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Besides the pinpointing of individual disease-related genes, associating protein complexes to human inherited diseases is also of
great importance, because a biological function usually arises from the cooperative behaviour of multiple proteins in a protein
complex. Moreover, knowledge about disease-related protein complexes could also enhance the inference of disease genes and
pathogenic genetic variants. Here, we have designed a computational systems biology approach to systematically analyse potential
relationships between diseases and protein complexes. First, we construct a heterogeneous network which is composed of a disease-
disease similarity layer, a tissue-specific protein-protein interaction layer, and a protein complex membership layer. Then, we
propose a random walk model on this disease-protein-complex network for identifying protein complexes that are related to a
query disease. With a series of leave-one-out cross-validation experiments, we show that our method not only possesses high
performance but also demonstrates robustness regarding the parameters and the network structure.We further predict a landscape
of associations between human diseases and protein complexes. This landscape can be used to facilitate the inference of disease
genes, thereby benefiting studies on pathology of diseases.

1. Introduction

With a vast amount of genetic variants detected by such tech-
niques as traditional genome-wide association studies [1, 2]
and recent exome sequencing studies [3, 4], connecting func-
tional implications of these genetic variants to human inher-
ited diseases has now become a standard task [5]. For genetic
variants occurring in protein coding regions, a typical
approach to this task is to screen out a set of candidate genes
around the genomic positions where the genetic variants
occur and then prioritize the candidates to identify genes that
aremost likely to be associatedwith a disease of interest [6, 7].

To achieve this goal, quite a few approaches have been
proposed from the perspective of computational systems
biology. For example, Endeavour resorted to the guilt-by-
association principle [8] to rank candidate genes according to
their functional similarities to a set of predefined seed genes

[9]. Cipher integrated a phenotype similarity profile and a
protein-protein interaction (PPI) network to make a global
inference of disease genes [10]. The idea of relying on phe-
notype similarities between diseases instead of between pre-
defined seed genes tomake inferences has then been extended
by a series of methods, including RWRH [11], PRINCE [12],
AlignPI [13], MAXIF [14], and many others [15–17]. In these
studies, PPI networks have also been dominantly used to
provide a simplified yet systematic measure of functional
similarities between gene products [7], and recent studies
have shown the advantage of using tissue-specific PPI net-
works over using generic ones [18–20].

However, a biological function usually arises from the
cooperation of multiple proteins. These proteins link to each
other by noncovalent interactions, forming a protein com-
plex. Hence, genetic variants occurring at different loci might
affect the structure of amember protein of a complex, alter the
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function of the entire complex, and cause a disease. For exam-
ple, it has been reported that seven pathogenic genes respon-
sible for a heterogeneous syndrome called Fanconi anemia
(FA) form a protein complex with functions related to DNA
repair [21]. Therefore, besides the prioritization of candidate
genes for a disease of interest, it is also of great importance
to identify protein complexes underlying a query disease,
thereby shedding light on biological processes and functional
mechanisms of the occurrence and development of the
disease under investigation.

Some methods for identifying disease genes have paid
attention to linking protein complexes to diseases and then
made use of such information to facilitate the prediction of
disease genes. For example, Lage et al. proposed to identify
the aggregates of proteins connected to a candidate protein
in a PPI network as a protein complex by a virtual pull-down
procedure and infer the association between the candidate
protein and a query disease based on members of the protein
complex [15]. Vanunu et al. proposed to analyze the PPI
network and to establish a prioritization procedure in order
to identify densely connected subnetworks that contain high
scoring proteins as disease-related protein complexes [12].
Yang et al. proposed to infer disease genes from relationship
between protein complexes and diseases [22]. These studies
demonstrate that association relationships between protein
complexes and a query disease could enhance the inference
of disease genes. However, so far it still lacks a computational
approach to systematically analyze potential relationships
between known protein complexes and human diseases.

With the above understandings, we propose in this
paper a computational systems biology approach for the
identification of protein complexes that are related to a
query disease via a random walk model on a heterogeneous
network that is composed of a disease-disease similarity layer,
a tissue-specific protein-protein interaction layer, and a
protein complex membership layer. Starting from the query
disease at the disease layer, our method simulates the process
in which a random walker travels in the three-layered
disease-protein-complex network, scores a protein complex
using the probability that the walker stays in the protein
complex at the steady state, and then ranks candidate pro-
tein complexes according to their scores. With a series of
large-scale leave-one-out cross-validation experiments, we
systematically show that our method not only possesses high
performance but also demonstrates robustness to parame-
ters involved and the network structure. As an application
of our approach, we predict a landscape of associations
between human diseases and known protein complexes
and provide free downloads of the prediction results at
http://bioinfo.au.tsinghua.edu.cn/jianglab/complex.

2. Methods

2.1. Overview of the ProposedMethod. Wemodel the problem
of identifying protein complexes associated with a query
disease as a prioritization problem and propose to solve
this problem with a three-step approach. As illustrated in
Figure 1, given a query disease and a set of predefined protein

complexes as inputs, we first identify the tissue to which
the disease is most likely related. Then, we construct a
tissue-specific disease-protein-complex heterogeneous net-
work, which is composed of three layers: a disease-disease
similarity layer on the top, a protein-protein interaction layer
in the middle, and a protein complex membership layer at
the bottom. In this procedure, we use a PPI network that is
specific to the tissue identified in the first step as the middle
layer. Finally, we apply a random walk with restart algorithm
to the three-layer network to calculate a score for each
candidate complex and further rank the candidates to obtain
a ranking list as the output.

2.2. Construction of the Disease-Protein-Complex Network.
The disease-protein-complex network is composed of three
layers. The top layer is a disease-disease similarity network
derived from a phenotype similarity profile [23]. The middle
layer is a tissue-specific PPI network derived using generic
PPI information [24] and tissue-specific gene expression data
[25].The bottom layer reflects relationships between proteins
and complexes that are extracted from the database [26].

At the top layer, given a disease phenotype similarity
profile (a real-valuedmatrix) that quantifies pairwise overlaps
of diseases in their clinic traits, we construct the disease-
disease similarity network by using two strategies. First, with
a 𝑘-nearest neighbour (𝑘-NN) strategy (used as the default in
our study), we link each disease to its 𝑘 nearest neighbours,
which correspond to the 𝑘 highest phenotype similarity
scores. Second, with a 𝛿-threshold strategy, we set up a cut-off
value 𝛿 and then connect two diseases by an undirected edge
if and only if their similarity is greater than or equal to the
cut-off. In both strategies, we further consider two variations
for edges: weighting edges by the original similarity values or
treating edges as unweighted.

At themiddle layer, given generic PPI network and tissue-
specific gene expression data, we get a tissue-specific PPI
network from the literature [18]. These networks have been
constructed by using one of the two following strategies. The
first one is a näıve node removal (NR) strategy: a tissue-
specific network is constructed by removing proteins that
are not expressed in the given tissue from the generic PPI
network. The second one is an edge reweight (ERW) strategy
(used as the default in our study): each edge in the tissue-
specific network is assigned a weight (controlled by a param-
eter 0 ≤ rw ≤ 1 with default value 0.1 [18]), reflecting the
possibility that both endpoints of the edge are expressed in the
given tissue. We further connect the top layer and the middle
layer by undirected edges that correspond to known associ-
ations between diseases and proteins, and we weight these
edges by a positive real-valued parameter 𝛼.

At the bottom layer, given a collection of protein com-
plexes, we connect each of them to all of its member proteins
in the PPI network at the middle layer by undirected edges,
while leaving protein complexes unconnected.We weight the
introduced edges by a positive real-valued parameter 𝛽.

Formally, we describe the disease-disease similarity net-
work by a weight matrixD = (𝑑

𝑖𝑗
)
𝑙×𝑙
, where 𝑙 is the number of

diseases and 𝑑
𝑖𝑗
is the weight of the edge between the 𝑖th and
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Figure 1: Illustration of the proposed method. Our method takes as inputs a query disease and a set of candidate protein complexes and
gives a ranking list of the candidates as the output. For this purpose, we construct a tissue-specific disease-protein-complex heterogeneous
network, apply a randomwalk with restart algorithm to the network to obtain scores for candidate protein complexes, and rank the candidates
according to their scores.

𝑗th diseases or 0 if the edge is absent. We describe the tissue-
specific PPI network by a weight matrix P = (𝑝

𝑖𝑗
)
𝑚×𝑚

, where
𝑚 is the number of proteins and 𝑝

𝑖𝑗
is the weight of the edge

between the 𝑖th and 𝑗th proteins or 0 if the edge is absent. We
describe connections between the diseases and proteins by a
weight matrix A = (𝑎

𝑖𝑗
)
𝑙×𝑚

, where 𝑎
𝑖𝑗

= 𝛼 is the weight of
the edge between the 𝑖th disease and the 𝑗th proteins or 0 if
the edge is absent.We describe connections between proteins
and complexes by a weight matrix B = (𝑏

𝑖𝑗
)
𝑚×𝑛

, where 𝑏
𝑖𝑗
= 𝛽

is the weight of the edge between the 𝑖th protein and the 𝑗th
complex or 0 if the edge is absent. Put together, the disease-
protein-complex network can be represented using a block
matrix, as

H = (

D A 0
A𝑇 P B
0 B𝑇 0

) , (1)

where 0 stands for a zero matrix and the superscript 𝑇 stands
for the transposition of a matrix.

2.3. Random Walking on the Disease-Protein-Complex Net-
work. We achieve the goal of identifying protein complexes
related to a specific query disease by calculating a score for
each candidate complex and then rank the candidates to
obtain a ranking list.Thehigher the rank, themore likely to be
related to the query disease. For this purpose, we adapt the
random walk with restart model [11, 27] to the constructed
disease-protein-complex network.

At a quick glance, our model simulates the process that
a random walker wanders on the three-layered disease-
protein-complex network. When starting on, the walker
chooses the query disease of interest as the starting point. In
each step of the walking process, the walker may start on a
new journey with probability 𝛾 or move on with probability

1 − 𝛾. When moving on, the walker may move at random to
one of its direct neighbours in the same layer, jump from the
disease layer to the protein layer or vice versa, or jump from
the protein layer to the complex layer or vice versa.

Formally, as illustrated in Algorithm 1, we use a vector
q(0) = (𝑞

(0)

𝑖
)
(𝑙+𝑚+𝑛)×1

to represent initial probabilities when a
randomwalker starts a journey, with 𝑞

(0)

𝑖
(𝑖 = 1, . . . , 𝑙+𝑚+𝑛)

being the probability that the walker initially starts from the
𝑖th node. In this vector, the element corresponding to the
query disease is set to 1, and all of the other elements are
set to 0. We normalize each row of the weight matrix H for
the disease-protein-complex network to obtain a transition
matrix T = (𝑡

𝑖𝑗
)
(𝑙+𝑚+𝑛)×(𝑙+𝑚+𝑛)

, in which 𝑡
𝑖𝑗

= ℎ
𝑖𝑗
/∑
𝑙+𝑚+𝑛

𝑗=1
ℎ
𝑖𝑗

represents the probability that a random walker moves from
the 𝑖th node to the 𝑗th node, with each node being a disease,
a protein, or a complex. We use a vector q(𝑡) = (𝑞

(𝑡)

𝑖
)
(𝑙+𝑚+𝑛)×1

to represent probabilities that the random walker stays on
nodes at step 𝑡, with 𝑞

(𝑡)

𝑖
(𝑖 = 1, . . . , 𝑙 + 𝑚 + 𝑛) being the

probability that thewalker stays on the 𝑖th node.We thenhave
the iterative updating formula as

q(𝑡+1) = (1 − 𝛾)T𝑇q(𝑡) + 𝛾q(0). (2)

After a number of updates, the probabilities that the random
walker staying on nodes will reach a steady state, which can
be determined by checking whether the difference between
q(𝑡) and q(𝑡+1) is sufficiently small. In our implementation, we
check whether the 𝐿

2
norm of Δq = q(𝑡+1) − q(𝑡) is less than

or equal to a small positive number 𝜖 (with the default value
10
−5). With the steady-state probability (denoted by q(∞))
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Require: A query disease 𝑖, the transition matrix T of the disease-protein-complex network.
Ensure: A score for each protein complex.

(1) q(0) ← 0; 𝑞(0)
𝑖

← 1;
(2) Δq ← +∞; 𝑡 ← 0;
(3) WHILE Δq ≥ 𝜖

(a) q(𝑡+1) = (1 − 𝛾)T𝑇q(𝑡) + 𝛾q(0);
(b) Δq ←


q(𝑡+1) − q(𝑡);

(c) 𝑡 ← 𝑡 + 1;
(4) END
(5) q∞ ← q(𝑡);
(6) FOR j FROM 1 TO n

(a) 𝑠
𝑗
= q(∞)
𝑙+𝑚+𝑗

/∑
𝑛

𝑗=1
q(∞)
𝑙+𝑚+𝑗

;
(7) END

Algorithm 1: The random walk algorithm on the disease-protein-complex heterogeneous network.

obtained, we further calculate a normalized score 𝑠
𝑖
for the

𝑖th complex as

𝑠
𝑖
=

𝑞
(∞)

𝑙+𝑚+𝑖

∑
𝑛

𝑖=1
𝑞
(∞)

𝑙+𝑚+𝑖

(3)

and use this score to quantify the strength of association
between the complex and the query disease.With such scores
calculated for candidate complexes, we further rank the
candidates in nonincreasing order according to their scores
to obtain the final ranking list.

In this paper, we set the default values for the parameters
as disease-protein weight 𝛼 = 1, protein-complex weight 𝛽 =

1, and restart probability 𝛾 = 0.5. By simulation studies, we
find that our model is not sensitive to these parameters (see
results for details).

2.4. Validation Method. We adopt a leave-one-out cross-
validation experiment to assess the capability of our method
to identify protein complexes that are associated with human
diseases. For this reason, we define a protein complex as
associated with a disease if at least onemember protein of the
complex has been annotated as associated with the disease,
and we collect a set of test protein complexes as those associ-
ated with at least one disease. Then, in each validation run,
we take a test protein complex, identify a query disease as
the one with which the complex is associated, pretend that
all annotated associations between the query disease and pro-
teins (or corresponding genes) are unknown, and then rank
the test protein complex against a collection of control protein
complexes.

In the context of the disease-protein-complex network,
the above validation procedure is equivalent to remove all
edges connecting the query disease and proteins and see
whether protein complexes containing these proteins could
receive high ranks. In the context of genetics, this validation
procedure is equivalent to hide all known genetic bases of
the query disease and see whether some of them could be
recovered at the protein complex level.

2.5. Evaluation Criteria. We adopt three classes of criteria to
quantify the performance of ourmethod. First, let us suppose
that we have performed a total of 𝑁 validation runs and
collected the same number of ranking lists. We calculate a
criterion named TOP which is the number of test protein
complexes ranked first in their corresponding list. We also
divide this number by𝑁 to obtain the fraction of first ranked
test protein complexes and call this fraction precision (PRE).
Second, we calculate the average rank of all test protein
complexes as the second criterion called mean rank (MR).
Alternatively, we normalize ranks of test protein complexes
by the lengths of ranking lists to obtain relative ranks, and
we calculate the average relative rank of all test protein
complexes to obtain mean relative rank (MRR). Third, given
a threshold of the relative rank, we calculate the sensitivity
(true positive rate) as the fraction of test protein complexes
ranked above the threshold and the specificity (true negative
rate) as the fraction of control protein complexes ranked
below the threshold. Varying the threshold value from 0.0 to
1.0, we draw a rank receiver operating characteristic (ROC)
curve and further calculate the area under this curve (AUC).
Obviously, larger TOP (PRE)/AUC and smaller MR/MRR
indicate higher performance.

3. Results

3.1. Data Sources. We obtained disease-tissue associations
from the literature [28]. Briefly, Lage et al. studied co-
occurrence patterns of disease-tissue pairs in PubMed
abstracts and quantified the strength of association between a
disease and a tissue by a normalized Ochiai’s coefficient [29],
resulting in a matrix that contains association scores between
926 diseases and 60 tissues. Following the literature [18], we
associated a disease with the tissue of the highest score among
all tissues, obtaining a total of 926 disease-tissue associations.

We obtained disease-disease similarity scores from the
literature [23]. Briefly, van Driel et al. used terms in the
anatomy and disease sections of themedical subject headings
vocabulary (MeSH) [30] as a standard vocabulary to analyse
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Figure 2: Performance of the proposed method. (a) Histogram of the ranks for the test protein complexes in the validation experiment. (b)
The rank receiver operating characteristic (ROC) curve.

the full-text and clinical synopsis fields of OMIM records. By
characterizing a disease using a vector composed of weighted
phenotypic terms, they quantified the similarity between
two diseases as the cosine of the angle of their vectors and
obtained a matrix that contains pairwise similarity scores for
5,080 diseases [23].

We obtained tissue-specific PPI networks from the litera-
ture [18]. Given a specific tissue and a generic PPI network
(9,998 proteins as nodes and 41,049 interactions as edges)
extracted from the Human Protein Reference Database
(HPRD) [24], Magger et al. derived two tissue-specific PPI
networks for each of the 60 tissues by using both the edge
reweight strategy and the node removal strategy [18].

We extracted disease-protein associations from the
Ensembl database using the tool Biomart [31], obtaining a
total of 5,164 associations between 3,504 diseases and 3,066
proteins (on February 26, 2013). Focusing on diseases with
similarity scores and proteins that can be mapped back to the
HPRD database, we obtain 1,962 associations between 1,548
diseases and 1,244 proteins.

We extracted 1,343 human protein complexes from the
core set of the CORUM database (release in February 2013)
[26], each of which contains at least one protein that can
be mapped back to the HPRD database. By considering a
protein complex as associated with a disease if at least one
of its member protein has been annotated as associated with
the disease, we collected a set of 939 disease-related protein
complexes as test cases.

3.2. Performance of the Proposed Method. With the collected
data and the default parameter setting (𝑘 = 15, 𝛼 = 1, 𝛽 = 1,
𝛾 = 0.5), we constructed a disease-protein-complex network
that was composed of 5,080 diseases, 9,998 proteins, and
1,343 protein complexes. There were a total of 107,661 edges

in the network, among which 58,448 are between diseases,
41,049 are between proteins, 1,962 are connecting diseases
and proteins, and 6,202 are connecting proteins and protein
complexes.

We then performed the leave-one-out cross-validation
experiment using this network and showed the results in
Figure 2. By counting the number of test protein complexes
with different ranking position, we observed that 83 (8.84%)
test cases were ranked first, 163 (17.36%) were ranked among
top 5, 221 (23.54%) were ranked among top 10, and 281
(29.93%) were ranked among top 20. In contrast, a random
guess procedure that assigns ranks to protein complexes at
random was only expected to rank 0.70 (0.07%) test cases at
first (939/1343 ≈ 0.7, 1/1343 ≈ 0.07%), 3.50 (0.37%) among
top 5, 6.99 (0.74%) among top 10, and 13.98 (1.49%) among
top 20. These results, as illustrated in Figure 2(a), therefore
strongly suggest the effectiveness of our method in identi-
fying disease-related protein complexes from a collection of
candidates.

We further calculated the proposed evaluation criteria
in Algorithm 1 and plotted the ROC curve in Figure 2(b).
According to these results, our method achieves a TOP
(PRE) of 83 (8.84%), a mean rank (mean relative rank) of
169.04 (12.59%), and an AUC of 88.44%, also supporting the
effectiveness of this approach. The ROC curve, as shown in
Figure 2(b), climbs fast towards the top-left corner of the plot
and again suggests the effectiveness of our method.

A näıve thinking of identifying disease-related protein
complex is to quantify the strength of associations between
proteins and the query disease and then sum over the scores
of member proteins to obtain a score for a protein complex.
The main difference between this naı̈ve approach and our
method is thatwhen a protein is contained inmultiple protein
complexes, the score of the protein will be counted multiple
times (once for a protein complex) in the näıve approach,
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Table 1: Comparison of the proposed approach and the näıve
approach.

Proposed method Näıve approach
Top (PRE) 83 (8.84%) 75 (7.99%)
MR (MRR) 169.04 (12.59%) 180.49 (13.44%)
AUC 88.44% 87.57%

while with our method, such phenomenon will not happen
because the probability of going out from the protein will
be distributed uniformly to the multiple protein complexes
in the random walk procedure. We performed a compar-
ison between these two methods and showed the results
in Table 1. It is clear, according to this table, that our approach
outperforms the näıve approach in all of the three criteria. In
detail, ourmethod achieves a TOPof 83, amean rank of about
169.04, and an AUC of 88.44%, while the naı̈ve approach
obtains these criteria as 75, 180.49, and 87.57%, respectively, all
supporting the conclusion that our method performs better
than the näıve approach.

3.3. Comparison of Different Strategies for Constructing the
Disease Similarity Layer. We considered two strategies for
constructing the disease similarity network at the top layer
of the disease-protein-complex network: the 𝑘-nearest neigh-
bour (𝑘-NN) strategy and the 𝛿-threshold strategy. In both
strategies, we further considered two variations: weighting
edges by the original similarity values or treating edges as
unweighted.We then conducted a comparative study of these
strategies and presented the results in Figure 3.

We first observe that our method with the weighted
disease similarity network outperforms that with the
unweighted one in terms of the precision of test protein
complexes (PRE), and the difference between these two
variations is subtle according to the other two criteria (MRR
and AUC), though the weighted one slightly outperforms the
unweighted one. For example, with the 𝑘-NN strategy and
the default parameter setting, the PRE, MRR, and AUC are
8.84%, 12.59%, and 88.44% for the weighted variation,
respectively, and 7.88%, 12.71%, and 88.32% for the
unweighted one, respectively. Using the 𝛿-threshold strategy
(𝛿 = 0.35)with the default parameter setting, the PRE, MRR,
and AUC are 6.28%, 13.69%, and 87.34% for the weighted
variation, respectively, and 5.64%, 13.72%, and 87.30% for
the unweighted one, respectively. With these observations,
we conjecture that the weighted disease similarity network is
preferred by our method and will use this network as the top
layer of our disease-protein-complex network in the rest of
this paper.

Second, we also observe that our method is quite robust
to the number of neighboring diseases in the 𝑘-NN strategy.
All of the three criteria only show small fluctuations in a wide
range of the parameter 𝑘. Focusing on weighted networks,
the PRE, MRR, and AUC are in general greater than 3.94%
16.25%, and 84.76%, respectively, when 𝑘 is greater than 10
and less than 500, with the optimum values of these criteria
achieved at 𝑘 = 15, 20, and 20, respectively. For the 𝛿-
threshold strategy, our method is also quite robust when

Table 2: Comparison of different strategies for constructing the
protein-protein interaction network.

Edge reweight Node removal HPRD
TOP (PRE) 83 (8.84)% 83 (8.84)% 75 (7.99)%
MR (MRR) 169.04 (12.59%) 168.52 (12.55%) 187.65 (13.97%)
AUC 88.44% 88.49% 87.03%

the cut-off value 𝛿 is not too large. Also focusing on weighted
networks, the PRE, MRR, and AUC are in general greater
than 3.30%, 20.97%, and 79.99%, respectively, when 𝛿 is
greater than 0.25 and less than 0.45, with the optimum
values of these criteria achieved at 𝛿 = 0.45, 0.35, and 0.35,
respectively. With these observations, we conclude that the
selection of the parameters 𝑘 and 𝛿 is not critical and kind of
flexible. To achieve a balance over all of the three criteria, we
recommend to select 𝑘 = 15 and 𝛿 = 0.35 as default values of
these parameters.

Third, we notice that the 𝑘-NN strategy gives us higher
performance than the 𝛿-threshold does in a wide range of
parameter settings. When comparing the performance at the
default parameters, the PRE, MRR, and AUC are 8.84%,
12.59%, and 88.44%, respectively, for the 𝑘-NN strategy
and 6.28%, 13.69%, and 87.34%, respectively, for the 𝛿-
threshold strategy. Around these parameters, the 𝑘-NN
strategy exhibits consistent higher performance than the 𝛿-
threshold strategy in terms of bothMRRandAUC.Therefore,
we recommend the use of the 𝑘-NN strategy in the construc-
tion of the disease similarity network.

3.4. Comparison of Different Strategies for Constructing the
Protein-Protein Interaction Layer. We considered two strate-
gies to construct the tissue-specific PPI network at themiddle
layer of the disease-protein-complex network: the node
removal strategy and the edge reweight strategy. Besides, we
also considered the use of a tissue-nonspecific PPI network
extracted from the HPRD database as the middle layer. We
then performed a comparison study of these strategies and
presented the results in Table 2.

We first observe from this table that the difference
between the node removal strategy and the edge reweight
strategy is subtle. For example, with the default parameter set-
ting, the PRE,MRR, and AUC are 8.84%, 12.55%, and 88.49%
for the node removal strategy, respectively, and 8.84%,
12.59%, and 88.44% for the edge reweight strategy, respec-
tively. This observation is consistent with a previous study
about relying on a tissue-specific PPI network to prioritize
candidate genes [18]. Therefore, following the literature [18],
we focus on the edge reweight strategy in our study because
the network constructed using this strategy exhibits preferred
properties in connectivity.

We then notice from Table 2 that the tissue-specific PPI
network gives us a better performance than the tissue-
nonspecific one. For example, with the default parameter
setting, the PRE, MRR, and AUC are 8.84%, 12.59%, and
88.44% for the tissue-specific PPI with edge removal strategy,
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Figure 3: Comparison of different strategies for constructing the disease similarity layer. ((a)–(c)) PRE,MRR, andAUC for the 𝑘-NN strategy.
((d)–(f)) PRE, MRR, and AUC for the 𝛿-threshold strategy.

respectively, and 7.99%, 13.97%, and 87.03% for the tissue-
nonspecific one, respectively. Therefore, we use the tissue-
specific PPI network as the middle level of our disease-
protein-complex network.

3.5. Robustness to the Parameters Involved. There are three
main parameters involved in our method: the weights of the
disease-protein connections (𝛼), the weights of the protein-
complex connections (𝛽), and the restart probability in
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Figure 4: Influence of the parameters involved. (a) Influence of theweights of the disease-protein connections (𝛼). (b) Influence of theweights
of the protein-complex connections (𝛽). (c) Influence of the restart probability (𝛾).

the random walk model (𝛾). To study the influence of these
parameters on our method, we performed a comparative
study on different values of these parameters and presented
the results in Figure 4.

The weights of the disease-protein connections (𝛼) deter-
mine the possibility of jumping from the disease layer to the
protein layer and vice versa.With a large value of 𝛼, it is easier
to travel between the two layers, while with a small value
of 𝛼, it is harder to travel between the two layers. From
Figure 4(a), we observe that ourmethod is quite robust to this
parameter. In a wide range of this parameter (10−3 to 103), all
of the three criteria show only tiny fluctuations. For example,

at the lower end of the spectrum (𝛼 = 10
−3
), the PRE,

MRR, and AUC are 7.56%, 13.64%, and 87.38%, respectively,
while at the higher end of the spectrum (𝛼 = 10

3
), the PRE,

MRR, and AUC are 7.24%, 14.07%, and 86.95%, respectively.
Moreover, at the optimum point (𝛼 = 1), the PRE, MRR,
and AUC are 8.84%, 12.59%, and 88.44%, respectively. From
these observations, we conjecture that the selection of this
parameter is not critical to the performance of our method.
We hence use 𝛼 = 1 as the default value for this parameter.

Similarly, theweights of the protein-complex connections
(𝛽) determine the possibility of jumping from the protein
layer to the complex layer and vice versa. With a large value
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of 𝛽, it is easier to travel between the two layers, while with
a small value of 𝛽, it is harder to travel between the two
layers. From Figure 4(b), we observe that our method is also
quite robust regarding this parameter. In a wide range of this
parameter (10−3 to 103), all of the three criteria show only
tiny fluctuations. For example, at one end of the spectrum
(𝛽 = 10

−3
), the PRE, MRR, and AUC are 7.88%, 13.29%, and

87.74%, respectively, while at the other end of the spectrum
(𝛽 = 10

3
), the PRE, MRR, and AUC are 8.84%, 13.26%, and

87.76%, respectively. Moreover, at the optimum point (𝛽 =

10), the PRE, MRR, and AUC are 9.05%, 13.05%, and 87.94%,
respectively. From these observations, we conclude that the
selection of this parameter is not critical to the performance
of our method. Therefore, we use 𝛽 = 1 as the default value
for this parameter.

The restart probability (𝛾) determines the possibility of
jumping from any node in the network back to the starting
point of the query disease. With a large value of 𝛾, a random
walker cannot go far away from the starting point and
thus will mainly explore neighbouring nodes of this point,
while with a small value of 𝛾, the random walker is able to
explore areas far away from the starting query disease. From
Figure 4(c), we observe that our method is robust regarding
this parameter, except for extreme values. In a wide range of
this parameter (0.1 to 0.8), all of the three criteria show only
tiny fluctuations. For example, at one end of the spectrum
(𝛾 = 0.1), the PRE, MRR, and AUC are 8.09%, 13.92%, and
87.1%, respectively, while at the other end of the spectrum
(𝛾 = 0.8), the PRE, MRR, and AUC are 8.73%, 12.86%, and
88.18%, respectively. At the optimal point (𝛾 = 0.6), the PRE,
MRR, and AUC are 8.63%, 12.49%, and 88.54% respectively.
Moreover, at the middle point of the spectrum (𝛾 = 0.5), the
PRE, MRR, and AUC are 8.84%, 12.59%, and 88.44%, respec-
tively, not very different from the optimum point. From these
observations, we conclude that the selection of this parameter
is not critical to the performance of our method. Therefore,
we seek for the simplicity to select 𝛾 = 0.5 as the default
value for this parameter.

3.6. Robustness to the Network Structure. There are four types
of connections in the heterogeneous network: edges between
diseases, connecting diseases and proteins, between pro-
teins, and connecting proteins and protein complexes. These
connections determine the structure of the disease-protein-
complex network. We then studied how the performance
of our method changed with the addition or removal of a
proportion of edges and presented the results in Figure 5.

From the figure, we see that our method is quite robust to
the addition of edges. For example, when adding 10% edges
between diseases into the network, the PRE, MRR, and AUC
change from8.84%, 12.59%, and 88.44% to 8.39%, 13.43%, and
87.59%, respectively. When adding other types of edges, we
observe similar robust pattern. Particularly, the performance
of our method is quite robust to the noise in the protein-
protein interaction network, because the criteria only change
slightly with the addition of this type of edges. These obser-
vations suggest the robustness of our method to false positive
edges in the network.

Our method is also robust to the removal of edges. For
example, when removing 10% edges connecting diseases and
proteins from the network, the PRE, MRR, and AUC change
from 8.84%, 12.59%, and 88.44% to 8.54%, 12.90%, and
88.14%, respectively. When removing 10% edges connecting
proteins and protein complexes from the network, the PRE,
MRR, andAUC change to 8.22%, 13.66%, and 87.36%, respec-
tively. Again, the performance of our method is quite robust
to the noise in the protein-protein interaction network,
because the criteria only change slightly with the removal
of this type of edges. These observations suggest that our
method is also robust to false negative connections in the
network.

3.7. Predicted Landscape of Associations between Diseases
and Protein Complexes. With the performance and robust-
ness of our method demonstrated, we further applied our
method to a total of 926 diseases with tissue association
information in our data set and predicted associations
between these diseases and a total of 1,343 protein com-
plexes. The lists of diseases, protein complexes, and the
predicted score for each pair of disease and protein com-
plexes are available for free downloading at our website
http://bioinfo.au.tsinghua.edu.cn/jianglab/complex.

4. Conclusions and Discussion

In this paper, we have proposed a method for the identifica-
tion of protein complexes that are related to a query disease
via randomwalking on a heterogeneous network that is com-
posed of a disease layer, a protein layer, and a protein complex
layer. We have shown the high performance of our approach
via a large-scale leave-one-out cross-validation experiment
and have demonstrated the robustness of our approach to
the parameters involved. As an application of our approach,
we have predicted a landscape of associations between
diseases and protein complexes.

Our method has the following advantages. First, in the
disease layer, a disease is connected to its neighboring
diseases with similar phenotype properties. Therefore, our
method is capable of predicting associations for a query
disease whose genetic basis is unknown by borrowing infor-
mation from its neighboring diseases. Second, our method
allows the inclusion of the recent discovery about the tissue
specificity of protein-protein interactions, leading to high
accuracy in making predictions. Finally, our method shows
great robustness to the parameters involved, and hence it is
easy to be adapted to the analysis of other data.

Certainly, our method can further be extended from the
following directions. First, the disease similarity network
plays a key role in our method. Besides the phenotype sim-
ilarity profile derived from MeSH, there are also alternative
profiles derived from the unified medical language system
(UMLS) [32] and the human phenotype ontology (HPO)
[33]. It has been shown that integrated use of these profiles
provides a more comprehensive view of correlations in clinic
properties of human diseases [34].The way to integrate these

http://bioinfo.au.tsinghua.edu.cn/jianglab/complex


10 BioMed Research International

−0.4 −0.2 0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

Noise rate

Va
lu

e

PRE
MRR
AUC

(a)

−0.4 −0.2 0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

Noise rate

Va
lu

e

PRE
MRR
AUC

(b)

−0.4 −0.2 0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

Noise rate

Va
lu

e

PRE
MRR
AUC

(c)

0

0.2

0.4

0.6

0.8

1
Va

lu
e

−0.4 −0.2 0 0.2 0.4 0.6
Noise rate

PRE
MRR
AUC

(d)

Figure 5: Influence of the addition or removal of edges. Results are the performance of our method with the addition (>0) or removal (<0)
of a proportion of edges (a) between diseases, (b) connecting diseases and proteins, (c) between proteins, and (d) connecting proteins and
protein complexes. All results are average of 5 independent runs.

similarity profiles in our current heterogeneous network will
be a direction worth exploring.

Second, although the PPI network provides a systematic
view of functional similarities between genes, such genomic
information as transcriptional regulation, noncoding RNA
regulation, functional annotation, pathway annotation, and
structure domain annotation also provides useful assess-
ments on functional similarities between genes. Integrating
such genomic information with tissue-specific gene expres-
sion data to obtain a more comprehensive characterization
of tissue-specific functional similarities between genes and

further enhance the performance of our method will be one
of our future research directions.

Third, protein complexes represent higher level func-
tional units than proteins. Besides, gene modules such as
pathways can be thought of as even higher level function
units.Therefore, it also matters to pursue the goal of identify-
ing pathways or genemodules that are associated with a given
query disease. In technology, our method can be directly
applied to solve this problem.

Finally, the predicted genome-wide landscape of asso-
ciations between human diseases and protein complexes
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provides a rich resource in understanding genetic bases of
human inherited diseases. Using these prediction results to
facilitate the analysis of prevalent genetic data such as single
nucleotide polymorphisms identified in traditional genome-
wide association studies or recent exome sequencing studies
will also be a goal worth pursuing.
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