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Abstract: The degree distribution has attracted considerable attention from network scientists in
the last few decades to have knowledge of the topological structure of networks. It is widely
acknowledged that many real networks have power-law degree distributions. However, the deviation
from such a behavior often appears when the range of degrees is small. Even worse, the conventional
employment of the continuous power-law distribution usually causes an inaccurate inference as the
degree should be discrete-valued. To remedy these obstacles, we propose a finite mixture model
of truncated zeta distributions for a broad range of degrees that disobeys a power-law behavior
in the range of small degrees while maintaining the scale-free behavior. The maximum likelihood
algorithm alongside the model selection method is presented to estimate model parameters and the
number of mixture components. The validity of the suggested algorithm is evidenced by Monte
Carlo simulations. We apply our method to five disciplines of scientific collaboration networks with
remarkable interpretations. The proposed model outperforms the other alternatives in terms of the
goodness-of-fit.

Keywords: truncated zeta distribution; power-law; collaboration network; degree distribution;
mixture model

1. Introduction

Network science focuses on the study of complex networks such as telecommunication,
computer, biological, cognitive, and social networks. A network consists of nodes and
links. The topological structure, which explores how nodes are connected in the system,
has been investigated with great interest [1–3]. Network researchers have examined
foundational network topologies using various network-related quantities such as the
degree distribution, clustering coefficient, and average path length. Most networks are
dynamic, so accordingly, network-related quantities also change over time. Studying the
evolution of these network quantities could provide insight into the behavior of individuals
expressed by nodes and the change of topological properties of the network. The evolution
of a network has been studied from various perspectives, e.g., the community [4,5], rich-
get-richer [1], node heterogeneity [2,6], and link persistence [3].

The degree of a node is the number of links connected to a node. The degree distribu-
tion of a network, P(k), tells us the probability of degree k that a randomly chosen node
will have. One challenge in studying network science is to develop simplified measures
that capture the network structure. The degree distribution is one of such measures that
help to find influential nodes in the system. Many attempts have been made to study the
degree distribution using Poisson, exponential, and power-law distributions. In particular,
the analysis of the power-law degree distribution has been considered as one of the basic
steps, and networks that have power-law degree distributions are often referred to as
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scale-free networks. We can frequently observe power-law degree distributions in collab-
oration, World Wide Web, protein–protein interactions, and semantic networks [7–10].
The emergence of hubs (highly connected nodes) is a consequence of a scale-free property
of networks. A rich-get-richer mechanism, also called a popularity effect [11], has been
known to produce power-law degree distributions and hubs [1,6].

Many dynamic network models have been developed to explain the power-law degree
distribution in real networks. The most widely known dynamic model for the power-law
degree distribution is the rich-get-richer generative model in Barabasi and Albert (1999) [1],
called the BA model. They employ the preferential attachment mechanism in which nodes
with more neighbors tend to receive more links from other nodes. Specifically, the algorithm
of the BA model has the following parts with the parameter m that controls the number of
links over time:

• Growth: At each time point, a node enters the network. Then the node tries to connect
with m nodes in the network.

• Preferential attachment: The newly entered node connects with node i with probability
proportional to the degree of node i.

The BA model yields a power-law degree distribution with exponent 3, i.e., P(k) ∝ k−3.
The exact form, given by Bollobas et al. in [12], is:

P(k|m) =
2m(m + 1)

k(k + 1)(k + 2)
, k = m, m + 1, · · · . (1)

There are many variant models to cover a broad range of power-law exponents [13–15],
degree correlations [16], accelerating growth [17–19], and node heterogeneity [6,20,21].
Another model for generating the power-law degree distribution is a copying network
model presented in Kumar et al. (2000) [22]. In this model, newly entered nodes randomly
select some existing nodes and copy some of the links.

The power-law distribution has the form of P(k) ∝ k−α, which can be expressed
as ln P(k) = −α ln k + constant. Therefore, a straight line of ln P(k) plot on ln k (log-
log plot) can be an indication of a power-law relationship, and its slope is a power-law
exponent. In real networks, however, the degree distribution does not have a shape of
a straight line in the entire range. There are many empirical distributions where the
power-law behavior is not observed in the range of small degrees. Many variants of the
power-law distribution are developed to address this issue, such as generalized power-
law distributions [23,24], composite distributions with threshold [25,26], and power-law
distributions with an exponential cutoff [27,28]. However, these methods do not consider
the essential foundation of the power-law. According to the BA model and its variants,
the power-law nature is an inherent property exhibited from the preferential attachment
rule. The model presented in this paper preserves the power-law nature to avoid manual
modifications of the power-law distribution function, given by P(k) ∝ k−α.

Note that the BA model has a parameter m. Jordan (2006) [29] relieved the constant m
condition that, at each time, the number M of connections can change over time according
to the distribution of M. The degree distribution turned out to be

P(k) =
2E[M(M + 1)1(M ≤ k)]

k(k + 1)(k + 2)
, k = 1, 2, · · · . (2)

We note the following statistical property.

Theorem 1. Suppose that M has a finite support, M = 1, · · · , Mmax. Then the degree distribution
of Jordan’s model can be expressed as a mixture distribution, given by

P(k) =
Mmax

∑
m=1

wmP(k|m), k = 1, 2, · · · , (3)
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where wm = P(M = m) is a mixture weight corresponding to the mth mixture component P(k|m)
in Equation (1), m = 1, · · · , Mmax.

Proof. Note that we can rewrite P(k|m) and P(k) as

P(k|m) =
2m(m + 1)

k(k + 1)(k + 2)
1(k ≥ m)

P(k) =
Mmax

∑
m=1

wm
2m(m + 1)

k(k + 1)(k + 2)
1(m ≤ k)

from Equations (1) and (2). Then, we have

P(k) =
Mmax

∑
m=1

wm
2m(m + 1)

k(k + 1)(k + 2)
1(m ≤ k)

=
Mmax

∑
m=1

wmP(k|m)

by 1(k ≥ m) = 1(m ≤ k).

Theorem 1 suggests that the degree distribution might be expressed as a mixture
distribution. For example, we consider a network where a new node connects to one or two
existing nodes, with probabilities P(M = 1) = 2/3 and P(M = 2) = 1/3. Then we have
the following degree distribution in a mixture form of the two BA model’s distributions
with different m,

P(k) =
2
3

P(k|m = 1) +
1
3

P(k|m = 2).

Inspired by this property, we consider a mixture model as an explanation of the deviation
from the power-law in the range of small degrees.

Moreover, many studies have considered the degree as a continuous variable using
continuity assumptions [30,31]. This approach may mislead researchers since the degree
is discrete-valued. Therefore, a discrete power-law distribution, called a truncated zeta
distribution, is used in this paper.

In this study, we propose a mixture model of truncated zeta distributions for the
analysis of degree distributions. The proposed model covers the entire range of the
degree distribution through a mixture of truncated zeta distributions while maintaining
the scale-free nature of a network. We can characterize the degree distribution more
accurately through the discrete version of the power-law distribution. In addition, we
present the maximum likelihood estimation algorithm along with a model selection method.
A simulation study examines the validity of the proposed estimation procedure. In addition,
real collaboration networks are investigated with the proposed model to describe the
characteristics of the degree distribution.

We focus on analyzing actual scientific collaboration networks and have made signifi-
cant advancements compared to the previous work in Jung and Phoa (2020) [32]. The major
improvements are as follows:

• We detected some inconsistency in the scientific collaboration data. For example,
“Smith, James,” “Smith, John,” and “Smith, Jacob” are all stated as “Smith, J” before
2007. Hence, we change the period of data to avoid the author name inconsistency for
accurate inferences.

• Moreover, a more elaborate analysis of the real data is conducted with noteworthy
interpretations.

• The validity of the presented algorithm is addressed with Monte Carlo simulations.
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• Extensive comparison studies are performed to show the superiority of the proposed
model. We compared the proposed model with generalized Pareto models as well as
base models that lack discreteness or mixture nature.

• We provide more detailed explanations throughout the paper.

The rest of the paper is organized as follows. The continuous and discrete power-law
distributions are defined in Section 2, and the proposed mixture model of truncated zeta
distributions is defined in Section 3. Section 4 presents the estimation method of the mixture
model, and the validity of the estimation procedure is demonstrated in Section 5. In Section 6,
we analyze the scientific collaboration network by applying the proposed mixture model
with interpretations. Section 7 concludes the paper.

2. The Power-Law Distribution
2.1. Continuous Power-Law Distribution

The probability density function (pdf) of the continuous power-law distribution
parameterized by the power-law exponent α > 1 and the minimum value l > 0, denoted
by PL(α, l), is given by [7]

f (x|α, l) = (α− 1)lα−1x−α, x ≥ l. (4)

Note that the support is real values greater than or equal to l.
The complementary cumulative distribution function is useful to describe the tail of

the power-law distribution, expressed as

P(X ≥ x) =
( x

l

)−α+1
, x ≥ l.

Its moments are given by

E[Xm] =
α− 1

α− 1−m
lm,

provided α > m + 1. We can deduce that PL(α, l) has the mean and variance given by

E[X] =
α− 1
α− 2

l, Var[X] =
α− 1

(α− 3)(α− 2)2 l2,

where the mean and variance are well-defined for α > 2 and α > 3, respectively.
The continuous power-law distribution has been widely used in the analysis of the

degree distribution. To analyze the discrete-valued variable degree, we need an approxi-
mation method. Setting a constant c, 0 ≤ c ≤ 1, for the correction of continuity, the degree
distribution can be approximated by

f (k|α, l) ≈
∫ k+1−c

k−c
f (x|α, l)dx (5)

for an integer value k.
One of the most common approaches is to round values to the nearest integer, which

corresponds to c = 0.5 [7,33]. This rounding approach is acceptable when considering the
tail part of the power-law distribution. However, if k is small, the constant c that satisfies
the exact equation of (5) may be considerably less than 0.5, and it should be avoided.
According to Clauset et al. (2009) in [7], the rounding approach is reasonable for k > 6.

Since the node degree is usually small, the approximation may lead to misunderstand-
ing when performing statistical analysis on the degree distribution, such as generating
node degrees and fitting the distribution to real data. We consider the exact version of the
discrete power-law in the next subsection.
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2.2. Truncated Zeta Distribution

The truncated zeta distribution, denoted by TZ(α, l), is a discrete form of the power-
law distribution. Parameters are the same as the continuous power-law distribution in
which α > 1 is the power-law exponent and l > 0 is the minimum value. The probability
mass function (pmf) of TZ(α, l) is given by [7]

g(k|α, l) =
1

ζ(α, l)
k−α, k = l, l + 1, · · · , (6)

where ζ(·, ·) is the Hurwitz zeta function

ζ(α, l) =
∞

∑
k=l

k−α,

which can be regarded as the normalizing constant of the distribution. The Hurwitz
zeta function in Equation (6) corresponds to the continuous counterpart 1/(α− 1)lα−1 in
Equation (4) via the upper Riemann sum approximation, expressed as

ζ(α, l) &
∫ ∞

l
x−αdx = 1/(α− 1)lα−1.

The complementary cumulative distribution function is given by

P(K ≥ k) =
ζ(α, k)
ζ(α, l)

, k ≥ l.

Next, the moments of the truncated zeta distribution are expressed as

E[Km] =
ζ(α−m, l)

ζ(α, l)
, α > m + 1.

We can straightforwardly derive the mean and variance as

E[X] =
ζ(α− 1, l)

ζ(α, l)
, Var[X] =

ζ(α, l)ζ(α− 2, l)− ζ2(α− 1, l)
ζ2(α, l)

,

provided α > 2 for the mean and α > 3 for the variance.
Figure 1 shows some pmfs of TZ(α, l) when α = 2.50. We can check that the straight

line of a log-log plot can be strong evidence of a power-law behavior.

1 2 3 4 5 6 7 8 9 10
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10−1

100
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Figure 1. The pmfs of TZ(α, l) on a standard scale (left) and a log-log scale (right) when α = 2.50
and l = 1, 2, 3, 4.
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3. Truncated Zeta Mixture Model

We consider the finite mixture model of truncated zeta distributions by fixing the
power-law exponent α for mixture components while varying minimum values to produce
a mixture of truncated zeta distributions. The probability mass function is represented as

p(k|α, L, w) =
L

∑
l=1

wl g(k|α, l), k = 1, 2, · · · , (7)

where g(k|α, l) is the pmf of TZ(α, l), and L is the number of mixture components. Mixture
weights w = (w1, w2, · · · , wL)

wl ≥ 0, l = 1, 2, · · · , L− 1, wL > 0, and
L

∑
l=1

wl = 1.

In this paper, we assume that the minimum value l is equal to 1, but it can be modified
according to the data. The tail of most real networks follows the power-law distribution,
and Equation (7) has the exact power-law behavior for sufficiently large degrees.

Theorem 2. For k larger than or equal to L, the truncated zeta mixture distribution in Equation (7)
has the exact power-law relationship, given by

p(k|α, L, w) ∝ k−α.

Proof. By using the pmf of TZ(α, l), we can write

p(k|α, L, w) =

(
L

∑
l=1

wl
ζ(α, l)

)
k−α.

Since the term inside the bracket is independent with k, the pmf of the mixture is propor-
tional to k−α.

Mixture models may suffer from the non-identifiability issue even for finite mix-
tures. The following theorem proves that the proposed truncated zeta mixture model
is identifiable.

Theorem 3. The mixture distribution Equation (7) is identifiable with respect to α, L, and w.

Proof. Let p(k|α1, L1, w1) and p(k|α2, L2, w2) be the mixture distributions of α1, L1,
w1 = (w11, w12, · · · , w1L) and α2, L2, w2 = (w21, w22, · · · , w2L), respectively. Suppose
that p(k|α1, L1, w1) and p(k|α2, L2, w2) are identical, i.e., p(k|α1, L1, w1) = p(k|α2, L2, w2)
for all k = 1, 2, · · · . Further, we define the slope function s(k|α, L, w) of the log-log degree
distribution, given by

s(k|α, L, w) =
ln p(k + 1|α, L, w)− ln p(k|α, L, w)

ln(k + 1)− ln(k)
, k = 1, 2, · · · .

The equality of the two mixture distributions give the identical slope function,
s(k|α1, L1, w1) = s(k|α2, L2, w2) for all k = 1, 2, · · · . We then have α = s(k|α, L, w) for
the sufficiently large k (≥ max{L1, L2}). Therefore, we obtain α1 = α2. The number of
mixture components L is the largest integer k such that s(k− 1|α, L, w) 6= α, and we also
have L1 = L2. Let L (= L1 = L2) and α (= α1 = α2) be the common number of mixture
components and the power-law exponent.
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Using p(k|α1, L1, w1) = p(k|α2, L2, w2) for k = 1, 2, · · · , L, we have the following
L equations:

w11g(1|α, 1) = w21g(1|α, 1),

w11g(2|α, 1) + w12g(2|α, 2) = w21g(2|α, 1) + w22g(2|α, 2),
...

w11g(L|α, 1) + · · ·+ w1Lg(L|α, L) = w21g(L|α, 1) + · · ·+ w2Lg(L|α, L).

By solving these equations, we get w1l = w2l for l = 1, 2, · · · , L. Thus, the mixture of
truncated zeta distributions is identifiable.

In Figure 2, we depict some log-log plots of mixture distributions. We can see that
this model can handle empirical degree distributions that do not follow the power-law
distribution at small degrees.

100 101 102
10−5

10−4

10−3

10−2

10−1
Alpha 2.0
Alpha 2.5
Alpha 3.0

100 101 102
10−5

10−4

10−3

10−2

10−1
Alpha 2.0
Alpha 2.5
Alpha 3.0

Figure 2. The pmfs of the mixture of truncated zeta distributions with L = 4 on a log-log scale.
Mixture weights are w = (0.4, 0.3, 0.2, 0.1) (left) and w = (0.1, 0.4, 0.4, 0.1) (right). Power-law
exponents are α = 2.0 (blue), α = 2.5 (black), and α = 3.0 (red).

4. Estimation Algorithm

We use the Expectation-Maximization (EM) algorithm to estimate the exponent
parameter α and mixture weights w for a given number of mixture components L.
Let k = (k1, k2, · · · , kN) be the observed data, and zn be the membership of kn, where
the membership zn is assigned as zn = l if kn is from the lth mixture component
TZ(α, l). We consider the membership variable z = (z1, z2, · · · , zN) as missing. Let
θ = (α, w) = (α, w1, · · · , wL) be the parameters of the mixture model.

The complete-data likelihood function is given by

L(θ|k, z) =
N

∏
n=1

p(zn|w)g(kn|α, zn)

=
N

∏
n=1

wzn

1
ζ(α, zn)

k−α
n , kn = zn, zn + 1, · · · .

We proceed by taking the logarithms of both sides to have the complete-data log-likelihood
function:

lnL(θ|k, z) =
N

∑
n=1

(ln wzn − ln ζ(α, zn)− α ln kn).

We define Q(θ|θ∗) as the expected value of the log-likelihood given the observed data k
and the current parameter estimate θ∗ = (α∗, w∗), which can be expressed as

Q(θ|θ∗) = E[lnL(θ|k, Z)|k, θ∗]

=
N

∑
n=1

L

∑
l=1

γ(l, n, θ∗)(ln wl − ln ζ(α, l)− α ln kn),
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where γ(l, n, θ∗) is the membership responsibility of the nth observation kn corresponding
to the lth mixture component TZ(α, l). They are defined by the posterior probabilities of
mixture component memberships for each observation,

γ(l, n, θ∗) = P(zn = l|kn, θ∗)

=
w∗l g(kn|α∗, l)

∑L
l′=1 w∗l′g(kn|α∗, l′)

, l = 1, 2, · · · , L, n = 1, 2, · · · , N.
(8)

The E-step computes membership responsibilities.
In the M-step, a new parameter estimate θ̌ = argmaxθ Q(θ|θ∗) is computed using the

quantity previously computed in the E-step. To find w̌, we need to solve the following
optimization problem:

Maximize
N

∑
n=1

L

∑
l=1

γ(l, n, θ∗) ln wl ,

Subject to
L

∑
l=1

wl = 1, and wl ≥ 0, l = 1, 2, · · · , L.

The Lagrange multiplier method yields

w̌l =
1
N

N

∑
n=1

γ(l, n, θ∗), l = 1, 2, · · · , L. (9)

Next, α̌ can be found in the partial derivative of Q with respect to α, given by

∂Q(θ|θ∗)
∂α

= −
N

∑
n=1

L

∑
l=1

γ(l, n, θ∗)

(
ζα(α, l)
ζ(α, l)

+ ln kn

)
.

Here, ζα(α, l) is the partial derivative of the Hurwitz zeta function with respect to α,
given by

ζα(α, l) =
∂ζ(α, l)

∂α
= −

∞

∑
k=l

(ln k)k−α.

Then, the equation

∂Q(θ|θ∗)
∂α

= 0 (10)

gives the desired α̌. Unfortunately, a closed-form solution does not exist in general. In this
paper, we employ Brent’s method [34] to solve Equation (10) with respect to α.

The two steps are necessarily repeated until the convergence obtains the final parame-
ter estimate θ̂. The process is summarized in Algorithm 1.

In order to select the number of mixture components L, we employ the Bayesian
information criterion (BIC) considering the trade-off between the goodness-of-fit and the
complexity of the model. BIC is given by the following formula:

BIC = L ln N − 2
N

∑
n=1

ln p(kn|α, L, w),

where α and w are the obtained estimated parameters given the number of mixture
components L. We choose L giving the smallest BIC, where the candidates of L are
the integers from 1 to the minimum of the two values: 100 and the nearest integer to
0.90×(maximum degree).
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Algorithm 1: EM Algorithm
input :Observed data k = (k1, · · · , kN), the number of components L, and initial

parameter estimate θ̂(0).
1 Initialize: s = 0, converged = False.
2 while not converged do
3 (E-step) Compute γ(l, n, θ̂(s)) in Equation (8) for l = 1, · · · , L, n = 1, · · · , N.

4 (M-step) Find θ̂(s+1) = argmaxθ Q̂
(

θ|θ̂(s)
)

using (9) and (10).

5 if convergence criteria is satisfied then
6 converged← True.
7 θ̂ ← θ̂(s+1).
8 end
9 s← s + 1.

10 end
output :Converged parameter estimate θ̂.

5. Monte Carlo Simulation

We study the validity of the presented estimation methods using the synthetic data.
We consider three values of true power-law exponents α = 2.50, 3.00, 3.50 and also three
values of the number of mixture components L = 2, 4, 6. For each pair of α and L, we
generate 1000 samples from the finite mixture of truncated zeta distributions in Equation (7).
Each process is repeated 30 times. Mixture weights wl , l = 1, 2, · · · , L are set to 1/L for
each dataset.

We assume that the true number of components is given. Algorithm 1 is applied to
each dataset to obtain the parameter estimate θ̂ = (α̂, ŵ). Table 1 presents the parameter
estimation result. We find that the average values of estimated parameters are very close to
the true parameters, implying that the EM algorithm works well in estimating the exponent
parameter α and weights w.

Table 1. Estimates of θ of the EM algorithm applied to the synthetic data with the true number of
mixture components. We present the average (standard deviation in parentheses) values of estimated
parameters θ̂ = (α̂, ŵ) of 30 datasets for each case.

α L wl α̂ ŵ

2.50
2 0.50 2.51(0.05) [0.49(0.02), 0.51(0.02)]

4 0.25 2.51(0.06) [0.25(0.01), 0.25(0.02), 0.25(0.03), 0.25(0.02)]

6 0.17 2.50(0.07) [0.17(0.02), 0.16(0.02), 0.17(0.03), 0.18(0.04), 0.16(0.04), 0.16(0.04)]

3.00
2 0.50 3.01(0.09) [0.49(0.02), 0.51(0.02)]

4 0.25 3.03(0.10) [0.25(0.01), 0.24(0.02), 0.25(0.03), 0.26(0.03)]

6 0.17 3.03(0.11) [0.17(0.01), 0.17(0.02), 0.17(0.03), 0.17(0.03), 0.16(0.03), 0.17(0.03)]

3.50
2 0.50 3.50(0.14) [0.50(0.02), 0.50(0.02)]

4 0.25 3.51(0.13) [0.25(0.02), 0.25(0.02), 0.26(0.02), 0.25(0.02)]

6 0.17 3.50(0.13) [0.17(0.01), 0.17(0.01), 0.17(0.02), 0.17(0.02), 0.15(0.03), 0.17(0.03)]

Next, we assume that the number L of mixture components is not given. We will check
whether the presented algorithm can find the appropriate number of mixture components.
Note that BIC is used as a model selection criterion for the generated datasets. Table 2 shows
the result of determining L. The result indicates that the maximum likelihood method
yields a reasonable estimation result in finding L.
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Table 2. The estimation result of L applied to the maximum likelihood method. L̂ is selected with
the smallest BIC for each dataset. The average, standard deviation, and count of L̂ over 30 datasets
are presented.

α L Average L̂ St.Dev. L̂ Count L̂

2.50
2 2.03 0.18 {2: 29, 3: 1}
4 4.00 0.00 {4: 30}
6 5.87 0.34 {6: 26, 5: 4}

3.00
2 2.00 0.00 {2: 30}
4 4.00 0.00 {4: 30}
6 6.00 0.00 {6: 30}

3.50
2 2.00 0.00 {2: 30}
4 4.00 0.00 {4: 30}
6 5.97 0.18 {6: 29, 5: 1}

6. Application: Collaboration Networks
6.1. The Data

We study the scientific collaboration network obtained from the Web of Science, where
a large-scale database collects the information of all published scientific articles in the
world. Among all 275 disciplines, we randomly choose five, which are Biotechnology
and Applied Microbiology, Computer Science, Environmental Science, Materials Science,
and Physical Chemistry, for demonstration. We reorganize the Web of Science database
into a network data structure such that the nodes of networks are authors, and two authors
are connected by an undirected link if there is at least one paper co-authored by them.
We employ the data from 2007 to 2016 as the inconsistency of author’s names is observed
before the year 2007. The data from 2007 to 2009 are used to accumulate data so that the
dependence of node degrees can be ignorable. We analyze the degree distribution of the
data from 2010 to 2016. Table 3 shows the summary statistics in the year 2016.

Table 3. The summary statistics of collaboration networks in the year 2016. For each field, we present
the number of authors (nodes) and links between them. The mean, median, standard deviation,
and maximum of degrees are also presented.

Field
Number of Degree Distribution

Nodes Links Mean Median St.Dev. Max.

Biotechnology & A. M. 729,478 3,977,919 10.91 7.00 19.52 2250
Computer Science 528,267 1,765,283 6.68 4.00 15.19 989
Environmental Science 680,924 3,291,780 9.67 5.00 17.42 1149
Materials Science 1,154,908 6,861,189 11.88 6.00 28.47 3801
Physical Chemistry 727,213 4,150,183 11.41 6.00 23.42 2260

6.2. Application of the Truncated Zeta Mixture Model

We apply the presented estimation method to degree distributions from 2010 to 2016.
In Figure 3, we plot degree distributions and the estimated fitting lines of the proposed

model in the years 2001 and 2016. The plots suggest that the truncated zeta mixture shows
a good performance in fitting degree distributions. The beginning points (see the vertical
lines in Figure 3) of power-law behaviors are reasonably estimated via L̂. This result shows
the usefulness of the proposed model for the degree distribution that deviates from the
power-law distribution on a small degree part.
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Figure 3. Degree distributions and fitted curves for five fields of scientific collaboration in the years
2010 and 2016. The estimated L values are depicted in blue vertical lines.

Figure 4 shows the temporal changes of L̂ and α̂. The estimated number L of mixture
components exhibits a rising tendency, and α̂ shows an opposite trend. They constantly
move towards large L and small α regions for all fields, indicating that the stabilization
of the degree distribution has not yet been achieved. Many network scientists [1,13,14]
have concentrated on the stationary or the converged degree distribution. The result
implies that, however, non-stationary network models are of great importance, such as
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acceleration models [15]. Moreover, many works in real data analysis have focused on the
power-law exponent of a snapshot of a network. However, the temporal variation of α̂
tells us that the significance of temporal models can account for the temporal change of the
power-law exponent.

2010 2012 2014 2016
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3.4

3.6

Ex
po

ne
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Biotechnology & Applied Microbiology
Computer Science
Environmental Science
Materials Science
Physical Chemistry

Figure 4. The change of the estimated number of mixture components L (top) and power-law
exponents α (bottom).

It should be noted that L̂ tends to approach different values across fields. According to
Equation (3) and the relevant interpretation in Section 1, the number of mixture components
L and mixture weights w are closely related to the distribution of the number of links in the
system. Therefore, L̂ could be a measure to the distribution of the number of links. On the
other hand, α̂ seems to converge a value near 2.80 for all fields, suggesting that α could be
a network-specific quantity instead of a field-specific quantity.

We now focus on the field of Computer Science. Table 4 presents the result of applying
the model to the field of Computer Science in more detail. We can observe an interesting
pattern in the estimated mixture weights, where ŵ1 and ŵ2 show decreasing trends whilst
ŵ3, ŵ4, and ŵ5 show the opposite. According to Jordan’s model [29] and Equation (3),
mixture weights have much to do with the number of newly made links. The decreasing
trend of w1 and w2 and the increasing trend of w3, w4, · · · indicates the increasing number
of links over time. As shown in Table 4, the number of created links tends to increase
over time. Since there are many new links compared to new nodes (authors), the average
degree gradually increased from 4.70 in 2010 to 6.68 in 2016. The increase in the average
degree also explains that the state of this network is still evolving. With the rapid advance-
ment in technology and science, many publications have been produced by researchers.
In particular, Computer Science is making greater progress due to recently emerging areas:
artificial intelligence and big data. The proposed model tries to explain the increasing mean
degree in two ways: decreasing power-law exponents α and an appropriate change in the
mixture weight, suggesting that the proposed model is helpful to describe the change of
the network pattern.
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Table 4. The results of L̂, α̂, ŵ, and BIC using the proposed model for the discipline of Computer
Science. We also present the number of new links and nodes as well as the mean degree over time.

Year Discrete Mixture Number of New Mean Deg.
L̂ α̂ ŵ1 ŵ2 ŵ3 ŵ4 ŵ5 BIC Nodes Links

2010 11 3.07 0.18 0.32 0.25 0.12 0.06 1,010,549 - - 4.70
2011 13 3.06 0.17 0.30 0.25 0.12 0.06 1,241,555 43,237 132,560 4.94
2012 14 3.06 0.16 0.30 0.25 0.13 0.07 1,486,634 45,004 144,305 5.16
2013 13 2.84 0.16 0.30 0.26 0.13 0.07 1,813,101 56,392 256,646 5.78
2014 16 2.86 0.15 0.29 0.26 0.14 0.07 2,137,666 56,091 215,236 6.03
2015 16 2.74 0.15 0.29 0.26 0.14 0.07 2,481,780 57,317 277,983 6.48
2016 16 2.72 0.14 0.28 0.26 0.14 0.07 2,810,563 55,800 234,714 6.68

6.3. Comparison to Other Models

Our model is developed to deal with two essential characteristics of the degree distri-
bution: the non-power-law behavior at small degrees and the discreteness. We study the
superiority of the proposed model to base models that lack one of these characteristics.

We first consider the standard discrete power-law distribution, TZ(α, 1). The estimates
of the power-law exponent α are obtained by fitting the data into TZ(α, 1), and the result is
presented in Table 5. The α̂ estimates of the standard discrete power-law distribution are
smaller than those of the mixture distribution. As we can observe in Figure 5, the small-
degree data that deviates from the power-law makes the exponent small. The estimated
fitting lines indicate that the standard discrete power-law distribution is inappropriate to
describe the degree distribution.
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Mixture of Continuous Power-Laws
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Figure 5. The degree distributions of the collaboration network data of the Computer Science field
in the years 2010 (left) and 2016 (right). The estimated mixture of truncated zeta distributions (red
solid), standard discrete power-law distributions (black dash-dot), and the mixture of continuous
power-law distributions (blue dashed) are presented. Vertical lines refer to the estimated number L̂
of mixture components.

Next, the degree distribution is applied to the mixture of the continuous power-
law distribution using the rounding method with the constant c = 0.5 of the continuity
correction. The continuous version of the mixture of truncated zeta distributions can
be constructed by the substitution of TZ(α, l) to PL(α, l − c). In addition, we imitate
the method in Section 4 for the continuous mixture to compare the performance of the
continuous mixture with the discrete mixture. The estimation procedure is identical to the
case of the discrete mixture model. Table 5 presents the estimation result of α and mixture
weights w. The estimates L̂ and α̂ are much smaller in continuous mixture models due
to the non-exactness of the continuous model. In addition, estimated mixture weights ŵ
are considerably different from the discrete mixture. According to Equation (3), mixture
weights are involved in the distribution of the number of links. Therefore, we should use the
discrete version of the power-law to determine mixture weights correctly. Figure 5 shows
that the fitting lines of the continuous mixture seem to deviate from empirical distributions.

As we can see in Tables 4 and 5, the smallest BIC values are achieved in the proposed
model as well. Thus, we can conclude that the proposed model outperforms the continuous
model as well as the standard discrete power-law model.
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Table 5. The results of L̂, α̂, ŵ, and BIC using the continuous mixture model for the discipline of
Computer Science. Estimated α and BIC for the standard discrete power-law distribution TZ(α, 1)
are also presented.

Year Continuous Mixture Zeta
L̂ α̂ ŵ1 ŵ2 ŵ3 BIC α̂ BIC

2010 4 2.30 0.20 0.40 0.30 1,053,289 1.60 1,170,929
2011 4 2.29 0.19 0.39 0.30 1,290,015 1.59 1,436,579
2012 5 2.29 0.18 0.38 0.30 1,540,812 1.57 1,719,325
2013 5 2.26 0.17 0.37 0.30 1,871,783 1.56 2,090,369
2014 5 2.24 0.16 0.36 0.30 2,201,834 1.55 2,462,841
2015 5 2.22 0.16 0.35 0.31 2,550,130 1.54 2,852,831
2016 5 2.21 0.15 0.34 0.30 2,884,064 1.53 3,229,651

Next, we compare the proposed model with generalized Pareto distributions in which
all degree ranges are covered. We use both continuous and discrete types of generalized
Pareto distributions. The complementary cumulative density function of the continuous
generalized Pareto distribution GPD(µ = 0.5, σ, ξ) is given by

P(X ≥ x) =
(

1 +
ξ(x− µ)

σ

)−1/ξ

, x ≥ µ.

There are few studies concerning the discrete version of the generalized Pareto distribution.
We here use the model in Prieto et al. (2013) [35], expressed as DGP(α, λ, µ = 1). This
distribution has advantages over the continuous distribution since the node degree is dis-
crete. Table 6 shows the results of discrete and continuous generalized Pareto distributions
applied to the field of Computer Science. In Figure 6, we plot fitting results in the years
2010 and 2016.

Table 6. The results of discrete and continuous generalized Pareto distributions applied to the field
of Computer Science.

Year Continuous Generalized Pareto Discrete Generalized Pareto
σ̂ ξ̂ BIC α̂ (104) λ̂ (10−6) BIC

2010 3.54 0.14 1,032,317 2.51 9.53 1,043,227
2011 3.68 0.16 1,267,627 5.42 4.17 1,282,398
2012 3.83 0.16 1,517,145 5.65 3.81 1,535,652
2013 3.93 0.21 1,852,799 5.69 3.34 1,911,678
2014 4.09 0.22 2,183,341 1.40 12.92 2,249,684
2015 4.20 0.25 2,535,774 5.63 2.98 2,633,601
2016 4.31 0.26 2,871,026 3.49 4.65 2,980,178
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Figure 6. The degree distributions of the collaboration network data of the Computer Science field
in the years 2010 (left) and 2016 (right). The estimated fitting lines of continuous (red solid) and
discrete (blue dashed) generalized Pareto distributions are presented.
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Interestingly, Figure 6 suggests that the continuous version has better fitting results.
The discrete version has difficulty in explaining a range of large degrees. We can see that
our model performs better than the two generalized Pareto distributions, as well indicated
by the BIC values (see Tables 4 and 6).

7. Concluding Remark

Inspired by Jordan’s model [29], a novel mixture model for the degree distribution
is proposed to describe the entire range of degrees while maintaining the power-law
or the scale-free property of a network. The truncated zeta distribution enables us to
analyze discrete distributions for accuracy purposes. The parameter estimation procedure
is presented along with the model selection criterion for determining the number of mixture
components. A simulation study shows the validity of the suggested estimation procedure.
The practical performance of the model is studied through the comparison analysis with
the other techniques.

We perform the real data analysis on five disciplines of the scientific collaboration
data obtained from the Web of Science. We observe the increasing tendency in the number
of mixture components and the decreasing tendency in the power-law exponent. In
addition, mixture weights change over time. It can be suggested from these results that the
analyzed networks are still in an evolving state, highlighting the practical importance of
non-stationary temporal network models. The non-convergence of the degree distribution
might be due to the short-term analysis performed. Determining whether the collaboration
network will stabilize the equilibrium remains as future work.

We can observe power-law distributions not only in the degree distribution but also
in sandpile avalanches, species extinctions, city sizes, and so on. The proposed model
could be useful when (i) the distribution does not follow the power-law only in small
values while the power-law is suitable for large values, (ii) the background knowledge
does not support the manual modification of the power-law relationship, or (iii) a mixture
distribution can be regarded as reasonable for describing data.
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