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Abstract: Therapeutic interventions are greatly needed for age-related neurodegenerative diseases.
Astrocytes regulate many aspects of neuronal function including bioenergetics and synaptic transmis-
sion. Reactive astrocytes are implicated in neurodegenerative diseases due to their pro-inflammatory
phenotype close association with damaged neurons. Thus, strategies to reduce astrocyte reactivity
may support brain health. Caloric restriction and a ketogenic diet limit energy production via gly-
colysis and promote oxidative phosphorylation, which has gained traction as a strategy to improve
brain health. However, it is unknown how caloric restriction affects astrocyte reactivity in the context
of neuroinflammation. We investigated how a caloric restriction mimetic and glycolysis inhibitor,
2-deoxyglucose (2-DG), affects interleukin 1p-induced inflammatory gene expression in human astro-
cytes. Human astrocyte cultures were exposed to 2-DG or vehicle for 24 h and then to recombinant
IL-1B for 6 or 24 h to analyze mRNA and protein expression, respectively. Gene expression levels of
proinflammatory genes (complement component 3, IL-1§3, IL6, and TNF«) were analyzed by real-
time PCR, immunoblot, and immunohistochemistry. As expected, IL-1f induced elevated levels of
proinflammatory genes. 2-DG reversed this effect at the mRNA and protein levels without inducing
cytotoxicity. Collectively, these data suggest that inhibiting glycolysis in human astrocytes reduces
IL-1B-induced reactivity. This finding may lead to novel therapeutic strategies to limit inflammation
and enhance bioenergetics toward the goal of preventing and treating neurodegenerative diseases.

Keywords: neurodegenerative disease; caloric restriction; glycolysis; astrogliosis; inflammation;
immunometabolism; 2-deoxyglucose

1. Introduction

The world’s aging population is susceptible to age-related neurodegenerative diseases,
for many of which no effective preventive therapies or treatments are available. Neuroin-
flammation is a hallmark of many neurodegenerative diseases and represents a potential
therapeutic target to improve the health and quality of life of aging populations [1,2].
Microglia and astrocytes produce and perpetuate neuroinflammation in the brain and
are believed to contribute to neurodegeneration when in a chronically reactive state [3-7].
Growing evidence suggests that modulating cellular metabolism may represent a way
to target inflammatory signaling [8-13]. However, few studies have examined whether
altering metabolic signaling in astrocytes affects inflammatory gene expression.

Developing a therapeutic strategy that disrupts inflammatory signaling and restores
bioenergetic homeostasis in the brain would be highly beneficial to people suffering from
disorders of the central nervous system. Recent findings by our group and others suggest
that proinflammatory stimuli cause mitochondrial dysfunction in neurons [8-13]. We have
discovered evidence that reactive astrocytes cause a reduction in the levels of transcription
factor at mitochondria (TFAM) in neurons that results in deficient mitochondrial biogen-
esis [8,9]. Blocking metabolic activity in reactive astrocytes with an anti-inflammatory
cannabinoid receptor agonist (WIN55,212-2 [WIN]) proved neuroprotective in an in vitro
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model for neurons [8]. However, WIN blocked both glycolytic and oxidative metabolism.
Thus, it is unknown if inhibiting glycolysis alters the inflammatory and metabolic pheno-
type of astrocytes.

Astrocytes play a multifactorial role in maintaining brain homeostasis, including but
not limited to energy substrate procurement from the blood, regulation of neurotransmitter
concentrations, blood-brain barrier integrity, and responding to pathogenic stimuli [6,7,14].
Emerging data indicate a complex coupling of metabolic changes to these processes in
astrocytes. Under homeostatic conditions, astrocytes are primarily glycolytic, secreting
lactate as a byproduct to the extracellular space [15,16]. Neurons import this lactate from the
extracellular space and then metabolize it in mitochondria via oxidative phosphorylation
to generate ATP [15,16]. Seminal studies have shown that the astrocyte-to-neuron lactate
shuttle may be important for memory formation and synaptic plasticity, processes that are
implicated to be disrupted in HAND [15,17]. Reactive astrocytes transiently utilize lactate
in OXPHOS to fuel responses to infection and injury [4-10]. Acutely, this metabolic switch
in astrocytes serves to restore homeostasis, but in chronic conditions of neuroinflammation,
this increase in astrocyte mitochondrial activity may deprive neurons of lactate, resulting
in an energy deficit [10-12]. However, recent studies suggest that the astrocyte-to-neuron
lactate shuttle is not as crucial to brain function as once thought [18,19]. There is contrary
evidence that neurons are primarily fueled by glucose that is taken up from the extracellular
space and metabolized sequentially via glycolysis and oxidative phosphorylation [18,19].
Alternatively, there is evidence that neurons can maintain energy levels and neuronal
function in low-glucose environments, such as caloric restriction or ketogenic dieting,
via fatty acid oxidation [20-23]. However, the metabolism of astrocytes in low-glucose
conditions is not well studied. Despite these findings, which metabolic substrates and
downstream processes are most important for fueling astrocyte reactivity is not known.

Chronically reactive astrocytes secrete inflammatory cytokines and may alter blood—brain
barrier permeability as well as the uptake of neurotransmitters from extracellular space in
a way that contributes to the neurodegenerative process [3-7,14,24,25]. Upon immune
stimulation, astrocytes produce inflammatory cytokines and other inflammatory genes
including the complement component 3 (C3) [5,26,27]. Transiently, these changes in gene ex-
pression serve to restore homeostasis, but as with concomitant metabolic changes, chronic
increases in the expression of inflammatory genes may be detrimental to brain health.
Experimental evidence has shown that upregulated levels of C3 can promote the neuroin-
flammatory phenotype of reactive astrocytes and has a role in the pathogenesis of various
neurodegenerative diseases, including AD. Astrocytes also regulate synaptic transmission
by taking glutamate up from the extracellular space surrounding synapses, metabolizing
the glutamate to glutamine, and returning the glutamine to the extracellular space for
uptake by neurons [28]. Reactive astrocytes have reduced capacity to take up glutamate,
and glutamate excitotoxicity may contribute to neurodegeneration [29-31]. However, it
is unknown how astrocyte metabolism may affect inflammatory gene expression and
glutamate regulation.

Caloric restriction and ketogenic diets have been shown to improve brain function.
In rodent models, caloric restriction was found to extend the life span and reduce the
occurrence of age-related diseases [32]. Ketogenic diets have long been used to treat
pediatric epilepsy [20,23]. p-hydroxybutyrate, a by-product of ketosis, has been shown
to improve neuronal function [33]. Studies have shown that 3-hydroxybutyrate may be
neuroprotective by mimicking caloric restriction and reducing inflammation [34]. Despite
these findings, little is known about how astrocytes respond to caloric restriction or a
ketogenic diet, both of which limit reliance on glycolysis for ATP.

In this study, we aimed to determine if inhibiting glycolysis in astrocytes alters their
response to inflammatory cytokines. We found that the caloric restriction mimetic and
glycolytic inhibitor 2-deoxyglucose inhibits IL-13-induced inflammatory gene expression
in a dose-dependent manner. These data suggest that reducing the reactivity of astrocytes
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may be a mechanism through which caloric restriction and ketogenic diets are beneficial to
the brain.

2. Materials and Methods
2.1. Generation of Human Astrocytes

This study was approved by the University of California San Diego Human Research
Protections Program and deemed IRB exempt (Federalwide Assurance #00000021 and
Institutional Review Board #IORG0000210 [7 March 2019]). Astrocytes used in this study
were from a differentiated cell line originally generated prior to 5 June 2019 (as per NIH
NOT-OT-19-128) from fetal human brain tissue from terminated pregnancy between 12 and
16 weeks of gestation, as previously described [35]. Donors gave written informed consent
for research use of the cells and tissue. Tissue was fragmented and mechanically dissociated
using a scalpel and washed 3 times with a HBSS holding medium (Gibco™, Waltham, MA,
USA, cat. n0.14175-095) with 1 mM Glutamax (Gibco, cat. no. 35050-061), 20 pg/mL
Gentamicin (Gibco, cat. no. 15710-064) and 5 mM HEPES (Gibco, cat. no. 15630-080).
Tissue was homogenized with the addition of 15 mL of 0.25% trypsin EDTA (Gibco, cat.
no. 25200-056) for 5 min in a 37 °C incubator. After 5 min, 1 mL of a trypsin inhibitor
(Roche Diagnostics, Indianapolis, IN, USA, cat. no. 10109) and 24 mL of DMEM (Gibco, cat.
no. 11960-044) with human serum (Corning™, Corning, NY, USA, cat. no. 35-060-cl) were
added. The mixture was then centrifuged for 5 min at 4 °C to pellet the cells. Supernatant
was removed and discarded, and the cells were resuspended in 5 mL of DMEM and strained
with a 70 uM strainer (Corning, Falcon®, Durham, NC, USA, cat. no. 352350). The cell
suspension was underlaid with 7 mL of a solution of filtered 8% BSA in PBS and cells were
centrifuged at 1 x 10 rpm at 4 °C for 10 min. The supernatant was removed, and the
cells were resuspended in DMEM with human serum for the astrocyte medium (Gibco,
cat. no. 21103-049)), 1 mM GlutaMAX, and 20 ng/mL Gentamicin. Astrocytes were plated
at a density of 1 x 10”7 /T75 flask and cultured as adherent monolayers. After 1 week, the
astrocyte medium with human serum was replaced with DMEM with 10% fetal bovine
serum (FBS) (Gibco, cat. no. 16000044), 1% penicillin/ streptomycin (P/S) (Corning, cat. no.
30-001-CI-1), and 1% L-glutamine (Gibco, cat. no. 25030-081). Every 3 days, a half medium
exchange was performed. The same donor line was used for all experiments with different
passages being used throughout this study:.

2.2. Treatment of Astrocytes

Astrocytes were cultured in 12-well plates at 500,000 cells/well on the day prior to
treatment. To mimic caloric restriction and inhibit glycolysis, astrocytes were treated with
increasing doses of 2-DG (1, 5, 10, and 20 mM [50 mM concentration was included in the
cytotoxicity assay]) for 24 h. To determine if presence of pyruvate, necessary for oxidative
phosphorylation in the absence of glycolysis, affects 2-DG inhibition of IL-13-induced
gene expression in astrocytes, parallel experiments were conducted using the medium
without pyruvate. To model an inflammatory environment, astrocytes were treated with
IL-1p for 6 h at a concentration of 10 ng/mL, a concentration consistent with the relevant
literature [36]. To assess the effects of 2-DG on expression levels of multiple IL-13-induced
inflammatory genes, astrocytes were pretreated with 2-DG at 20 mM or vehicle for 24 h and
then treated with IL-13 or vehicle for 6 h prior to RNA isolation for analysis by RT-qPCR.

2.3. RNA Isolation and TagMan® Human Inflammation Array and Real-Time Reverse
Transcription Polymerase Chain Reaction (RT?PCR)

Following the 6 h treatment with IL-1f3 (10 ng/mL) on astrocytes cultured in 12-well
plates, the medium was removed from the wells and cells were washed once with PBS.
RNA was extracted using the RNeasy plus mini kit (Qiagen, Germantown, MD, USA,
cat. no. 74136) according to the manufacturer’s instructions. A spectrophotometer was
used to analyze the purity and concentration of RNA samples. For the RT2PCR, RNA was
reverse transcribed into cDNA with a high-capacity cDNA Reverse Transcription Kit (Life
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technologies™, Waltham, MA, USA, cat. no. 4358813) per the manufacturer’s instructions.
Gene expression was determined using RT?PCR TaqMan gene expression assays with the
QuantStudio 3 sequence-detections system (Life Technologies™ ) using Tagman primers
specific to IL-1f3 (cat. no. Hs01555410_m1), IL6 (cat. no. Hs00174131_m1), TNF« (cat.
no. Hs00174128_m1), C3 (cat. no. Hs00163811_m1), and LCN2 (cat. no. Hs01008571_m1).
An ActB (Applied Biosystems™, Waltham, MA, USA, cat. no. 1612290) primer was used as
a normalization control. A master mix was created using 2 x fast advanced master mix
(Thermo Fisher Scientific, Waltham, MA, USA, cat. no. 4444557), 20 x primers, and water.
Each reaction well of a microamp fast optical plate (Applied Biosystems, cat. no. 4346907)
received 8.5 nL of the master mix and 1.5 uL. cDNA. The reactions were carried out at 48 °C
for 30 min, 95 °C for 10 min, followed by 40 cycles of 95 °C for 15 s and 60 °C for 1 min.
Each sample was analyzed in duplicate and their Ct values were collected, exported to an
Excel file, and used to calculate fold changes using the comparative Ct method [37].

2.4. Immunoblot

Cells were plated on 12-well plates at 300,000 or 500,000 cells per well to isolate RNA
and protein, respectively, and treated for 24 h with vehicle, IL-1f 10 ng/mL, 2-DG 20 mM,
or IL-1p 10 ng/mL and 2-DG 20 mM. To determine a dose-response to 2-DG, cells either
received treatment for vehicle, IL-13 10 ng/mL, increasing doses of 2-DG (1, 5, 10, 20,
or 50 mM), or IL-1B and increasing doses of 2-DG (1, 5, 10, 20, or 50 mM). Cells were
treated with vehicle or 2-DG 24 h prior to treatment with IL-1p or vehicle. On the day
following treatment, solution was removed from the cells, and they were washed with
sterile PBS. PBS was removed, and cells were lysed using a solution of 0.1% Triton-X in
PBS with the addition of protease inhibitors. Cells were then centrifuged at 2000 rpm for
5 min to obtain the whole protein lysate. After the protein concentration was determined
using bicinchoninic acid assay (Thermo Fisher Scientific, cat. no. 23225), the samples
were denatured in lamellae sample buffer (Bio-Rad, Hercules, CA, USA, cat. no. 1610747).
Whole-lysate samples were loaded (10 pg total protein/lane) on 4-15% Criterion TGX
stain-free gels (Bio-Rad, cat. no. 5678085), electrophoresed in tris/glycine/SDS running
buffer (Bio-Rad, cat. no. 161-0772), and transferred onto an LF PVDF membrane with
Bio-Rad transfer stacks and transfer buffer (Bio-Rad, cat. no 1704275) using the Bio-Rad
Trans Blot Turbo transfer system. After the transfer, total protein was imaged using a
Bio-Rad ChemiDoc imager under the stain-free blot setting for normalization purposes.
The membranes were then blocked in 1% casein in tris-buffered saline (TBS) (Bio-Rad, cat.
no. 1610782) for 1 h. Membranes were incubated overnight at 4 °C with primary antibodies,
C3 1:500 (Santa Cruz Biotechnology, Inc, Dallas, TX, USA, cat. no. sc-20137) diluted in
blocking buffer. All blots were then washed in PBS-T, and incubated with species-specific
IgG conjugated to HRP (American Qualex, San Clemente, CA, USA, cat. no. A102P5)
diluted 1:5000 in PBS-T and visualized with SuperSignal West Femto Maximum Sensitivity
Substrate (Thermo Fisher Scientific, cat. no. 34096). Images were obtained, and semi-
quantitative analysis was performed with the ChemiDoc gel imaging system and Quantity
One software (Bio-Rad). All experiments were performed in biological replicates of three
and repeated in three independent experiments.

2.5. Quantification of Astrocyte Nuclei

To determine cell numbers after exposure for 24 h to 2-DG, astrocytes were cultured
in 96-well plates and treated as described above (Section 2.2). After treatment with 2-DG,
astrocytes were fixed using 4% paraformaldehyde for 20 min, washed three times with
phosphate-buffered saline (PBS) and then exposed to 2-(4-crbmimidolphenyl)-1H-indole-
6-carmoximidamide, dihydrochloride (DAPI) for 10 min to stain nuclei. Astrocytes were
washed three times with PBS and then visualized using a fluorescent microscope. Five
random images were acquired in each of three wells and DAPI-positive nuclei were counted
in each field of view and quantities compared between treatment groups. Experiments
were performed in triplicate and repeated three times.
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2.6. Cytotoxicity Assay

To determine the cytotoxicity of 2-DG on human astrocytes, cells were cultured in
96-well white tissue culture plates and treated as described above (Section 2.2) and analyzed
for cytotoxicity using the CytoTox-Glo Cytotoxicity Assay (Promega, Madison, WI, USA,
cat. no. G9290) as per the manufacturer’s instructions. Luminescence was measured using
a BioTek multiplate reader. A positive control (lysis buffer) for cell death was used to
calculate the percent cell death in each well and quantities compared between treatment
groups. Experiments were performed in triplicate and repeated three times.

3. Results
3.1. 2-Deoxyglucose Blocks IL-1B-Induced Inflammatory mRNA, IL6, in a Dose-Dependent Manner

To investigate how reactive astrocytes respond when glycolysis is inhibited, we used IL-
1B to stimulate astrogliosis and the glycolytic inhibitor 2-deoxyglucose (2-DG) to experimen-
tally inhibit glycolysis. Primary human astrocyte cultures were pretreated with increasing
concentrations of 2-DG followed by treatment with IL-1f (10 ng/mL). RNA was extracted
and analyzed by RT? PCR to determine the expression of the inflammatory gene IL6. As
expected, IL-1 caused a significant increase in IL6 mRNA levels (*** p < 0.001) compared
to vehicle (Figure 1). Astrocytes pretreated with 2-DG showed reduced IL-1p3-induced IL6
mRNA levels in a dose-dependent manner (Figure 1A,B). The 20 mM 2-DG dose was most
effective at reducing the IL-1p3-induced IL6 mRNA levels by 62% (Figure 1A) and 65%
(Figure 1B) (" p < 0.001) in astrocytes in media with or without pyruvate.

A IL-6 mRNA fold-change B IL-6 mRNA fold-change
(+pyruvate) (-pyruvate)
2000 __**l:'_ 1000 -

IL-6-ACTB
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2-(aaCT)
8

-
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Figure 1. 2-DG blocks IL-13-induced inflammatory gene expression in human astrocytes in a dose-
dependent manner. Human astrocytes were pretreated with increasing concentrations of 2-DG (1, 5,
10, and 20 mM) followed by treatment with IL-1f 6 h prior to RNA isolation and gene expression
analyses by RT2PCR. (A) Fold change of IL6 mRNA levels normalized to ACTB mRNA levels in
the medium containing pyruvate. (B) Fold change of IL6 mRNA levels normalized to ACTB mRNA
levels in the medium without pyruvate. One-way ANOVA was performed to the determine effect
of treatment on IL6 cultured in media with pyruvate (A) [F (9, 10) = 83.52, p < 0.0001] and without
pyruvate (B) [F (9, 10) = 116.1, p < 0.0001]. A post hoc Tukey’s test was conducted with corrected
p-values shown (*** p < 0.001 vs. vehicle; ** p < 0.01; "™ p < 0.001; vs. IL-13-treated cells). ANOVA,
analysis of variance.

3.2. 2-Deoxyglucose Blocks IL-1B-Induced Inflammatory mRNA in Human Astrocyte

To understand how 2-DG affects the expression of IL-13-induced genes, astrocytes
were pretreated with 2-DG (20mM) followed by treatment with vehicle or IL-1f3 (10 ng/mL).
The expression of various inflammatory genes, including IL-13, TNF«, C3, and LCN2,
was analyzed by RT?PCR. Consistent with previous findings, treatment with IL-1p alone
caused a significant increase in the expression of all mRNA transcripts (Figure 2A-D).
Pretreatment of 2-DG (20 mM) followed by stimulation with IL-1f (10 ng/mL) reduced the
effect of IL-13-induced mRNA by 64% for IL-13 (Figure 2A), 53% for TNF« (Figure 2B),
66% for C3 (Figure 2C), and 81% for LCN2 (Figure 2D). Collectively, these data suggest that
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2-DG blocks IL-13-induced inflammatory mRNA production and the degree of this effect
is likely dependent on the targeted gene.
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Figure 2. 2-DG blocks the expression of multiple IL-13-induced inflammatory genes in human
astrocytes. Fold change of IL-13 (A), TNFa (B), C3 (C), or LCN2 (D) mRNA transcript levels
normalized to ACTB mRNA levels in total RNA isolated from human astrocytes. One-way ANOVA
was performed to the determine effect of treatment on IL-18 [F (9, 10) = 505.5, p < 0.0001], TNFo
[F (9,10) =96.72, p <0.0001], C3 [F (9, 10) =796.1, p < 0.0001], and LCN2 [F (9, 10) =516.8, p < 0.0001]. A
post hoc Tukey’s test was conducted with corrected p-values shown (** p <0.01; *** p < 0.001 vs. vehicle;
" p <0.001 vs. IL-13-treated cells).

3.3. IL-1B-Induced C3 Protein Production Hindered by 2-DG in Human Astrocytes

To further investigate the effects of 2-DG on activated C3, astrocytes were pretreated
with vehicle or 2-DG (20 mM) followed by treatment with vehicle or IL-13 (10 ng/mL).
Isolated protein lysates were prepared for immunoblot to validate the observed effects of
2-DG on IL-13-induced gene expression at the protein level. As expected, IL-13-treated
cells showed significant increases in band intensity compared to vehicle, with verification
by densitometry analysis showing a 5.3-fold increase in C3 levels (Figure 3A,B). Astrocytes
treated with 2-DG alone or 2-DG + IL-1(3 showed lower C3 band signals compared to those
treated with IL-1$3 alone (Figure 1A), with densitometry analysis showing a 92.4% and
51.5% decrease, respectively (Figure 1B; *** p < 0.001, *" p < 0.01).
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Figure 3. 2-DG blocks IL-1p-induced C3 protein in human astrocytes. (A) Immunoblot of human
astrocyte treated with IL-1f3 or IL-1p + 2-DG 20 mM with antibody specific for C3, normalized to
total protein. (B) Quantification of C3 band intensity by IL-1 vs. IL-13 + 2-DG 20mM. Statistical
significance was determined by an unpaired t-test. * p < 0.05, ** p < 0.001 vs. vehicle; *" p < 0.01,
" p <0.001 vs. IL-13.

3.4. 2-DG Is Not Cytotoxic to Human Astrocytes

To determine if the 2-DG-induced reduction in the expression of inflammatory genes
by astrocytes is related to cell viability, astrocytes were exposed to increasing doses of 2-DG
(1, 5, 10, and 20 mM) for 24 h and then to IL-1p for 6 h before determining cytotoxicity
by quantifying nuclei and using the CytoTox Glo assay. Quantification of nuclei using
DAPI staining and fluorescent microscopy showed no significant difference in nuclei
numbers between vehicle-treated cultures and cultures treated with increasing doses
of 2-DG (Figure 4A). Interestingly, compared to vehicle-treated astrocytes, significantly
increased luminescence was detected in 2-DG-treated astrocytes in a dose-dependent
manner (Figure 4B).

A B
DAPI-Stained Astrocyte Nuclei o Astrocyte Viability With 2-DG
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Figure 4. 2-DG does not contribute to cell death in astrocytes. (A) Fluorescence imaging and
quantification of nuclei present in astrocyte cultures treated with increasing concentrations of 2-DG
(1, 5,10, and 20 mM). (B) Viable cell luminescence values of astrocytes treated with increasing doses
of 2-DG (1, 5, 10, and 20 mM). One-way ANOVA was performed to the determine effect of 2-DG
treatment on astrocyte viability [F (9, 10) = 11.72, p < 0.001]. A post hoc Tukey’s test was conducted
with corrected p-values shown (* p < 0.05; ** p < 0.01; *** p < 0.001 vs. vehicle).

3.5. 2-DG Blocks IL-1B-Induced Gene Expression in Human Astrocytes

Previous studies have shown that IL-1f3 induces astrocyte inflammatory gene expres-
sion to levels that match neuroinflammation seen in various neurodegenerative diseases [8].
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2-deoxyglucose, a caloric restriction mimetic and glycolytic analog, has been found to
inhibit glycolysis in other cell models [38]. The accumulated evidence of this study shows
that 2-deoxyglucose blocks the IL-13-induced expression of inflammatory molecules in
human astrocytes (Figure 5).

Inflammatory cytokine relevant to
neurodegenerative disease:
IL-18

Astrocyte

2-deoxyglucose =i

Astrocyte inflammatory gene expression:
IL6, TNFa, C3, LCN2, etc.

Figure 5. 2-DG blocks IL-13-induced inflammatory gene expression in human astrocytes. IL-1B
is a prototypic inflammatory cytokine that is relevant to many neurodegenerative diseases. IL-1f3
was used here to model neuroinflammation while 2-DG was used to mimic caloric restriction, a
phenomenon relevant to fasting and exercise, both of which may have beneficial effects on the brain.
Our findings indicate that 2-DG reduces the IL-1B-induced expression of inflammatory genes in
astrocytes including, but not limited to, IL6, TNFa, C3, and LCN2. This finding may partially explain
the beneficial effects of exercise, caloric restriction, and ketogenic diets. Future studies will further
investigate the mechanisms through which 2-DG is reducing astrocyte inflammatory gene expression
as well as the downstream effects on neuronal functioning and blood-brain barrier integrity.

4. Discussion

This study is the first to show that a caloric restriction mimetic, 2-DG, has inhibitory ef-
fects on inflammatory signaling and metabolism in human astrocytes. In a dose-dependent
manner, 2-DG diminished IL-1p-induced inflammatory gene expression in human astro-
cytes. Specifically, 2-DG reduced the expression of the inflammatory genes C3, TNF«, LCN2,
and IL6, all of which are implicated in various neurodegenerative and neurological diseases.
These findings suggest that inflammatory signaling in the brain may be amenable to manip-
ulation via modifying the availability of metabolic substrates. Furthermore, these findings
may offer a novel paradigm for therapeutic targeting of neurodegenerative diseases.

Many neurodegenerative and neurological disorders are associated with metabolic
abnormalities [39]. Alzheimer’s disease, Parkinson’s disease, and HIV-associated neurocog-
nitive disorders all feature altered metabolic profiles and mitochondrial abnormalities in
the brain compared to age-matched controls [39-43]. Patients with diabetes are at higher
risk for developing inflammatory and neurodegenerative-related diseases, suggesting that
altered glucose metabolism may predispose to such ailments [44—46]. The findings pre-
sented here are consistent with studies showing that caloric restriction and ketogenic diets
may be anti-inflammatory and neuroprotective in models for neurodegenerative disease.
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Reactive astrocytes, inflammatory cytokines, complement component proteins, and
other inflammatory genes are all involved in development and progression of neurodegen-
erative diseases. Liddelow et al. (2017) found that the complement protein C3 is a marker
of reactive astrocytes [4,5]. Moreover, C3 expression is associated with metabolic abnor-
malities in disease [47]. Our recent results show that IL-1 induces inflammatory gene
expression and metabolic changes in astrocytes in ways that are consistent with neurode-
generative diseases [8]. Due to the central role of astrocytes in regulating brain homeostasis
by procuring energy substrate from the peripheral blood supply, regulating BBB integrity,
and modulating synaptic function, prolonged astrocyte reactivity may compromise brain
function. Our recent studies show that in vitro reactive astrocytes are neurotoxic and
reducing astrocyte metabolism may be neuroprotective in this context [8]. Thus, reducing
the activation of astrocytes may be neuroprotective via restoring proper functioning of
astrocyte processes. The findings here showing that 2-DG inhibits IL-13-induced gene
expression in the absence or presence of pyruvate suggests that inhibiting glycolysis is
sufficient to reduce inflammatory signaling in astrocytes. Future studies are needed to
determine if energy substrates that promote oxidative phosphorylation over glycolysis
alter the number and characteristics of reactive astrocytes in animal models specific for
neurodegenerative diseases.

Oxidative stress, altered autophagy, and dysfunctional mitochondrial function are all
associated with neurodegenerative diseases [48-57]. Accumulation of oxidized lipids and
proteins is associated with multiple neurodegenerative diseases [58-60]. The accumulation
of oxidative damage may stem from a combination of mitochondrial dysfunction leading
to over production of reactive oxygen species coupled with reduced autophagy, resulting
in reduced turnover of damaged lipids, proteins, and organelles. It has been postulated
that caloric restriction reduces the amount of glucose available as a substrate and induces
ketogenesis, which increases turnover of damaged macromolecules [61,62]. Our data
suggest that in addition to these changes, caloric restriction may inhibit inflammation,
which is consistent with the neuroprotective effects of caloric restriction observed in models
for neurodegenerative diseases.

2-DG has been shown in multiple studies to be toxic to tumor cells and for this reason
has been investigated as a therapy against cancer [63]. However, these studies show that
2-DG is not toxic to human astrocyte cultures. This difference in effects on tumor cells and
human astrocytes may be due to tumor cell dependence on glycolysis whereas astrocytes
are able to switch from glycolysis to oxidative phosphorylation. This mechanism needs to
be further investigated in futures studies.

Despite the exciting findings presented here, this study has several limitations and
further investigation is needed. These studies do not determine if 2-DG prevents the
neurotoxicity of reactive astrocytes that has been demonstrated in experiments by our
group and others. Further, this study was limited in the investigation of a single donor
line of human astrocytes and did not evaluate the effects 2-DG has on the relationship
between astrocytes and neurons. This study also does not determine in a comprehensive
way the gene expression changes that are induced by 2-DG, nor does it sufficiently evaluate
these effects at the protein level. As previously mentioned, more studies are needed to
determine the effects of caloric restriction and ketogenic diets on astrocytes and neuropro-
tection in vivo. This study does not measure astrocytic metabolic function, ATP, or lactate
levels produced by astrocytes exposed to IL-1f3 and 2-DG, important molecules to better
understand effects on astrocytes. Future studies are being designed to fully understand the
potential of 2-DG, caloric restriction, and ketogenic diets to modulate astrocyte function
and provide neuroprotection for a wide range of neurodegenerative diseases.

5. Conclusions

These findings lay the groundwork to investigate how energy substrate utilization
may alter astrocyte biology, glutamate signaling, neuroinflammation, blood—brain bar-
rier integrity, neurodegeneration, and overall brain health. Considering the widespread
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occurrence of metabolic disorders and diseases such as diabetes, which are associated
with neurological dysfunction, modulating metabolism in a neuroprotective manner may
represent a much-needed strategy to improve brain health. Future studies are needed
to further determine metabolic strategies to prevent brain dysfunction in individuals
and populations.
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