12]. Based on their conserved signal peptide
sequences, the various conotoxins are classified into different super families. Further classification into
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families depends on their patterns of disulfide and pharmacological activities [10,13,14]. Among the
conotoxins, α-conotoxins are the most studied and targeted muscle-type or neuronal-type nAChRs
with high affinity and selectivity. Typical α-conotoxins are arranged in a CC-Xm-C-Yn-C pattern
with two loops and have four cysteine residues to form two disulfide bonds with CysI-CysIII and
CysI-CysIV connectivity. The first loop (Xm) contains three or four amino acids (m = 3–4) and the
second loop (Yn) consists of three to seven amino acids (n = 3–7) [15,16]. Interestingly, most α-3/5
family conotoxins block muscle-type nAChRs with high potency.

α-conotoxin GI, which was isolated from the Conus geographus venom, is composed of 13 amino
acids that selectively inhibited muscle-type nAChRs with the IC50 of 20 nM [17,18]. The structure of
GI was firstly determined by two-dimensional NMR [19]. Meanwhile, several studies revealed the
binding molecular mechanism between GI and muscle-type nAChRs [20,21]. Hann et al. found the
9-arginine of GI was critical for its high selectivity and activity [22], and Geobe et al. also demonstrated
that α-conotoxin [R9A] GI displayed a decrease in affinity for the two acetylcholine-binding sites
on Torpedo receptors [23]. However, the role of each amino acid in α-conotoxin GI has remained
unidentified [19,24,25]. Nowadays, alanine scanning mutagenesis has become an effective strategy
in exploring the relationship between toxins and receptors and has been applied in the α-conotoxins
pivotal residue identification [26,27].

In the present study, a series of GI analogues were synthesized and the inhibitory activity on
various nAChR subunits were assessed (Figure 1). The results demonstrated that the activities retained
for [N4A] GI, [H10A] GI and [S12A] GI compared to GI, whereas their potency decreased nearly more
than 10-fold for [P5A] GI, [G8A] GI, [R9A] GI, and [Y11A] GI. More importantly, replacing Glu1 with
an Ala led to a three-fold increase in potency at the α1β1δε subtype. Further investigation revealed
the interaction between α-conotoxin GI and muscle-type nAChRs. In addition, these analogues have
the potential to be developed as a molecular probe for differentiating the subtype of nAChRs [28,29].
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previously [30]. Briefly, CysI and CysIII were protected with S-trityl (S-Trt) while CysII and CysIV 
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Figure 1. Sequences of α-conotoxin GI and its analogues. Each substituted alanine is labeled in bold
and blue. The connectivity of Cysteine (CysI-CysIII, CysII-CysIV) is marked in bold and red. * indicates
a C-terminal amide.

2. Results

2.1. Synthesis and Purification of GI and Its Analogues

In this study, standard Fmoc solid phase peptide synthesis strategy was used to synthesize GI and
its mutants. A two-step oxidation protocol was used to fold these peptides as described previously [30].
Briefly, CysI and CysIII were protected with S-trityl (S-Trt) while CysII and CysIV were protected
with S-acetamidomethyl (S-Acm). The first disulfide bridge between CysI and CysIII was formed
using the potassium ferricyanide oxidation method, and then the second disulfide bond was produced
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through iodine oxidation. All synthesized peptides were monitored by analytical Reversed-Phase High
Performance Liquid Chromatography (RP-HPLC), and the purity of each analogue was above 95%.
Typically, the retention of the fully oxidized peptide GI and [E1A] GI is 8.82 and 8.57 min respectively,
and the molecular weight of GI and [E1A] GI is 1436.50 and 1378.52 Da respectively, which are identical
with the theoretical molecular weight (Figure 2). The HPLC chromatogram and ESI-MS (Electrospray
ionization mass spectrometry) data of other GI analogues are provided in the Supplementary Materials’
Figures S1–S3.
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Figure 2. The HPLC and ESI-MS profiles of α-conotoxin GI and α-conotoxin [E1A] GI. The peptide GI
and [E1A] GI were analyzed on a reverse-phase analytical Vydac C18 column with a solvent gradient
from 5% buffer B to 40% buffer B for 20 min where buffer A = 0.075% trifluoroacetic acid (TFA),
remainder H2O and buffer B = 0.050% TFA, 90% acetonitrile, remainder H2O. The absorbance was
monitored at 214 nm. (A) The HPLC chromatogram of fully oxidized peptide GI; (B) ESI-MS data for
GI with an observed monoisotopic mass of 1436.50 Da; (C) the HPLC chromatogram of fully folded
peptide [E1A] GI; (D) ESI-MS data for [E1A] GI with an observed monoisotopic mass of 1378.52 Da.

2.2. Potency of α-Conotoxin GI and Its Analogues at the Mouse α1β1δε nAChR

To better understand the SAR between GI and muscle-type nAChRs, GI and all analogues were
firstly tested on mouse α1β1δε nAChR at a single concentration of 10 nM. Figure 3 indicates that the
relative amount of inhibitions are evoked by all peptides. Three analogues replacing Asn4, His10 and
Ser12 with Ala had little effect on α1β1δε nAChR compared with native GI (67% inhibition). On the
contrary, [P5A] GI and [R9A] GI substantially reduced the activity, they exhibited 21.9% and 17.6%
inhibition of relative current amplitude. In addition, [G8A] GI and [Y11A] GI analogues resulted
in a complete loss of inhibitory activity at the concentration of 10 nM. Notably, only one alanine
substitution [E1A] GI showed a significant increase at mouse α1β1δε nAChR versus GI, completely
blocking muscle-type nAChR at the concentration of 10 nM.

We also observed that the alanine-substituted analogues affected not only the potency against
α1β1δε nAChR but also its current recovery. Meanwhile, Figure 4 illustrates the effects of [Y11A] GI
and [E1A] GI on mouse α1β1δε nAChR-mediated current respectively. We could see that GI blockade
of mouse α1β1δε nAChR was 75.5% at the concentration of 10 nM, while full blocking of ACh-evoked
currents was obtained with 10 nM [E1A] GI. Additionally, the recovery time (50% initial current)
was compared between wild peptide GI and mutant [E1A] GI after the blockade by 10 nM toxin.
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Complete recovery of [E1A] GI was observed within 4 min after α-conotoxin [E1A] GI washout
(Figure 4A) while the recovery of GI was accomplished more than 7 min after α-conotoxin GI washout
(Figure 4B). [Y11A] GI at the concentration of 10 µM completely inhibited mouse α1β1δε nAChR and
the inhibitory ACh-evoked current of [Y11A] GI was fully recovered within 2 min after α-conotoxin
[Y11A] GI washout (Figure 4D). However, we noticed that 10 µM GI exhibited higher affinity on
heteromeric α1β1δε nAChR, and the inhibitory ACh-evoked current of GI was only completely
reversible over 9 min after α-conotoxin GI washout (Figure 4C). Table 1 summarizes the recovery time
after blockade by α-conotoxin GI and its analogues.Mar. Drugs 2018, 16, x FOR PEER REVIEW  4 of 13 

 

 
Figure 3. The effect on mouse α1β1δε expressed in Xenopus laevis oocytes by GI and alanine-
substituted analogues. A bar graph of inhibition of mouse α1β1δε by GI and alanine variants. One-
way analysis of variance scatter illustrating the loss or increase in the activity of alanine variants (10 
nM) compared to wild peptide using Dunnett’s multiple comparisons test. **** indicates p < 0.0001. 
All data represent mean ± S.E.M, n = 4–6. 

We also observed that the alanine-substituted analogues affected not only the potency against 
α1β1δε nAChR but also its current recovery. Meanwhile, Figure 4 illustrates the effects of [Y11A] GI 
and [E1A] GI on mouse α1β1δε nAChR-mediated current respectively. We could see that GI blockade 
of mouse α1β1δε nAChR was 75.5% at the concentration of 10 nM, while full blocking of ACh-evoked 
currents was obtained with 10 nM [E1A] GI. Additionally, the recovery time (50% initial current) was 
compared between wild peptide GI and mutant [E1A] GI after the blockade by 10 nM toxin. Complete 
recovery of [E1A] GI was observed within 4 min after α-conotoxin [E1A] GI washout (Figure 4A) 
while the recovery of GI was accomplished more than 7 min after α-conotoxin GI washout (Figure 
4B). [Y11A] GI at the concentration of 10 μM completely inhibited mouse α1β1δε nAChR and the 
inhibitory ACh-evoked current of [Y11A] GI was fully recovered within 2 min after α-conotoxin 
[Y11A] GI washout (Figure 4D). However, we noticed that 10 μM GI exhibited higher affinity on 
heteromeric α1β1δε nAChR, and the inhibitory ACh-evoked current of GI was only completely 
reversible over 9 min after α-conotoxin GI washout (Figure 4C). Table 1 summarizes the recovery 
time after blockade by α-conotoxin GI and its analogues. 

 

Figure 4. Blockade of mouse α1β1δε nAChR by GI, [E1A] GI and [Y11A] GI. Representative current 
traces showing the inhibition of mouse α1β1δε ACh-evoked currents by GI and [E1A] GI at the 
concentration of 10 nM (A, B), GI and [Y11A] GI at the concentration of 10 μM (C, D). Xenopus laevis 

Figure 3. The effect on mouse α1β1δε expressed in Xenopus laevis oocytes by GI and
alanine-substituted analogues. A bar graph of inhibition of mouse α1β1δε by GI and alanine variants.
One-way analysis of variance scatter illustrating the loss or increase in the activity of alanine variants
(10 nM) compared to wild peptide using Dunnett’s multiple comparisons test. **** indicates p < 0.0001.
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Figure 4. Blockade of mouse α1β1δε nAChR by GI, [E1A] GI and [Y11A] GI. Representative current
traces showing the inhibition of mouse α1β1δε ACh-evoked currents by GI and [E1A] GI at the
concentration of 10 nM (A, B), GI and [Y11A] GI at the concentration of 10 µM (C, D). Xenopus laevis
oocytes expressing a given mouse α1β1δε nAChR were at a holding potential of −70 mV and were
subjected to a 1 s pulse of ACh every minute as previously described [30]. After control responses
to ACh, the oocyte was exposed to toxins for 5 min (arrow). The toxin was then washed out and the
response to ACh was again measured. “C” indicates control responses to ACh.
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Table 1. Recovery time after blockade by α-Conotoxin GI and its analogues at the mouse
α1β1δε nAChR.

Peptides (10 nM) T50
a (min) Peptides (10 µM) T95

b (min)

GI >7 GI >9
[E1A] GI 4 [Y11A] GI 2

a Time to 50% current amplitude recovery after toxin washout; GI and [E1A] GI were tested at a concentration of
10 nM. b Time to 95% current amplitude recovery after toxin washout; GI and [E1A] GI were tested at a concentration
of 10 µM.

The concentration–response relationship of GI and its analogues were subsequently assessed on
mouse α1β1δε nAChR. Figure 5B and Table 2 summarizes that the four analogues [P5A] GI, [G8A] GI,
[R9A] GI and [Y11A] GI reduced the activity significantly and the concentration–response curves of
them shifted rightward relative to the native GI. The potencies of [P5A] GI and [R9A] GI were 9.3-fold
and 8.5-fold lower than GI. [P5A] GI and [R9A] GI inhibited α1β1δε nAChR with IC50 of 54.72 and
49.79 nM respectively (Figure 5B and Table 2). Furthermore, the substitution of Gly8 and Tyr11 with Ala
resulted in potencies more than 20-fold lower than GI. [G8A] GI and [Y11A] GI blocked muscle nAChR
with IC50 of 170.60 and 381.20 nM respectively (Figure 5B and Table 2). Strikingly, when we substituted
Glu1 with Ala, the potency of [E1A] substantially increased with an IC50 of 1.83 nM (5.85 nM in GI)
(Figure 5A and Table 2). The other three mutations, [N4A] GI, [H10A] GI and [S12A] GI preserved
similar activity, when compared to wildtype GI (Table 2). Above all, our results demonstrated that a
single amino acid substitution in GI had a significant impact on its activity.
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alanine-substituted analogues. (A) The concentration–response curves for GI and [E1A] GI. peptide
[E1A] GI shifted the curves to the left, relative to the parent peptide GI. (B) The concentration–response
curves for GI, [P5A] GI, [G8A] GI, [R9A] GI and [Y11A] GI. [P5A] GI, [G8A] GI, [R9A] GI and [Y11A]
GI were towards the right compared to the native GI. All data represent mean ± S.E.M, n = 7–10.

Table 2. IC50 and Hill slope values for inhibiting mouse α1β1δε subtype by α-conotoxin GI and
its analogues.

Name IC50 (nM) * α1β1δε nH IC50 Ratio Relative to GI

GI 5.86 (5.01–6.86) 1.24 (0.93–1.55) 1.0
[E1A] GI 1.83 (1.55–2.15) 1.28 (1.06–1.51) 0.3
[N4A] GI 4.66 (4.19–5.18) 1.49 (1.23–1.76) 0.8
[P5A] GI 54.72(46.85–63.91) 0.84 (0.71–0.97) 9.3
[G8A] GI 170.60(134.60–216.30) 0.94 (0.74–1.13) 29.1
[R9A] GI 49.79 (45.22–54.81) 1.34 (1.13–1.54) 8.5

[H10A] GI 7.62 (6.78–8.57) 1.04 (0.88–1.20) 1.3
[Y11A] GI 381.20(323.40–449.40) 0.90 (0.76–1.05) 65.1
[S12A] GI 5.39 (4.72–6.15) 1.28 (1.01–1.55) 0.9

IC50 and nH indicates half inhibitory concentration and Hill Slope respectively. * indicates numbers in parentheses
are 95% confidence intervals.



Mar. Drugs 2018, 16, 507 6 of 14

2.3. Potency of α-Conotoxin GI and Its Analogues at the Rat Neuronal nAChRs

Next, GI and above critical analogues were tested on other neuronal nAChR subtypes with high
concentrations. Glu1, Pro5, Gly8, Arg9 and Tyr11 harboring a substitution to Ala exhibited no activity
on α3β2, α3β4, α4β4 and α7 subtypes even up to 10 µM (Figure 6). Interestingly, the inhibition of
GI was 50% at the concentration of 10 µM and GI blocked ACh-evoked current of rα9α10 nAChR
with an IC50 of 9.35 µM (Figure 7A and Table 3). Moreover, the potencies of [P5A] GI and [G8A] GI
increased 2.1-fold and 2.2-fold compared to GI with the IC50 of 4.14 and 4.21 µM respectively (Figure 7
and Table 3). In contrast, replacing Glu1 with Ala led to lower inhibitory activity on rα9α10 nAChR.
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Figure 7. α-conotoxin GI and its analogues were tested on neuronal rat α9α10 nAChR subtype
expressed in Xenopus laevis oocytes. The representative current traces showing the inhibition of rat
α9α10 ACh-evoked currents by GI (A), [E1A] GI (B), [P5A] GI (C) and [G8A] GI (D) respectively.
Oocytes were clamped at −70 mV holding potential, and membrane currents were evoked with
10 µM ACh. The inhibition of GI, [E1A] GI and [P5A] GI for rat α9α10 nAChR was 48.4%, 10.5%, 72.3%
and 69.8% at the concentration of 10 µM respectively. (E) Concentration–response curves for GI, [P5A]
GI and [G8A] GI. All data in (E) represent mean ± S.E.M, n = 5–8.
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Table 3. IC50 and Hill slope values for inhibiting neuronal rat α9α10 nAChR subtype by α-conotoxin
GI and three mutants.

Name IC50 (µM) * rα9α10 nH IC50 Ratio Relative to GI

GI 9.35 (7.02–12.5) 1.35 (0.57–2.15) 1

[E1A] GI >10 - -

[P5A] GI 4.14 (3.42–5.03) 1.01 (0.79–1.22) 0.4

[G8A] GI 4.21 (3.21–5.51) 1.20 (0.83–1.59) 0.5

IC50 and nH indicates half inhibitory concentration and Hill slope respectively. * indicates numbers in parentheses
are 95% confidence intervals.

2.4. Homology Modeling and Molecular Dynamic Simulation

Molecular models of the interaction between the α1(+)δ(−) binding site and GI were established.
The model was refined using molecular dynamics simulations; this was used to illuminate the SAR
(Figure 8). According to the model, Glu1 is surrounded by two cysteines (Cys176 and Cys177 in α1
subunit) forming disulfide (Figure 8A). Meanwhile, only one amino acid, Glu147 in the δ subunit was
found to act with Glu1, which would produce electrostatic repulsion. When Glu1 was substituted
by Ala, the repulsive force between them decreased, contributing to a three-fold increased blockade
of α1β1δε nAChR. Among all analogues, [Y11A] GI had the highest decrease at the potency on
α1β1δε nAChR. Through 40 ns dynamic stimulation, Tyr11 is impacted by more amino acids in the δ
subunit, including Leu93, Tyr95 and Leu103 (Figure 8B) forming a relatively hydrophobic environment.
Replacing polar residue Tyr11 with a hydrophobic Ala significantly perturbed the affinity potency of
GI to the δ subunit, explaining the activity loss of [Y11A] GI to α1β1δε nAChR.
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3. Discussions

Until now, several conotoxins have been reported as muscle-type nAChRs inhibiters. The selected
conotoxins from different conus species that targeted muscle-type nAChRs are summarized in Table 4.
So far, five different families targeting the muscle-type nAChRs have been identified, including
α-conotoxins, αB-conotoxins, αD-conotoxins, αO-conotoxins and αS-conotoxins, among which α-3/5
conotoxins become dominant with their high affinity and selectivity. Some conotoxins of other families
also inhibited muscle nAChRs but with less selectivity. For example, αB-VxXXIVA cloned from
Conus vexillum inhibited mouse α1β1δε nAChR and rat α9α10 nAChR with the IC50 of 6.6 µM and
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1.2 µM, respectively [31,32]. Another conotoxin cloned from Conus generalis, named αO-GeXVIA,
blocked various nAChR subtypes with nanomolar potency, including rat α9α10 nAChR and mouse
α1β1δε nAChR [33]. Moreover, two other conotoxins also cloned from Conus generalis, named
αD-GeXXA and αO-GeXXVIIA, blocked muscle-type nAChR and neuronal nAChRs [34,35].

The fetal muscle-type nAChRs contain two ligand binding sites located at the extracellular
domain, α/γ or α/δ interface. The specific binding sites of these conotoxins have aroused attention,
and several conotoxins were used to investigate the binding affinity on the α/γ or α/δ interface [20,36].
Firstly, three α-conotoxins, GI, MI and SIA conferred 10,000-fold greater affinity at the α/δ versus
α/γ interface of muscle nAChR on BC3H-1 cells [20,37,38]. On the contrary, they displayed a higher
affinity at the α/γ interface for Torpedo nAChR [39–41]. Hann et al. revealed that GI and MI exhibited
similar physiological potencies on mouse nAChR while α-conotoxin SI was much less effective than
them [21]. In addition, SI failed to discriminate between the α/γ and α/δ interface on mouse and
Torpedo nAChR compared with GI or MI [21]. Previous investigation revealed that α-AC1.1b(CIA)
from Conus achatinus strongly preferred the α/δ interface instead of the α/γ binding site on the
mouse muscle nicotinic acetylcholine receptor [42]. Recently, Giribaldi et al. revealed that CIA also
blocked the neuronal rat α3β2 nAChR with micromolar potency [43]. As we know, α-4/7-conotoxin
was generally regarded as targeting various neuronal nAChRs, however, one α-4/7-conotoxin EI
isolated from Conus ermineus was identified as selectively targeting the α/δ interface of the Torpedo
muscle-type nAChRs [44], another α-4/7-conotoxin Lo1a has been characterized to differentiate
between muscle-type nAChRs and neuronal-type nAChRs, and this conotoxin had a higher affinity at
the α/ε interface [45]. Interestingly, αA-conotoxin OIVB with six cysteines isolated from Conus obscurus
venoms from Indo-Pacific, exhibited 1800-fold lower affinity for adult muscle nAChRs, and this
toxin preferentially bound to the α/γ interface [46]. Whereas ψ-conotoxin PrIIIE, with CysI–CysIV,
CysII–CysV, and CysIII–CysVI disulfide configuration displays higher potency against the adult
subtype than the fetal subtype nAChR [47,48].

The structure of GI was revealed by NMR spectroscopy and X-ray crystallography [19,24,49].
A right-handed helical turn containing an Asn4-Cys7 β-turn in the Gly8 to Tyr11 region is a typical
structural feature of GI [24]. Gray et al. assumed that the shape of peptide GI was a triangular slab
with Glu1, Pro5 and Arg9 situated at the corner [24]. As we know, the proline of loop1 in many
α-conotoxins is conservative, and this amino acid plays a crucial role in 310-helix turn forming of
conotoxins. Furthermore, Dutertre et al. demonstrated that 310-helix turn might play a crucial role in
defining both the ligand conformation and receptor-binding activity [50]. Olivera, B. M el al. found
that substituting Pro with Ala in α-conotoxin MI dramatically reduced the toxin’s potency at the
α/δ site [51]. Similarly, the Pro5 mutation in GI might alter β-turn secondary structures, significantly
reducing the activity of α1β1δε nAChR. Moreover, when we replaced Gly8, Arg9 and Tyr11 with
Ala, three analogues, [G8A] GI, [R9A] GI and [Y11A] GI, suffered respectively 29.1-fold, 8.5-fold and
65.1-fold loss of their potencies on α1β1δε nAChR compared to GI, suggesting that the substitution
of Gly8, Arg9 and Tyr11 with Ala probably had a significant impact on the right-handed helical
turn. Meanwhile, Tyr11 in α-conotoxin GI was located at a general hydrophobic pocket by molecular
modeling, and we also noticed that it interacts with hydrophobic amino acids, including Leu93,
Tyr95 and Leu103 in the δ subunit (Figure 8B), which is consistent with previous studies that showed
α-conotoxin MI interacted strongly with the δ subunit [40,41]. Janes, R. W et al. also suggested that a
hydrophobic phenylalanine in this position contributed to anchoring to the receptor [52]. In contrast to
the loss of inhibitory activity at most alanine substitutions, Glu1 replaced by Ala in α-conotoxin GI
substantially improved the functional activity at α1β1δε nAChR.

In addition, we observed a different current recovery time after the blockade by α-conotoxin GI,
[E1A] GI and [Y11A] GI at the mouse α1β1δε nAChR, suggesting that single amino acid mutation
possibly changed the interaction between ligands and receptors. Further research is needed in order to
elucidate the molecular mechanism underlying their interaction. Various neuronal nAChRs, including
α3β2, α3β4, α4β4, α7, and α9α10 were also screened. The electrophysiology assay indicated that
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alanine-substituted analogues failed to inhibit these receptors, except for α9α10. GI, [P5A] GI and
[G8A]GI retained their activity at α9α10 at the micromole level. In contrast, [E1A] GI had little
influence on α9α10 nAChR at a high concentration, and the selectivity of [E1A] GI at muscle α1β1δε
versus neuronal α9α10 nAChR was improved compared to wildtype GI.

Table 4. The sequences of conotoxins from different species of cone snails blocked muscle-type nAChRs.

Conotoxin Resource Sequence Target Reference

α-GI C. geographus ECCNPACGRHYSC* muscle [17,18]
α-MI C. magus GRCCHPACGKNYSC* muscle [51]
α-SI C. striatus ICCNPACGPKYSC* muscle [52]
α-SIA C. striatus YCCHPACGKNFDC* muscle [20]
α-AC1.1b/CIA C. achatinus NGRCCHPACGKHFSC* muscle, α3β2 [42,43]

α-EI C. ermineus RDOCCYHPTCNMSNPQIC* muscle, α3β4,
α3β2, α4β2 [44]

α-Lo1a C. longurionis EGCCSNPACRTNHPEVCD α7, α3β4, muscle [45]
αA-OIVB C. obscurus CCGVONAACHOCVCKNTC* muscle [46]
αB-VxXXIVA C. vexillum VRCLEKSGAQPNKLFRPPCCQKG α9α10, muscle [31,32]

PSFARHSRCVYYTQSRE*

αD-GeXXA C. generalis DVHRPCQSVRPGRVWGKCCLT α9α10, α7, α3β4,
α3β2, [34]

RLCSTMCCARADCTCVYHTW muscle
RGHGCSCVM*

αO-GeXVIA C. generalis TCRSSGRYCRSPYDRRRRYCRRITD α9α10, α7, α3β4,
α3β2, [33]

ACV* muscle
αO-GeXXVIIA C. generalis ALMSTGTNYRLLKTCRGSGRYC α9α10, muscle [35]

RSPYDCRRRYCRRISDACV*
Ψ-PrIIIE C. parius AARCCTYHGSCLKEK muscle [47,48]

CRRKYCC*

For all conotoxins, an asterisk denotes a carboxyl-terminal carboxamide; O and γ indicates Hydroxyproline and
γ-carboxyglutamate (Gla).

4. Materials and Methods

4.1. Peptide Synthesis and Oxidative Folding of α-Conotoxin GI and Its Analogues

All the α-conotoxin GI and its analogues’ linear peptides were successfully synthesized
using Fmoc chemistry and standard side protection, except for four cysteines [30]. The cysteine
residues were orthogonally protected using the acid liable S-trityl groups and the acid-stable
S-acetomedomethyl groups. After cleavage of the assembled peptide chain from the resin, the first
disulfide bond (the S-trityl groups on CysI and CysIII) in each peptide was formed by incubating
the peptides in 5 mM ferricyanide (pH 7.5, 0.2 mg/mL) 45 min at 25 ◦C. The second disulfide bond
(S-acetomedomethyl groups on CysII and CysIV) was formed by incubating peptides in 0.4 mM
I2 (0.4 mg/mL) 1% TFA under nitrogen protection conditions for 10 min. Then the reaction was
quenched by adding 1 M ascorbic acid until the mixture became colorless. The peptide was purified by
preparative RP-HPLC. Analytical RP-HPLC and electrospray-mass spectroscopy (ESI-MS) confirmed
the purity and molecular mass of oxidized peptides.

4.2. Peptide Quantification

The concentration of purified α-conotoxin GI and its analogues was quantified using an
absorbance measurement with a spectrophotometer at a wavelength of 280 nm, calculated with the
Lambert–Beer equation, a = εcl. Where A is the absorbance, ε is the extinction coefficient, l is the cuvette
path length, c indicates the concentration, and ε is determined with the peptide properties calculator.

4.3. cRNA Preparation and Injection into Xenopus laevis Oocytes

Capped RNA (cRNA) for the various subunits were prepared using the mMESSAGE mMACHINE
in vitro transcription Kit (Ambion, Austin, TX, USA) following linearization of the plasmid.
The cRNA was purified using MEGA clearTm Transcription Clean-up Kit (Ambion, Austin, TX, USA).
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The concentration of each cRNA was confirmed by Smart SpecTM plus Spectrophotometer (Bio-Rad,
Hercules, CA, USA), with the absorbance monitored at 260 nm. Oocytes were extracted from mature
female Xenopus laevis as described previously [30]. cRNAs of mouse α1, β1, δ, ε subunits were
mixed at 2:1:1:1 ratio with the final concentration of approximately 50 ng/µL for each subunit
cRNA. 50.6 nL of this mixture was injected into each Xenopus lavies oocyte using a Drummond
microdispenser (Drummond Scientific, Broomall, PA, USA), and then were incubated at 17 ◦C in
ND96 buffer (96.0 mM NaCl, 2.0 mM KCl, 1.8 mM CaCl2, 1.0 mM MgCl2, 5 mM HEPES, pH 7.1–7.5)
supplemented with 10 µg/mL of penicillin, 10 µg/mL of streptomycin and 100 µg/mL of gentamicin
before recording. Oocytes were injected within 1 day of harvesting and recordings were carried out
2–7 days after microinjection.

4.4. Two-Electrode Voltage Clamp Electrophysiological Recordings of nAChRs Expressed in
Xenopus laevis Oocytes

Two-electrode voltage-clamp recordings from oocytes were carried out at room temperature using
an Axonclamp 900A amplifier (molecular devices crop., Sunnyvale, CA, USA). The voltage-recording
and current-injecting electrodes were pulled with borosilicate glass and had a resistance of
5–50 megaohms when supplemented with 3 M KCl. The concentration of ACh was 10 µM trials
with α1β1δε and α9α10 subtypes, 200 µM trials with α7, and 100 µM for all other subtypes.
Oocytes were exposed to a 50 µL cylindrical oocyte recording chamber fabricated from Sylgard,
and it was gravity-perfused with ND96 buffer at a rate of ~2 mL/min. All toxin solutions also
contained 0.1 mg/mL bovine serum albumin to reduce nonspecific adsorption of the peptide.
During recording, the oocytes were clamped at a holding potential of −70 mV. Oocytes were
gravity-perfused with standard ND96 solution and supplied once per minute with one second ACh
pulse. As a stable baseline was achieved, either ND96 alone or ND96 containing varying concentrations
of GI and its analogues were perfusion-applied in a static bath for 5 min before the agonist ACh
was added. The electrophysiology data were recorded and analyzed using Clampfit 10.2 software
(Molecular Devices Corp., Sunnyvale, CA, USA).

4.5. Data Analysis

The effects of α-conotoxin GI and its analogues on ACh-evoked nAChR-mediated currents were
defined as peak current amplitudes relative to the average peak current amplitudes of three control ACh
applications, and this was used to normalize the amplitude of each test response to obtain a “% response”
or “% block”. The concentration–response curves were fit to the pooled data by Equation (1).

% response = 100/{1 + ([toxin]/IC50)nH}. (1)

where nH is the slope factor (Hill slope) and IC50 is the peptide concentration that gave 50% inhibition
of the maximal response. All the electrophysiological data were statistically analyzed using GraphPad
Prism 6, with significant differences between the control GI and the analogues determined by t-test.

4.6. Molecular Modeling, Docking, and Dynamic Simulation

We resolve to clarify the molecular mechanism of GI and its analogues acting with
muscle-type nAChRs. To begin, we constructed homology models of α1 and δ subunit with the
program Modeler 9v10. Nicotinic acetylcholine receptor (code: 2BG9) from Torpedo was adopted as
the template [53], and the interface was formed using Lymnaea stagnalis acetylcholine-binding protein
(Ls-AChBP; PDB code: 1I9B) as the template [54]. Then the models were optimized with energy
minimized by 100 ps of a standard molecular dynamic process with Gromacs 5.1. The structures
of GI and its analog [Y11A] GI were used to dock to the α1δ nAChR interface using the program
FlexpepDock. All dynamic simulations were performed using Gromacs 5.1. Each dynamic simulation
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was performed for 40 ns. The interatomic contact difference plot was calculated by determining the
total number of toxin contacts with 4 Å of each receptor residue.

5. Conclusions

In summary, we identified SAR between GI and the mouse α1β1δε nAChRs using an
alanine-scan strategy. To be specific, peptide [E1A] GI selectively inhibited mouse α1β1δε nAChRs
with better potency than native GI. Furthermore, [E1A] GI reduced the potency of neuronal α9α10
nAChRs subtype and improved its selectivity on mouse muscle nAChRs. Compared to wildtype GI,
four peptides i.e., [P5A] GI, [G8A] GI, [R9A] GI and [Y11A] GI displayed a dramatic loss of activity
at the mouse α1β1δε nAChR. Meanwhile, molecular dynamic simulations demonstrate a relatively
hydrophobic Tyr11 of GI, a critical residue, binding with the δ subunit at the mouse α1β1δε nAChR.
For neuronal nAChRs, only two variants, [P5A] GI and [G8A] GI, have a slight increase at the α9α10
nAChR versus GI. Taken together, our work expanded our knowledge on SAR between GI and the
muscle-type nAChRs, providing sufficient data for the redesign of GI analogues with higher affinity
and selectivity.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/16/12/507/
s1, Figure S1: The HPLC chromatograms and mass spectrum of GI, [E1A] GI and [N4A] GI respectively; Figure S2:
The HPLC chromatograms and mass spectrum of [P5A] GI, [G8A] GI and [R9A] GI respectively; Figure S3:
The HPLC chromatograms and mass spectrum of [H10A] GI, [Y11A] GI and [S12A] GI respectively.
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