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microRNAs (miRNAs), non-coding RNAs about 22 nt long, regulate the post-transcription
expression of genes to influence many cellular processes. The expression of host miRNAs
is affected by virus invasion, which also affects virus replication. Increasing evidence has
demonstrated that miRNA influences RNA virus multiplication by binding directly to the
RNA virus genome. Here, the knowledge relating to miRNAs’ relationships between host
miRNAs and RNA viruses are discussed.
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INTRODUCTION

The discovery of microRNA (miRNA) began with Caenorhabditis elegans in the 1990s, in which lin-
4, a small non-coding RNA (ncRNA), was discovered (Wightman et al., 1993; Moss et al., 1997).
Later, scientists found that lin-14 and let-7 from C. elegans were able to bind to the 3' untranslated
region (3’UTR) of post-transcriptional products, thus regulating gene expression in order to control
the development of C. elegans (Hong et al., 2000; Reinhart et al., 2000). Since then, scientists have
located miRNA in a variety of organisms, ranging from plants to animals, and most of the miRNAs
were evolutionarily conserved. After miRbase (http://www.mirbase.org/) had been established, it
became possible to search the database for miRNA sequences from different species.

In eukaryotic organisms, miRNAs regulate the post-transcriptional expression of host and virus
genes by degrading mRNA and inhibiting protein translation. Some scholars suggest that this
mechanism may have originally evolved from a small RNA-mediated antiviral defense system that
now coordinates various developmental processes and is strongly linked to cellular homeostasis
(Aguado and TenOever, 2018). Because of this, miRNA expression is also susceptible to disease
occurrence via virus invasion and other mechanisms. Furthermore, the expression of miRNAs in
the organism changes following viral infection, suggesting that they may be involved in the virus
infection process itself or in the innate immunity of the organism as modulators of cellular gene
post-transcriptional expression (Zhang et al., 2016; Pu et al., 2019; Diallo et al., 2021). In addition to
regulating the expression of intracellular host genes, miRNA can also influence the replication and
pathogenesis of RNA viruses by binding directly to the RNA virus genome (Chen et al., 2011;
Trobaugh et al., 2014; Trobaugh and Klimstra, 2017). Moreover, some special host miRNAs bind to
RNA within RNA viruses and affect the spatial structure of this RNA to influence viral replication
(Li et al., 2013). The role of miRNAs on RNA virus genomes has the potential to treat viruses;
therefore, the roles of miRNAs on RNA viral genomes are both summarized and discussed.
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INTERACTIONS BETWEEN miRNAS
AND VIRUSES

In plants, worms, and insects, RNA interference (RNAi) is an
ancient, dominating, and strong antiviral defense mechanism,
whereas RNAi plays an antiviral role only in undifferentiated
embryonic stem cells in vertebrates (Maillard et al., 2019). The
antiviral effects in vertebrates depends heavily on interferon
(IFN)-mediated antiviral responses, such as type I IFN and the
IFN-stimulated genes (ISGs) (Mazewski et al., 2020). Even so, the
vertebrate RNAi system is still vital for the body, mainly relying
on tissue- and cell-specific miRNAs to bind mRNA, thus
inhibiting its translation or reducing its stability relating to the
regulation of cellular protein expression during the growth,
development, reproduction, and death of organisms (Maillard
et al., 2013). Furthermore, the expression of miRNAs is
susceptible to transcriptional efficiency, epigenetic, intracellular
homeostasis, and extracellular environmental influences, leading
to time-specific and tissue-specific miRNA expression
(Catalanotto et al., 2016). There is evidence that the invasion
of microorganisms, such as bacteria and viruses, can lead to the
variable miRNA expression profiles observed in cells (Trobaugh
and Klimstra, 2017).

As for the virus, we know that many experimental results
have shown that a virus infection can alter the miRNA
expression profiles of host cells (Skalsky and Cullen, 2010; Fu
et al., 2019; Seong et al., 2020). Due to the fact that differing
changes with an intracellular miRNA expression profile are
caused by different viruses, we can use the specific expression
of some specific miRNAs in cells as specific biomarkers of viral
infection (Atherton et al., 2019; Biswas et al., 2019).
Understanding these changes following virus pathogenesis
helps us to learn more about the characteristics of virus
infection in different hosts or tissues and to seek meaningful
miRNAs within the changing miRNA expression profiles
(Ninomiya et al., 2016). These changes in miRNA expression
profiles could be a strategy used by RNA viruses when escaping
from the host cell immune system through the fine-tuning of
miRNA on intracellular protein expression, or it could be an
immune reaction, meaning that the body perceives the invasion
of RNA viruses and fine-tunes immune-related genes through
the miRNA system to coordinate the whole immune response.
Since miRNA can bind to mRNA and regulate its translation, it is
reasonable to suggest that the positive RNA from RNA viruses,
which carry translatable genetic information, could be targeted
and regulated by the host miRNAs (Zheng et al., 2018; Li et al.,
2019; Chen et al., 2021). Up until now, there have been numerous
experiments conducted to try and confirm this hypothesis. In
addition, studies have found that some viruses actually produce
miRNAs during an infection in order to manipulate host genes
or RNA genes, thus helping self-replication, mostly noted in
DNA viruses. For example, as a herpesvirus, Epstein-Barr Virus
(EBV) was found to encode miRNA (Cai et al., 2006; Amoroso
et al., 2011). Most herpesviruses are believed to encode miRNAs
based on their genome size and the number of proteins they
encode (Amoroso et al., 2011; Grundhoff and Sullivan, 2011).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
To date, the role of miRNAs encoded by RNA viruses, as
opposed to those encoded by DNA viruses with distinct
characteristics, remains controversial. So far, miRNAs have
been identified in several RNA virus families, including
Retroviridae, Orthomyxoviridae, Flaviviridae, Filoviridae, and
Coronaviridae (Grundhoff and Sullivan, 2011; Nanbo et al.,
2021). In summary, both the virus and the host can regulate
the viral or host genes and thus control the virus proliferation
process by encoding miRNAs.
THE PROCESS OF miRNA BIOGENESIS

As shown in Figure 1, the miRNA genes are transcribed for
primary miRNA (pri-miRNA). This occurs mainly via
polymerase II and partly by polymerase III, which includes
thousands of nucleotides and contains at least a hairpin
structure (Ha and Kim, 2014). MiRNAs can be transcribed for
the intron clusters of pre-mRNA, independent gene units, or
long noncoding RNA (Stavast and Erkeland, 2019). Next, a
“microprocessor” complex, mainly composed of the RNase III
enzyme Drosha and DiGeorge critical region 8 (DGCR8) (named
DGCR8 in mammals and Pasha in other animals), cuts the
pri-miRNA to form stem-loop (S-L) precursor miRNAs
(pre-miRNA) 60–90 nt long in the nucleus (Lee et al., 2003);
then, the pre-miRNA is transferred into the cytoplasm using the
export receptor, exportin-5 (Ohrt et al., 2006). The complex
composed of Dicer (which belongs to the RNase III family) and
transactivation-responsive RNA-binding protein (TRBP) cleaves
the pre-miRNA apical loop within the cytoplasm to form double-
stranded miRNAs about 22 nt in length (Bennasser et al., 2011;
Kim et al., 2016). After the miRNA duplex has been transferred
to the RNA-induced silencing complex, loading complex (RLC),
which is mainly constituted by Argonaute (AGO) protein, and
other proteins (involving translin-associated factor X,
TRANSLIN and heat shock protein 90 in addition to others),
the RNA duplex structure is unwound, and the passenger strand
is ejected (Ye et al., 2011; Sahu et al., 2014). Different AGO
proteins have distinct functions and cleavage activities that are
probably determined by the PIWI domain of the AGO protein
(Tang, 2005), and based on the cleavage activity of AGO, RNA-
induced silencing complex (RISC) is divided into non-cleaving
RISC and cleaving RISC. Subsequently, the miRNA-RISC
(miRISC) complex recruits downstream factors, such as
glycine–tryptophan protein of 182 kDa (GW182), including
the trinucleotide repeat-containing gene 6A–6C (TNRC6A–
TNRC6C), to mediate gene silencing associated with RNAi
(Ding and Han, 2007; Fabian and Sonenberg, 2012).
miRNAS REGULATE GENE EXPRESSION

In general, the seed sequence (the 2-7 nucleotide sequences of the
5’ end of mature single-stranded miRNA) helps the RISC complex
target transcripts through the principle of base complementation
(Chendrimada et al., 2007; Eichhorn et al., 2014). But, in fact, the
April 2022 | Volume 12 | Article 802149
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other bases on some miRNAs can also help the RISC complex to
locate mRNA (Lim et al., 2005; Zheng et al., 2013; Agarwal et al.,
2015; Zhang Y. et al., 2017; Jiang et al., 2020). After the formation
of miRNA into miRISC complexes, the methodologies of the
miRNAs mainly depend on the AGO proteins of the miRISC and
the degree of complementarity between the targeted mRNA
sequence and the core sequence of miRNA (Figure 2) (Tang,
2005; Loeb et al., 2012). When the transcript target and core
sequence of the miRNA are perfectly complementary for cleaving
miRISC, miRISC performs the slicing of the mRNA and efficiently
degrades the mRNA (Tang, 2005; Ipsaro and Joshua-Tor, 2015).
But, in animals, the transcript targets rarely provide complete
complementary sequences to the core sequence of the miRNA,
and AGO proteins do not all have cleavage activity, which
precludes mRNA cleavage by AGO proteins (Ipsaro and Joshua-
Tor, 2015). Owing to the fact that AGO proteins are insufficient
alone to mediate silencing, miRISC uses the GW182 protein as a
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
platform to recruit other proteins (Takimoto et al., 2009;
Kobayashi and Tomari, 2016; Sheu-Gruttadauria and MacRae,
2018). The GW182 proteins have two special structures: an
amino-terminal AGO-binding domain (ABD), which binds to
AGO, and a silencing domain (SD), which interacts with silencing
effectors such as cytoplasmic poly(A)-binding protein (PABP), the
cytoplasmic deadenylase complexes PAN2-PAN3, and CCR4
NOT (Guo et al., 2010; Braun et al., 2013). Some scholars hold
the view that the interaction of these proteins with GW182
proteins interferes with the PABPC1-eIF4G interaction, which
results in a decline in translational efficiency and distorts the
conformation of transfer RNAs, making the 5’ cap and poly(A) tail
of mRNA more readily available to utilize to degrade mRNA
(Elkayam et al., 2017; Niaz andHussain, 2018). In contrast, there is
another view that the interactions between PABPC and GW182
catalyze the miRNA-mediated deadenylation of target transcripts
(Meijer et al., 2013; Niaz and Hussain, 2018).
FIGURE 1 | The process of miRNA formation. The miRNA genes are transcribed for pri-miRNA by polymerase II or polymerase III; then, Drosha and DGCR8 split
the pri-miRNA to form SL pre-miRNA, transferred to the cytoplasm by the export receptor, exportin-5. Next, the TL element of pre-miRNA is cut off by Dicer and
TRBP to produce miRNA duplex. The miRNA duplex is transferred to RLC constituted by AGO, Dicer, TRBP, and so on and is then unfastened twice. The end,
mature single-stranded miRNA enters RISC, and AGO of RISC recruits downstream factors to perform RNA interference.
April 2022 | Volume 12 | Article 802149
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Accumulating evidence demonstrates that host miRNAs
participate in the replication and pathogenesis of the viruses by
binding directly to the RNA of many RNA viruses. During RNA
virus infection, miRNA can then target RNA virus genes in a
manner similar to the way they target host genes (Teterina et al.,
2014; Bakre et al., 2017). In general, the 5’UTR and 3’UTR of the
RNA virus gene have the most natural binding sites to miRNA,
but evidence accumulated toward proving the presence of
miRNA-binding sites in the RNA virus protein open reading
frame (ORF). A positive-strand RNA virus genome can bind
directly to the host’s miRNAs in the same way as host mRNA
binding, while the positive-strand intermediate of dsRNA and
negative RNA virus work in a similar fashion. The direct
targeting of RNA viruses by miRNA encompasses two
methods of modulating virus replication (Figure 3): (1) the
inhibition of viral RNA translation reduces viral replication,
and (2) changes in the stability of the viral RNA secondary
structure; both methods are discussed in detail below.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Translation Inhibition by the Host miRNA
Binding to the RNA Within the RNA Virus
Many relevant examples have proved that miRNA inhibits viral
proliferation and replication by targeting viral RNA and gene
silencing. For example, the infectious bursal disease virus
(IBDV), a member of the family Birnaviridae, is targeted by
gga-miR-21 that downregulates the expression of IBDV VP1 at
the translational level rather than the mRNA level, which
therefore represses IBDV replication (Wang et al., 2013).
Similarly, the virulent newcastle disease virus (NDV) is a
negative-strand RNA virus and is translated into viral protein
after NDV has been transcribed for a positive-sense RNA upon
entry into host cells. gga-miR-1603 and gga-miR-1794 (gga,
chicken) were confirmed to target two highly conserved
regions of the L gene of NDV, to inhibit the expression of the
L protein at both the protein and RNA levels, thus suppressing
NDV replication (Chen et al., 2021). Both of these examples are
based on the RNA-silencing effects of miRNA in inhibiting
FIGURE 2 | A molecular understanding of miRNA-mediated gene silencing. When the miRNA sequences are partly complementary to the targeted RNA sequences,
the AGO protein binds to GW182; then, the complex recruits PABP, CCR4 NOT, and PAN2-PAN3 to interferences’ ribosome movement on the mRNA/viral RNA
(vRNA) or prevents the binding of ribosomal large and small subunits to inhibit translation. When the miRNA sequences are perfect complementary to the targeted
RNA sequences, cleaving-miRISC composed of miRNA and AGO protein cuts and degrades the targeted transfer RNA to inhibit translation.
April 2022 | Volume 12 | Article 802149
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protein translation within RNA viruses, and some more
interesting examples of miRNA and RNA viruses are
mentioned below.

Previously, only the single regulation of host miRNA on the
host genes or viral genes was focused on. With further research,
miRNA was later found to be able to simultaneously target both
the host and virus gene to limit virus proliferation. A few
examples to reference this procedure is described below.
Studies have shown that gga-miR-130b in DF-1 cells can
simultaneously inhibit viral replication by targeting the IBDV
segment A and enhance the expression of type interferon by
targeting the intracellular cytokine signal suppressor 5 (SOCS5)
(Fu et al., 2017). The genomic segment B of IBDV binds to the
gga-miR-454 of DF-1 to inhibit virus replication, while cellular
cytokine signal suppressor 6 (SOCS6) is inhibited by gga-miR-
454 to boost the immune response (Fu et al., 2018). The miR-
324-5p directly targets the H5N1 virus PB1 gene and the cellular
CUEDC2 gene, the negative regulator of the interferon pathway,
to inhibit the gene expression of both genes, thus enhancing
innate immunity (Kumar et al., 2018). In these cases, on the one
hand, the host miRNA directly blocks the expression of the viral
proteins by targeting viral genes, and on the other hand,
increases the host immune response by inhibiting the
expression of negative immune regulators in the host, in order
to concomitantly limit viral proliferation in vivo. Another
example is the porcine epidemic diarrhea virus (PEDV), which
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
belongs to the genus Alphacoronavirus of the Coronavirus
family, a single-stranded, positive-sense RNA virus. It was
confirmed that miR-221-5p acted as a dose-dependent
inhibitor for PEDV, by directly targeting the 3’UTR of the
PEDV genomic RNA, and stimulating NF-kB signaling via p65
nuclear translocation, to upregulate IFN-b and related ISGs
(Zheng et al., 2018). Due to the mechanism used by miRNAs
when binding to the RNA described, and the examples above,
miRNAs can simultaneously target both viral and host genes,
cocreating an environment that affects viral replication.

In the course of a previously published study, it was found
that mutations in miRNA targets within some RNA viruses could
render the functions of miRNAs targeting RNA viruses
ineffective. These phenomena probably occur because RNA
polymerases lack the same collation activity as DNA
polymerases and miRNA sequences are highly conserved, thus
allowing RNA viruses to mutate and fleetly escape from the
host’s miRNA inhibition. For instance, as a member of the
Orthomyxoviridae family, the influenza A virus (IAV) is a
negative single-stranded RNA virus and has multiple subtype
strains. A study verified that hsa-miR- 1307-3p, as a novel potent
suppressor, could bind directly to the NS1 RNA of IAV to
suppress NS1 expression and influenza virus replication, but a
new mutation has been identified in the NS1 gene, which is
targeted by hsa-miR- 1307-3p, of more than 100 strain types
represented by A(H1N1)pdm09 (a subtype strain of IAV), which
FIGURE 3 | The process of miRNA directly binding to viral RNA.
April 2022 | Volume 12 | Article 802149
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invalidated the inhibition of miRNA (Bavagnoli et al., 2019).
Analogously, ssc-miR-204 and ssc-miR-4331 only exhibited an
inhibitory effect on SIV-H1N1/2009 (a subtype strain of IAV)
replication due to mutations in the peer sequences of other
strains (Zhang S. et al., 2017). Many similar examples have led to
the viewpoint that mutations may represent a means by which
RNA viruses evade the direct binding inhibition effects of the
host miRNAs. To avoid the influence of gene mutation on the
RNA virus protein expression is critical as such mutations are
synonymous in many similar findings under natural conditions.
Another example, enterovirus 71 (EV71) of the family
Picornaviridae, a single-strand positive-sense RNA virus, could
have its VP1 and VP3 protein levels regulated by hsa-miR-296-
5p to inhibit virus infection (Zheng et al., 2013). Whereas, by
aligning the sequences of hsa-miR-296-5p binding to the genome
in each EV71 subtype, some strains were found to have
synonymous mutations in the same location, research
confirmed that these viruses could escape the suppression of
hsa-miR-296-5p (Zheng et al., 2013). However, many RNA
viruses are still inhibited by the host miRNA. The randomness
and uncertainty of mutations may make correct mutations less
efficient. Moreover, the short-term inhibition of miRNAs on
virus replication may not hurt or hinder the entire process of
virus proliferation, so not all RNA viruses need to escape the
effects of miRNAs. Naturally, miRNA-binding sites in RNA
viruses that create no positive effects on viral replication are
more likely to have been deleted in vivo than miRNA-binding
sites that have positive effects on viral replication.

Given the evidence pointing toward the importance of
binding sites, scholars studied the highly conserved miRNA-
binding sites in RNA viruses. It was found that the antiviral
activities of miRNAs caused by direct targeting RNA viruses may
be used by the virus to evade immunity, prolong incubation
periods, or even increase the virulence of the virus during
evolution. Under some conditions, the downregulation of virus
replication induced by miRNA may in fact be necessary for the
persistence of viral infection (Mahajan et al., 2009). Studies have
shown that the eastern equine encephalitis virus (EEEV) utilized
the inhibitory effect of miRNAs to prevent the virus from being
detected by the immune system prematurely, resulting in the
enhanced neurovirulence of the virus. EEEV, a single-stranded
positive-sense RNA mosquito-borne alphavirus, encodes four
strongly conserved miRNA-binding sites for has-miR-142-3p in
myeloid-lineage cells (Trobaugh et al., 2014). The hematopoietic
cell-specific miR-142-3p restricts EEEV replication to determine
virus tropism and to suppress innate immune responses in the
myeloid cell, which is conducive to microbial infection and
exacerbates EEEV neurovirulence (Trobaugh et al., 2014). The
presence of the miRNA-binding sequences is necessary for
efficient EEEV replication in mosquitoes, so it is legitimate to
assume that these sites are essential for virus transmission
(Trobaugh et al., 2019a). For EEEV, the number of miR-142-
3p-binding sites is dominant in the suppression of EEEV
replication. Even though the miRNA inhibits EEEV expression,
the inhibitory effect of miRNA on EEEV is very important for
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
both prolonging the incubation period and increasing virulence
during the whole virus proliferation process in vivo. Besides this,
after human immunodeficiency virus type 1 (HIV-1)- infected
resting primary CD4+ T cells, the significantly enriched miRNAs
including, miR-28, miR-150, miR-223, and miR-382 potently
inhibited HIV-1 production by targeting the 3’UTR of the HIV-1
RNA and related host proteins (Huang et al., 2007). The
inhibition of related host proteins including Tat and Rev,
which are key factors for transcription and translation in viral
RNA, could further strengthen the viral incubation period to
help the virus multiply (Huang et al., 2007). Additionally, studies
have shown that miR-326, miR-196b, and miR-1290 have similar
effects (Houzet et al., 2012; Wang et al., 2015). The chikungunya
virus (CHIKV) is a positive-sense single-stranded RNA virus in
the Alphavirus genus, transmitted by Aedes aegypti (Ae. aegypti)
mosquitoes. Ae. aegypti miR-2944b-5p can bind to the 3’UTR of
CHIKV and reduce CHIKV replication, meanwhile regulating
the cellular target, vps-13 (vacuolar protein sorting) (Dubey
et al., 2019). CHIKV may be using miR-2944b-5p, alongside its
target vps-13, to maintain the cellular integrity of the
mitochondrial membrane potential, therefore helping the
CHIKV survive in mosquito cells (Dubey et al., 2019). This
miRNA can inhibit excessive proliferation of CHIKV in the
intermediate host, and maintain the titer of the virus in the
intermediate host together with the genes of the intermediate
host in vivo, which also contributes toward the transmission of
the virus. In general, the highly conserved miRNA-binding sites
in RNA viruses have positive implications for virus survival.

miRNA Influence Upon the Spatial
Structure of Viral RNA
It is already known that RNA has a certain spatial structure
under natural conditions. This did lead to the question as to
whether the binding of host miRNA to viral RNA could alter
viral RNA to enable interactions with other proteins by changing
the spatial structure of viral RNA once the RNA virus enters the
host cell to begin replication or translation. There have been
some specific examples that have helped elucidate this matter.
The hepatitis C virus (HCV), a single-stranded RNA virus with
the Flaviviridae family, only has an ORF and requires liver-
specific miR-122 interactions with the sequences from the HCV
RNA 5’UTR to maintain a high viral RNA abundance in the liver
(Jopling, 2008). The 5’UTR and 3’UTR of the HCV RNA have
four and three SL structures, respectively, and the ORF region
encodes four structural proteins and six non-structural proteins
(Jopling, 2008). Two miR-122-binding sites in the 5’UTR, which
are separated by a highly conserved 14-nucleotide sequence, are
occupied by miR-122 to synergistically give HCV RNA higher
stability rather than inhibiting viral replication through RNAi-
related functions (Jopling, 2008). Some studies have suggested
that efficient HCV replication require the annealing binding of
miR-122 to these two sites, which then forms a trimolecular RNA
structure that is essential for efficient virus proliferation
(Amador-Cañizares et al., 2018; Chahal et al., 2019). However,
some scholars believe that any small RNA binding to the
April 2022 | Volume 12 | Article 802149
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miR-122-binding sites on the HCV 5’UTR can promote the
HCV life cycle (Kunden et al., 2020). Furthermore, some
researchers have found that the insertion of the viral miR-122-
binding site into the 3’NCR of a reporter mRNA leads to the
downregulation of mRNA expression, which implies that the
location of the miRNA-binding site may dictate its effects on
gene regulation (Jopling, 2008; Jopling et al., 2008). Further
research has shown that miR-122 binds to the 5’NTR of the
HCV gene, to protect uncapped HCV RNA genes by defending
the degradation caused by 5’ exonuclease Xrn1 and Xrn2,
whereas miR-122 negatively regulates the expression of the
reporter mRNA by binding to the 3’NCR of the mRNA in a
general manner (Li et al., 2013; Sedano and Sarnow, 2014). This
interaction promotes HCV RNA accumulation by stabilizing
viral RNA, leading to changes in the secondary structure of the
viral genome, stimulating the generation of the canonical HCV
IRES RNA structure (Schult et al., 2018; Chahal et al., 2019;
Kunden et al., 2020). The multiple effects of miR-122 on HCV
proliferation are based on the changes observed to the HCV
secondary structure after miRNA has bound to viral RNA. Some
similar examples are also described in other systems. When the
dengue virus (DENV) infects human cells in vitro, endogenous
miR-548g-3p can bind to the conserved stem-loop promoter
(SLA) (a promoter for DENV RNA transcription) in the 5’NTR
of the DENV genome to suppress DENV intracellular replication
(Wen et al., 2015). Based on this study, it can be inferred that the
combination of miR-548g-3p and the targeted site of DENV, the
natural SL structure of the promoter element needed to regulate
the binding efficiency of DENV promoter and RNA-dependent
viral RNA polymerase may be destroyed (Yu et al., 2008; Wen
et al., 2015). Besides this example, the bovine viral diarrhea virus
is also targeted by miR-17 and let-7 through binding to S2 and S1
present in the virus genome 3’-NTR, respectively (Scheel et al.,
2016; Kokkonos et al., 2020). AGO2 and miR-17 binding were
essential for viral replication, whereas let-7 binding increased
virus translation.

These examples indicate the importance of the miRNA
binding site location for targeting the virus RNA. If the
binding site is located in the folding of the secondary structure
of RNA, SL structure, or the binding site of some proteins, the
corresponding miRNA may have an important influence on the
expression or function of this genome (Gerresheim et al., 2017).
Interestingly, the unconventional relationship between miRNA
and viral RNA has also been found in some other RNA viruses,
which most or all enhancing the stability of the viral RNA to
positively regulate RNA virus replication.
CONCLUSIONS

Eukaryotic miRNAs participate in the regulation of most
physiological activities within cells, including RNA virus
infection. RNA viruses use RNA as a gene carrier, and
miRNAs bind to RNA in a base complementary way, which
allows some miRNAs to directly target the RNA within RNA
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
viruses. Most of this binding occurs in the ORF or 3’UTR of the
RNA virus RNA, whereas miRNA works with RNA-binding
proteins to inhibit RNA viral replication. In addition, some
cellular miRNAs are able to bind to RNA viral RNA to avoid
the cleavage of the related enzymes or to stabilize the spatial
structure of the RNA to positively regulate RNA virus
replication. However, as there is a lack of any proofreading
function, RNA viruses can escape from miRNA through gene
mutation in the face of the miRNA’s direct targeted inhibition.
From the above-cited publications, which include many
examples, on the one hand, RNA viruses utilize some specific
cellular miRNAs to create an intracellular environment
conducive to the transmission of viral infection. Yet, on the
other hand, it is commonplace that most miRNAs that directly or
indirectly strongly inhibit RNA virus replication are manipulated
by the RNA virus to reduce expression, or are shunned by RNA
viruses with genetic mutations. Moreover, miRNAs in
eukaryotes are highly conserved and are not easily mutated,
which makes it difficult for miRNAs to be dominant antiviral
factors against RNA viruses in nature.

Research has shown that it is feasible for researchers to insert
the binding sequences of intracellular specific miRNA into the
RNA virus genes in order to prepare miRNA vaccines according
to the inhibition of targeted RNAs by some miRNAs (Tsetsarkin
et al., 2015). The insertion of single or multiple copies of the
brain-expressed miRNA target sequence in the 3’NTR of the
genome of the neurotropic chimeric tick-borne encephalitis
virus/dengue virus 4 (TBEV/DEN4) flavivirus could reduce the
neurotoxicity of the virus (Heiss et al., 2012). However, the
artificial RNA virus can also escape from miRNA to regain its
neurotoxicity by accumulating gene mutations or via deletion
(Heiss et al., 2012). This phenomenon can be alleviated by
increasing the copy number of inserted sequences and setting
appropriate spacing. Similarly, the deletion of the miR-142-3p-
binding sites in the EEEV 3’ UTR can lead to efficient EEEV
infection of myeloid cells, resulting in a decrease in the virulence
of the virus, but the accumulation of genetic mutations may
restore virus virulence during serial passages of the virus
(Trobaugh et al., 2019b). How to stabilize the artificial
sequence while also inhibiting the virulence of the virus needs
further research. Host miRNA is hijacked by invading RNA
viruses and participates in the pathogenic process of viruses, or
miRNAs inhibit RNA virus replication by targeting their RNA,
which makes it reasonable for miRNA to be a potential new
therapeutic target for RNA viral therapy. There have been
attempts to develop antiviral drugs based on miRNA studies.
In the laboratory, artificial miRNAs are designed to target the
conserved genomic regions of theWest Nile virus NS5 and NS2A
or consensus sequence of 3’NTR of JEV, and all show effective
suppression of the virus in vitro (Sharma et al., 2018; Karothia
et al., 2020). Scientists have tried to use similar RNAi technology
to treat some viral diseases in clinical trials, such as the inhibition
of HBV replication in chronic HBV infection (Wooddell et al.,
2017; van den Berg et al., 2020), treating Ebola virus patients to
improve survival and recovery rates (Thi et al., 2015) and
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targeting HIV-1 replication for cell transplant therapy
(Scarborough and Gatignol, 2017). It is not only miRNAs in
animals that can limit the influence of RNA viruses, as miRNAs
in plants have also been found to inhibit the replication of certain
viruses. MiR-2911 from honeysuckle (a traditional Chinese
medicine) can suppress IAVs with a broad spectrum by
directly targeting the IAV RNA, and the let-7a from this plant
can inhibit the replication of DENV by targeting its NS1
sequence (Zhou et al., 2015; Lee et al., 2017).

Intracellular miRNA, as a link of the intracellular regulatory
network, can simultaneously target multiple cellular mRNAs
and the RNA of the invading RNA virus. Cellular miRNAs, the
host mRNA, and RNA viruses are closely related and interact
with each other, affecting the whole body. This connection
makes miRNAs a potential breakthrough in the future to tackle
the current ravages of many RNA viruses. However, in order to
be an antiviral drug, miRNA requires comprehensive
consideration for the variable of cell homeostasis and other
physiological conditions caused by changes in the miRNA.
Moreover, a large number of convenient, cheap, and accurate
synthesis methods of artificial miRNA still need further study.
At present, miRNA as a new approach against RNA viruses is
still far from being realized, and a breakthrough in the field
is expected.
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