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Abstract

In neuroscience, the structure of a circuit has often been used to intuit function—an inversion of Louis Kahn’s
famous dictum, “Form follows function” (Kristan and Katz, 2006). However, different brain networks may use
different network architectures to solve the same problem. The olfactory circuits of two insects, the locust,
Schistocerca americana, and the fruit fly, Drosophila melanogaster, serve the same function—to identify and
discriminate odors. The neural circuitry that achieves this shows marked structural differences. Projection neu-
rons (PNs) in the antennal lobe innervate Kenyon cells (KCs) of the mushroom body. In locust, each KC re-
ceives inputs from ~50% of PNs, a scheme that maximizes the difference between inputs to any two of
~50,000 KCs. In contrast, in Drosophila, this number is only 5% and appears suboptimal. Using a computa-
tional model of the olfactory system, we show that the activity of KCs is sufficiently high-dimensional that it
can separate similar odors regardless of the divergence of PN-KC connections. However, when temporal pat-
terning encodes odor attributes, dense connectivity outperforms sparse connections. Increased separability
comes at the cost of reliability. The disadvantage of sparse connectivity can be mitigated by incorporating
other aspects of circuit architecture seen in Drosophila. Our simulations predict that Drosophila and locust cir-
cuits lie at different ends of a continuum where the Drosophila gives up on the ability to resolve similar odors
to generalize across varying environments, while the locust separates odor representations but risks misclassi-
fying noisy variants of the same odor.
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How does the structure of a network affect its function? We address this question in the context of two ol-
factory systems that serve the same function to distinguish the attributes of different odorants, but do so
using markedly distinct architectures. In the locust, the probability of connections between projection neu-
rons and Kenyon cells—a layer downstream—is nearly 50%. In contrast, this number is merely 5% in
Drosophila. We developed computational models of these networks to understand the relative advantages
of each connectivity. Our analysis reveals that the two systems exist along a continuum of possibilities that
balance two conflicting goals—separating the representations of similar odors while grouping together noisy
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\variants of the same odor.
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Introduction

Neural circuits encode a variety of stimuli and perform a
wide range of computations. The structure of the neural cir-
cuit (i.e., the organization and statistics of the connectivity
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between neurons in the circuit) plays a key role in restricting
the kinds of computations that the circuit can perform (Marr,
1969; Albus, 1971; Hopfield and Tank, 1986). Understanding
what different structural organizations imply for circuit
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function is an integral step toward generating a complete pic-
ture of brain function. These structure—function relationships
are of particular interest in circuits that are trying to accom-
plish the same overarching goal while making use of different
structural parameters. What advantages do the different pa-
rameter regimes provide in such situations? One such in-
stance that has been explored recently (Jortner et al., 2007;
Jortner, 2013; Litwin-Kumar et al., 2017) is the functional ef-
fect of different densities of connections across species in
the antennal lobe-mushroom body (MB) circuit of the insect
olfactory system.

The insect olfactory system is arguably one of the most
well characterized neural circuits. lts compactness and sim-
plicity, combined with the powerful genetic tools available,
have allowed a detailed understanding of its structure and
function. The circuit begins at the olfactory sensory neurons
that convert odorant information from the environment into
electrical signals that are passed on to higher brain regions
(Hallem and Carlson, 2004, 2006; Fisek, 2014). The second
level of the circuit is the antennal lobe (AL), where the princi-
pal excitatory neurons—projection neurons (PNs)—represent
odors as dense spatiotemporal firing patterns (Laurent et al.,
1996; Wehr and Laurent, 1996; Wilson and Laurent, 2005).
The AL then feeds information to the MB, where Kenyon
cells (KCs) represent the odor as a spatially and temporally
sparse pattern of firing (Perez-Orive et al., 2002; Turner et
al., 2008). A high spiking threshold and inhibitory inputs to
KCs from a pair of large GABAergic neurons (Papadopoulou
et al., 2011; Lin et al., 2014; Masuda-Nakagawa et al., 2014)
maintain the sparseness of KC responses. The inhibitory
GABAergic neurons are graded neurons whose membrane
voltage is mediated by the activity of the KCs, thus forming
a feedback inhibition loop (Fig. 1). Synapses immediately
downstream of the KCs are plastic and thought to be the
primary locus of associative memory in the insect
(Heisenberg, 2003; Hige et al., 2015a). KCs converge on to
the MB output neurons (MBONSs). From the MBONs on-
ward, neuronal activity is related more to behavioral output
than to stimulus representation (Aso et al., 2014; Hige et al.,
2015a).

While the overarching goal of the MB circuit—to dis-
tinctly represent odors so as to facilitate learning and ap-
propriate behavioral responses—appears to be conserved
across species, the number of connections received from
the AL to a given KC varies significantly. In the fruit fly, a
sparse ~5% of all PNs synapse onto each KC, whereas in
the locust, this number is dense (~50%; Fig. 1; Jortner et
al., 2007; Caron et al., 2013). The 50% connectivity seen
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in the locust olfactory system is thought to maximize the
differences between the inputs received by individual KCs
(Jortner et al., 2007; Jortner, 2013). The 5% connectivity
observed in Drosophila must then make it a suboptimal
classifier. The combinatorial arguments that have been
posited thus far do not consider the full spatiotemporal
extent of an odor-evoked pattern of activity in the anten-
nal lobe. To understand the implications of these con-
trasting connectivities, we tested the response of the fly
and the locust olfactory networks to two different kinds of
inputs: one, where odors were represented as spatiotem-
poral patterns of activity by AL neurons, and another,
where odors were represented only by the identity of ac-
tive PNs. We show that an identity code allows a broad
range of connection densities, including those seen in
both the fly and locust, to distinguish different odors.
However, with temporal variations, denser connectivities
between PNs and KCs maximize the distance between
odor representations. The sensitivity of the locust olfac-
tory system, due to its dense connectivity, comes at a
cost. Under changing environmental conditions, the same
odor may generate different representations in PN space
that the locust could potentially misclassify as distinct
odors. Such misclassifications are less likely in the
Drosophila circuit where PN-KC connections are sparse.
To elucidate the logic behind these connectivities, we si-
mulated the distinct architectures of each insect. In
Drosophila, all the sensory neurons expressing a particu-
lar receptor type synapse onto PNs in a spatially circum-
scribed structure called a glomerulus. Sister PNs, which
receive inputs from olfactory receptor neurons (ORNs) at
a particular glomerulus, tend to fire in a highly correlated
manner (Kazama and Wilson, 2009), though this is not the
case in related mammalian cells (Dhawale et al., 2010),
where the activity, though correlated, is different. In con-
trast, locust glomeruli receive input from multiple ORN
types. We show that the glomerular architecture of the
fruit fly improves the ability of the network to distinguish
odors despite a low probability of PN-KC connections.
Our simulations predict that the fruit fly and locust circuits
lie at different ends of a continuum where the fruit fly gives
up on resolution in odor space so that it can generalize
across varying environments. This implies that very similar
odors may be misclassified as the same odor as they are
too similar to be resolved. The locust, on the other hand,
maximally separates odor representations but runs the
risk of misclassifying the same odor under different
conditions.

Materials and Methods

Temporally patterned odor representations in AL cir-
cuits. We modeled the odor representation in the AL in
two ways. First, as a static representation consisting of a
binary vector of length 900 (number of model PNs). Each
element of the vector indicated only whether a particular
PN was active (if the value at that position was 1) or not (0;
Fig. 2a). The second representation incorporated the tem-
poral evolution of the odor. In the locust AL, odors elicit a
temporal pattern of activity in PNs that begins with the
onset of the odor. In experimental recordings, not all PNs

eNeuro.org


mailto:rajagopalana@janelia.hhmi.org
mailto:collins@iiserpune.ac.in
https://doi.org/10.1523/ENEURO.0130-19.2020
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

eMeuro

a

ORNs LNs  PNs KCs

o— s — g
4\0\

&5 3

Glomeruli with
Uni-Glomerular ORNs

Sparse
Connectivity

b

ORNs LNs  PNs KCs

Dense
Connectivity

Glomeruli with
Multi-Glomerular ORNs

Excitatory

e&——— Dendrite
Axon

Inhibitory

Axon

— <

Figure 1. A schematic of the insect olfactory system. a, b, A
schematic of the olfactory system contrasting the structural pa-
rameters of the circuit in Drosophila melanogaster (a) and
Schistocerca americana (b).

show an odor-specific response that begins immediately
on odor onset. Several neurons show increased activity
many milliseconds after odor onset. Some PNs can show
complex responses such as an increased level of activity
to both odor onset and offset. However, it is likely that the
onset and offset responses are largely seen in nonover-
lapping groups of PNs (Saha et al., 2017). Here, we simu-
lated PN spiking activity as continuous bursts. The
spatiotemporal pattern generated by the PN population
was defined by the onset, offset, and duration of PN
bursts. Another important aspect to consider was the
presence of oscillations in the local field potential (LFP) in
the 20-30 Hz frequency range (Laurent, 1996) in the AL of
locusts. Similar oscillations have also been observed in in-
tracellular recordings from Drosophila AL (Tanaka et al.,
2009). The presence of such oscillations suggests that
odor-induced PN responses are correlated with more
PNs spiking at the peak of the LFP than at other phases.
The oscillations also provide a natural time scale to parti-
tion the PN response into smaller 50 ms epochs (the dura-
tion of one cycle at 20 Hz). We measured the time to odor
initiation and the duration of a continuous PN response in
units of epochs. The statistics of the number and timing of
PN spikes were extracted from a survey of the literature
(Table 1; Laurent et al., 1996; Wehr and Laurent, 1996;
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Stopfer et al.,, 2003; Wilson and Laurent, 2005). We
adapted these results to design a matrix representation of
PN activity. This consisted of a 900 x 3000 matrix of 1 and
0 s (Fig. 3). Each row represented 1 of 900 PNs, and each
column of the matrix represented the activity of all PNs
over a 1 ms time interval. The parameters (and their val-
ues) used in this process (to simulate 1 s of odor delivery
and a 3 s response) are listed below (note that all variables
are normally distributed, and values represent the mean
+ SD unless mentioned otherwise).

To generate a population PN response, a value used
to specify the percentage of active neurons was drawn
from a normal distribution, with mean and variance
given in Table 1. This value was used as a probability
threshold to decide whether a given PN fires or not. For
each of the 900 PNs, a uniform random number was
drawn to decide whether that PN was activated by the
odor. If the random value was less than the probability
threshold chosen, then the neuron was activated by the
odor. A value of the basal firing rate (per second) was
drawn from a normal distribution with the appropriate
mean and SD (Table 1), and spikes equaling three times
the value drawn were uniformly and randomly distrib-
uted over the 3000 time points. A value for odor-in-
duced firing rate was drawn from a normal distribution,
as were the number of active epochs and the number of
epochs before odor-induced activity. These three val-
ues provide information about which of the LFP oscilla-
tion cycles additional spikes needed to be added to the
activity of the particular neuron, as well as how many
spikes were to be added in a single epoch. These
spikes were then distributed in each of the “active”
epochs in such a way that the spike was more likely to
occur at the center of the epoch (corresponding to the
peak of the LFP) than at the ends. If the neuron was not
odor activated, then it fired at its basal firing rate, as de-
scribed earlier.

These attributes were calculated for each of the 900
PNs to generate a complete spatiotemporal pattern de-
scribing an odor. An odor was defined by the specific
PNs that were activated and the parameters drawn from
the distributions quantified in Table 1. In different trials
of the same odor, the PNs that were activated, as well
as their parameters, remained the same. However, the
exact timing of the spikes in the active epochs
changed.

The timing of spikes was drawn randomly (within speci-
fied “active” epochs) for each trial. In contrast, two odors
differ not only in the timing of spikes of active PNs but
also in the identity of the active PNs.

Whether a PN was active or not was independent of
whether other PNs were active. This reflected the multi-
glomerular organization seen in locust. To mimic a fly-like
glomerular organization where sister PNs fire in a corre-
lated manner, PNs were divided in 50 groups of six (note
that here we simulated 300 PNs and not 900, which is in
agreement with the number seen in the fly). The grouping
reflected the glomerular architecture in Drosophila. Five of
these 50 groups were chosen to contain active neurons.
The other four parameters mentioned in Table 1 were then
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Figure 2. The 50% connectivity does not maximally separate KC representations when PN inputs are static. a, The threshold model of
KCs. The left-most vector represents the PN activity. This is combined through a connectivity matrix to give the input seen by each KC (a
50,000-element-long vector). Thresholding is then applied to define spiking KCs. b, The Hamming distance between inputs seen by two
KCs is calculated for all possible pairs and averaged and plotted as a function of the PN-KC connectivity. ¢, The mean (+SD) normalized
Hamming distance between the activity of KC networks driven by two different inputs is plotted on the y-axis as a function of the PN-KC
connectivity. Different shades plot the distance between odor representations that differed in 5-80% of the active PNs.

chosen for these active neurons. To simulate a new odor
that was distinct from a previously described one, one to
five of the active glomeruli in the first odor were changed
randomly (Fig. 3, instance of a simulated odor).

Table 1: Statistics of PN spikes
(0.2%+0.05) x number of PNs

Percentage of active
neurons

Basal firing rate 3.87+2.23 spikes/s

Odor induced firing 19.53+10.67 spikes/s
rate

Number of active 8+4 cycles of LFP
epochs

Number of epochs
before activity

Number of LFP cycles drawn from a
uniform integer distribution ranging from
1t020
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Neuron and synapse implementation. The spatiotem-
poral pattern that was generated using specific attrib-
utes for PN spike statistics described above was used
to stimulate a layer of 50,000 KCs. We systematically
varied PN-KC connections and computed the corre-
sponding KC responses to several odors. PN-KC syn-
apses are cholinergic (Yasuyama and Salvaterra, 1999)
and were modeled as such (Egs. 1-3; Destexhe et al.,
1994; Bazhenov et al., 2001; Perez-Orive et al., 2002;
Turner et al., 2008). Each PN spike released a fixed
amount of neurotransmitter T. This was used to drive
postsynaptic KCs. The synaptic currents were given by
the following:

Isyn - gsyn X [O} X (V - Esyn)7 (1)

eNeuro.org
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Figure 3. Simulation of temporally patterned PN inputs to a KC network. a, The matrix on the left represents the activity of a set of
900 PNs. Each row shows the activity of a single PN during a 3000 ms time period. Blue dots show the time of a spike. The red re-
gion represents the time during which the odor was presented. Top, A summation of the activity of the entire PN network is shown
clearly indicating the oscillations in the net PN activity. This input was used to calculate T and /sy, (the synaptic input to KCs). The
differences between the population representations of two inputs were calculated using the Hamming distance. b, The mean popu-
lation response of 900 PNs projected onto the first three principal components for three odors is shown by the black traces.
Individual trials are shown by the colored traces. ¢, The mean membrane potential of all KCs shows a 20 Hz oscillation. Bottom, The
response of two KCs (in red and black traces) to two different odors. Only the first odor evokes a consistent response from this par-
ticular KC across five odor trials (middle). The second odor does not lead to reliable spiking in this example KC.
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A —ax(-0)xT-gx0] @

T=AX0O X (tg+tmx—1t) X (t—to). (3)

In these equations, the constants were as follows:

_ _ mS
a=094ms ', B =0.18ms ', gsn = 0.05w7

Esyn = 0mVandty. = 0.3ms,

where O is the Heaviside function, [O] is the open prob-
ability of the ion channels on the KC membrane, and T
represents the amount of neurotransmitter released by a
given PN. tg is the time of the last spike, and ¢4« is the du-
ration for which the neurotransmitter was released. KCs
were modeled as leaky integrate-and-fire neurons (Turner
et al., 2008; Papadopoulou et al., 2011), as follows:

av

CmE: _gL(V_EL) _Isyn- (4)
mS uF
Here, g, = O.OSQW, Cmn=1 om?’ and E;, = —65mV.

The KC generated a spike when V > Vi esn. The mem-
brane potential was reset to —65 mV at the time point im-
mediately after the spike. We simulated an array of 50,000
such KCs that responded to a 3000-ms-long input from
PNs.

Classification and distance metrics. To quantify the dif-
ference between the representations of two odors by the
same neuronal population, we used the Hamming dis-
tance. Elements of the KC activity vector were set to 1 if
that KC fired a spike during the odor presentation, and 0
otherwise.

The Hamming distance calculates the number of bits
that differ between the two vectors (Fig. 2, example). In
some figures, we used a normalized version of this metric
that divides twice the Hamming distance by the total
number of active neurons in both vectors being com-
pared. To illustrate this metric, consider a vector repre-
senting the activity of 100 neurons. Consider, in one
scenario, that 10 of these neurons were active for odor A,
and a different set of 10 nonoverlapping neurons for odor
B. The Hamming distance between these odor represen-
tations would be 20. In another scenario, 20 neurons were
activated for odor A and 20 nonoverlapping neurons for
odor B, the Hamming distance would be 40. However,
in both cases the two odors were maximally different
from one another; that is, they did not overlap. In con-
trast, the normalized Hamming distance for both cases
described above would take a maximum value of 1. The
normalized Hamming distance may be thought of as a
measure of the degree of overlap between odor repre-
sentations. If two odors stimulate strictly nonoverlap-
ping KCs, the distance between the representations
would be 1 regardless of the number of active KCs. This
normalization was also necessary to visualize the dis-
tance between odor representations, particularly when
the PN-KC connections were dense (>50%). Dense
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connectivity regimes showed a large trial-trial variation
in the number of active KCs.

In addition to using the normalized Hamming distance
to visualize the distance between odor representations,
we used two classification algorithms (k-medoids cluster-
ing and nonclassical multidimensional scaling) to visualize
and classify high-dimensional KC representations of
odors. In both of these classification algorithms, we first
defined the pairwise Hamming distance between the KC
vectors of all simulated odor representations. The algo-
rithm (k-medoids clustering using MATLAB) iteratively
minimizes the within-cluster distance while maximizing
the distance across clusters. Unlike the k-means cluster-
ing algorithm that calculates a center for each cluster as
the mean of the cluster, the k-medoids algorithm treats an
existing data point as the center of the cluster and meas-
ures all within-cluster distances from that point. We also
performed a multidimensional scaling analysis using the
mdscale function in MATLAB. The algorithm maps points
from the high-dimensional KC space to a plane while pre-
serving the pairwise distance relationship between all of
the data points.

Data availability. The code/software described in the ar-
ticle is freely available online at http://modeldb.yale.edu/
261877. The access code for the online repository is
0000. The code is also available in Extended Data 1.

Results

In the locust, each KC receives input from nearly half of
the antennal lobe PNs. This pattern of connectivity maxi-
mizes the difference between inputs to any 2 of the
~50,000 Kenyon cells in the mushroom body (Fig. 2b;
Jortner et al., 2007). Given the large number of possible
combinations of inputs to KCs, it is highly unlikely that the
combination of PNs that synapse onto a given KC will be
exactly the same as that synapsing onto any other KC. In
contrast, if the PN-KC connection probability were 5% (e.
g., that seen in Drosophila), the number of total possible
PN combinations would be nearly 99% lower than if the
PN-KC connection probability were 50%, making it more
likely for two KCs to share the same inputs (Fig. 2b;
Jortner et al., 2007; Jortner 2013). What advantages do
this seemingly suboptimal scheme offer? We addressed
this conundrum by simulating a model KC network that
received realistic PN input. Using the distance between
KC odor representations, and the classification accuracy
of the network, as a proxy for the ability of the animal to
distinguish odors, we determined the circumstances
under which different circuit connectivities confer specific
advantages in odor discrimination.

A PN identity code allows a wide range of
connectivities to distinctly represent odors
If each KC sees m of n PNs, then the maximum number

of combinations would be obtained for m :g (Fig. 2b).

However, it is the response of KCs that is read by subse-
quent layers, not PN input. The KC response may be
thought of as a nonlinear transformation of the summed
input from the PNs. KCs act as coincidence detectors
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that integrate presynaptic input that arrives within short
temporal windows on the order of ~50 ms (Perez-Orive et
al.,, 2002, 2004; Gruntman and Turner, 2013). KCs fire
only if a sufficient number of spikes fall within the integra-
tion window. Therefore, we first investigated whether
the previously hypothesized (Jortner et al., 2007) opti-
mal connection probability from PNs to KCs remains
optimal despite the threshold imposed by the KC re-
sponse and whether a lower connection probability is
indeed suboptimal.

We tested this hypothesis using a simple threshold
model of KCs and determined how distinctly the KC pop-
ulation output represented different odors. We modeled
the input to KCs as a binary vector of length 900. This
captured a single snapshot of the activity of the AL circuit
(Jortner, 2013; Litwin-Kumar et al., 2017; Fig. 2a). In the
locust AL, the duration of each cycle of the 20 Hz oscilla-
tory local field potential provides a natural time scale to
define the duration of a snapshot. We then calculated the
response of KCs to this input for different values of PN-
KC connectivity. We varied the number of projections
from PNs to KCs such that each KC received inputs from
5% to 95% of all PNs (in steps of 5%). We simulated dif-
ferent odors by randomly shuffling the PN activity vector.
If the summed activity of all the PNs that were connected
to the same KC exceeded a threshold, we labeled the KC
as active and set its response to 1. Increasing the density
of connections from PNs to KCs increased the number of
active KCs for the same input vector. Changes in the
sparseness of the KC output vector can lead to a change
in the distance between odor representations. Our goal
was to calculate the overlap between output vectors, in-
dependent of the sparseness of the representation.
Therefore, for each connection probability we adjusted
the response threshold of KCs such that only 10% of the
50,000 KCs simulated crossed the threshold. (Perez-
Orive et al., 2002; Turner et al., 2008). This ensured that
changes in the distance between odor representations
were solely due to changes in the PN-KC connectivity
and were not confounded by connectivity-dependent
changes in the sparseness of the KC response. We simu-
lated four sets of inputs consisting of 101 PN odor repre-
sentations. Within each of the four sets of simulated
odors, the input vectors differed from each other by vary-
ing amounts: 5, 10, 20, 40, or 80%, respectively. For ex-
ample, consider the 900 PNs whose activity represented
a given odor, “A.” Approximately 20% of these PNs would
be active. Another odor, “B,” in the input set would differ
from A by 10% if 90 of the 900 PNs changed their activity
state from active to inactive or vice versa when compared
with A. We then calculated the normalized Hamming dis-
tances between odor pairs belonging to each group and
compared the distances obtained for different PN-KC
connection probabilities. The ability of the KC population
to distinctly represent odors showed no dependence on
the connectivity between the two regions (Fig. 2c) regard-
less of the degree of similarity between the PN represen-
tations of odors. This counterintuitive result arises from
the fact that even at low connectivity values the number
of ways to choose inputs to KCs is more than a hundred
orders of magnitude greater than the number of KCs in
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the network (Litwin-Kumar et al., 2017; see Discussion).
Therefore, when odor distances were measured in terms
of the output of KCs, both the Drosophila (5% PN-KC
connectivity) and the locust olfactory network (50% con-
nectivity) were equally capable of distinguishing between
similar odors.

Inclusion of PN temporal patterning reveals the
functional differences between connectivities

In response to an odor presentation, AL neurons gener-
ate a dynamic pattern that evolves reliably and over multi-
ple time scales. This spatiotemporal patterning is thought
to progressively decorrelate the representations of similar
odorants (Wiechert et al., 2010) and make them more eas-
ily discriminable by follower neurons in the mushroom
body. Earlier, we used a single snapshot in time to repre-
sent an odor and found that the PN-KC connectivity had
little effect on the Hamming distance between KC repre-
sentations of the odor. Next, we sought to determine the
role of the temporal structure of odor representations in
discrimination.

Odor inputs to KCs were modeled as a pattern of spikes
from PNs. The statistics of spikes emulated that seen in
the extant literature (see Materials and Methods). We si-
mulated trial-trial variability by jittering the spike timing
within 50 ms windows. Note that in addition to this jitter,
random spikes were inserted such that the mean baseline
firing rate in the absence of an odor stimulus was 4 Hz.
We simulated different odors by activating different
groups of PNs. To visualize the dynamics of the popula-
tion of PNs, we first calculated the number of spikes gen-
erated by each PN in overlapping 50 ms windows. We
then projected the PN activity vector during each 50 ms
window onto the first three principal components. Odor
representations of the PN population may be visualized
as continuous trajectories in this reduced-dimensional
space. When the odor stimulus was turned on, the AL re-
sponse followed a trajectory from baseline (defined by
low firing rates) to a “fixed point” (Mazor and Laurent,
2005). Once the odor stimulus was turned off, the trajec-
tory returned to baseline, but along a different path from
the one it had taken to reach the fixed point after odor
onset (Stopfer et al., 2003; Mazor and Laurent, 2005).
Multiple trials of the same odor generated trajectories that
remained close to each other, while dissimilar odors were
well separated in the space defined by the principal com-
ponents (Fig. 3). The input from PNs was used to drive a
population of KCs. In contrast to the threshold model of
KCs used in the previous section, here we modeled KCs
as leaky integrate-and-fire neurons with integration prop-
erties that matched the responses seen in earlier studies
(Perez-Orive et al., 2002, 2004). Here too, we maintained
the sparseness of KC responses across different PN-KC
connection regimes by choosing progressively higher
spike thresholds as the probability of connections in-
creased. The threshold chosen ensured that only 10% of
the KCs spiked in each epoch (50 ms window) when the
odor was present regardless of the connectivity. We
chose such a threshold-based sparseness to mimic the
ultimate effect of the GGN that dynamically adjusts
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feedback inhibition in response to the intensity of the KC
response. However, for high PN-KC connectivity (>50%),
we found that the difference between inputs to different
KCs was very small. Therefore, small changes in the KC
threshold led to an all-or-none response, and conse-
quently to a high variability across trials and a reduced
ability to discriminate between odorants. Intrinsic variabil-
ity in KC thresholds and differences in the strengths of
PN-KC synapses can potentially reduce this variability for
connectivities >50%. We used a normalized Hamming
distance to visualize differences across all connectivity
values. In the 0-50% connectivity regime, where the num-
ber of activated KCs remained nearly the same and well
controlled by KC threshold modification, the Hamming
distance matched the normalized Hamming distance ex-
cept for a constant scaling factor. Including PN temporal
patterning revealed some functional differences between
different PN-KC connectivity regimes.

KCs received inputs that represented odors with differ-
ent degrees of similarity between them. We calculated the
mean normalized Hamming distance between all pairs of
KC activity vectors for different odors and connectivities
(Fig. 4a). Our analysis began to pick out differences in the
ability of the KC population with different connectivities to
represent odors distinctly. The normalized Hamming dis-
tance between KC odor representations increased with
increasing PN-KC connectivity for all odor distances (Fig.
4a). This implied that the representations of two different
odors are more distinct in higher connectivity regimes.
This could potentially allow the network to accurately as-
sociate specific odors with reward signals in downstream
layers of the olfactory circuit (Cassenaer and Laurent,
2012; Hige et al., 2015b; Owald et al., 2015). However, an
increase in Hamming distance was accompanied by a
concomitant increase in the variability of the distance
across odor pairs. We found a similar trend in the distance
between the trials that represented the same odor (Fig.
4a, trace marked 0% difference). Therefore, for high PN-
KC connection densities, it seemed likely that different tri-
als of the same odor could be incorrectly classified as dis-
tinct odors. Ideally, the network must maximize the
distance between odor representations while also keep-
ing the trial-trial variability within a range that prevents the
misclassification of odors. The Hamming distance metric
does not take into account the variability of KC odor rep-
resentation. Therefore, we used k-medoids clustering to
separate the odor representations into nonoverlapping
groups. Our data consisted of 25 KC response vectors (5
odors x 5 trials). Each was a 50,000-element-long vector,
where each element represented a single KC and con-
tained either a 1 if that KC was active or 0 if it was inactive.
We determined whether the trials had been grouped cor-
rectly based on their odor identity. For each set, we used
the percentage of correct classifications as a measure of
the ability of the network to distinguish between odorants.
As the PN-KC connectivity increased to nearly 45%, the
number of correct classifications dropped abruptly, indi-
cating that the distance across trials of the same odor
matched or exceeded the distance between representa-
tions of different odors (Fig. 4b). Therefore, 45% PN-KC
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connectivity increased the distance between representa-
tions while keeping trial-trial variability within a reasona-
ble range. This result is similar to that of Jortner (2013),
though it is based on the output of KCs over a few sec-
onds of odor stimulation, while Jortner (2013) based the
conclusion on a single snapshot of odor input. Next, we
used multidimensional scaling to visualize the distribution
of different odors on a plane. The algorithm mapped each
50,000-dimensional KC representations of an odor trial on
to a single point on this plane. For low values of PN-KC
connectivity, multiple trials of the same odor preferentially
remained close together. As the divergence of connec-
tions increased, the separation between the representa-
tions of different trials of a particular odor and different
odors began to merge, making it difficult to correctly seg-
regate the odors (Fig. 4c, different odors are marked in
different colors). The odors plotted here differed from
each other in 5% of the PNs that were stimulated.

It is possible that the differences in Hamming distance
could be merely a consequence of using a specific KC
model (an integrate-and-fire neuron here) compared with
a nonlinear threshold neuron used in earlier sections. To
show that this is not the case, we created odor represen-
tations in which odors differed only in the identity of PNs
that they activated. All active PNs produced the same
number of spikes at exactly the same points in time. In
this way, we continued to include all aspects of our ex-
panded model but removed any differences in temporal
structure that could be used differently by the different
connectivity regimes. Therefore, if the usage of our new
KC model that evolved in time was the cause for the func-
tional differences that we saw, then the results of this sim-
ulation would differ from that of the previous simulations
(Fig. 2c) that used a threshold model. We found that the
distance between odor representations in both models,
the integrate-and-fire model and the threshold model,
were independent of the degree of PN-KC connectivity
when temporal features of the odor representation were
eliminated (compare Fig. 4d, 2c).

Together, these results suggest that the inclusion of
temporal structure in AL activity causes postsynaptic KC
populations that receive a large number of inputs to re-
spond differently from those that receive few inputs.
However, there appears to be a trade-off here. Dense
connectivity regimes are highly sensitive to small changes
in incoming input and can incorrectly categorize noisy tri-
als of the same odor as different odors. On the other
hand, sparse connectivity regimes produce reliable repre-
sentations that can be clustered correctly into different
groups. However, these are likely to fail if very similar
odors are introduced because the representations may
not be well separated, as seen from the low Hamming dis-
tance between the odor representations

Glomerular organization of the fly aids odor
discrimination

Olfactory receptor neurons in insects are distributed
randomly across the antennae within tiny hair-like struc-
tures called sensilla. Each receptor neuron expresses a
single olfactory receptor protein and possesses a
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Figure 4. PN temporal patterning reveals the functional differences between connectivities. a, Distance between odor representa-
tions. The mean = SD normalized Hamming distance between the KC representations of odor pairs is shown as a function of the
PN-KC connectivity value. Here KCs are modeled as described in Figure 3. b, Classification accuracy decreases with increasing
PN-KC connectivity. A k-medoids clustering algorithm that used the distance between 25 KC activity vectors (five trials x five
odors) was used to categorize each vector as one of five odors. The percentage of correctly classified odor representations is plot-
ted on the y-axis as a function of the connectivity of the PN-KC network. ¢, Odor representations become indistinguishable with in-
creasing PN-KC connectivity. Five odors that differed from each other by 5% PN input were mapped to a plane using
multidimensional scaling. Different trials of a given odor are plotted using a single color. Different odors are plotted using different
colors. The PN-KC connectivity is shown in the title of each subplot. d, Hamming distance between static odor representations.
The mean = SD normalized Hamming distance between the KC representations of odor pairs is plotted as a function of PN-KC
connectivity. Here, the PN odor representation did not change in time.

receptive field tuned to a variety of odorants (Hallem and  may be thought of as the number of independent dimen-
Carlson, 2004, 2006). In Drosophila, all the sensory neu-  sions; that is, the number of neurons that can generate
rons expressing a particular receptor type synapse ontoa  uncorrelated patterns of activity. In locusts that lack this
single glomerulus, giving nearly identical input to sister  glomerular organization, the maximum number of inde-
PNs that receive input from that glomerulus (Kazama and  pendent dimensions is 900 (the number of PNs that could
Wilson, 2009). While correlated PN responses can poten-  potentially receive unique odor input). In Drosophila, this
tially improve the signal-to-noise ratio, this comes at a  number reduces dramatically since multiple neurons re-
cost; namely, the dimensionality of the olfactory represen-  ceive identical input from ORNs and generate a highly
tation is vastly reduced. The size of the representation  correlated output. The number in Drosophila may be
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Figure 5. Glomerular organization of the fly aids odor discrimination. a, The mean = SD normalized Hamming distance as a function
of PN-KC connectivity in a network with glomerular structure. b, The normalized Hamming distance of odors with a one glomerulus
difference in a fly-like glomerular system is compared with the Hamming distance between odor representations of a system with lo-
cust-like glomerular structure. ¢, Classification accuracy of odors that are different by two glomeruli (2% or 12 neurons in the fly-like
architecture; blue trace) compared with the classification accuracy of odors that differed by 5% (45 neurons) of stimulated odors in
locust. Classification accuracy is higher for the fly-like organization for low PN-KC connectivities.

much smaller (~50, the number of glomeruli) since the
output of sister PNs is nearly the same. Does the glomeru-
lar organization of the Drosophila olfactory system miti-
gate some of the disadvantages in odor discrimination
imposed by sparse PN-KC connections?

To test whether the inclusion of the uniglomerular archi-
tecture seen in the fly produces any improvement in the
ability of sparsely connected networks, we performed
simulations in which odors were defined by the glomeruli
they activated. These odors differed in the number of
unique glomeruli they activated rather than the number of
unique PNs (Fig. 5a). These inputs were then fed to the
same KC network simulated earlier. We saw that for
sparse connectivity regimes the uniglomerular organiza-
tion magnified the differences in PN activity and increased
the Hamming distance between KC representations of
odors compared with the nonglomerular case (Fig. 5b).
We then used k-medoid-based clustering and classifica-
tion to determine whether the fly-like architecture pro-
vided any benefits in odor classification. We compared
the classification accuracy as a function of PN-KC con-
nectivity for two cases: a system with a multiglomerular
locust-like architecture; and one with a uniglomerular fly-
like architecture. We found that the uniglomerular archi-
tecture improved the classification accuracy of the net-
work for low PN-KC connectivities compared with the
multiglomerular architecture (Fig. 5¢). However, this kind
of glomerularization appears to cause no change or even
to slightly reduce the ability of dense connectivity
schemes to separate odor representations. This suggests
that the glomerular organization seen in the fly does in
fact improve the ability of the animal to distinguish be-
tween odors.

Discussion

Discrimination of purely spatial odor representations
is independent of PN-KC connection density

In the locust AL, PNs generate elaborate spatiotempo-
ral patterns in response to an odor. These patterns are
read by KCs in the MB. The density of connections be-
tween PNs and KCs is such that each KC receives input
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from nearly one-half of the PNs. A 50% probability of con-
nections from PNs to KCs ensures that the PN inputs to
KCs are maximally separated. The number of ways to

. . . n
pick m of n elements is maximized when m = > thus

maximizing the distance between inputs to KCs (Fig. 2b;
Jortner, 2013). This argument assumed that this distance
between inputs dropped off quickly as m changed from
m= g Therefore, in schemes that did not have close to
50% connectivity, KCs did not receive sufficiently distinct
inputs. We found that while the inputs were indeed maxi-
mally separated at 50% connectivity, once the summed
inputs underwent a KC threshold function, all connectivity
regimes were equally good at separating odors. This is in
line with more recent studies that show that even a 5%
connection probability generates a large representation
space such that even highly similar odors are mapped to
distant locations (Litwin-Kumar et al., 2017). However,
these observations are confined to odor representations
that are static. When the temporal patterning of inputs
was included, denser connectivities appeared to be sig-
nificantly better at separating odor representations.

Odor representations are variable in networks with
dense connectivity

Increasing connection density comes at a price.
Odorants are embedded in a noisy and changing milieu.
Recognition of appetitive and aversive odorants must play
out against a background of irrelevant olfactory informa-
tion. Thus, the network must be tolerant to perturbations in
the odor representation. This constraint introduces an
upper bound on the density of connections between PNs
and KCs. Our simulations demonstrated that high connec-
tivity values led to highly variable representations of the
odor by KCs, as was seen from the SD of the Hamming
distance. Dense (80— 95%) connectivity regimes generated
representations that were four to five times more variable
than representations generated by sparse connectivity
schemes. The reason for this increased variability is that for
dense connectivity schemes, KCs see nearly identical
input from PNs. For connectivity regimes>50%, with

eNeuro.org



eMeuro

temporally varying PN inputs, the discriminability between
KC inputs decreases with increasing connection density.
The response of KCs is modulated by inhibitory feedback
from the GGN. The GGN inhibits all of the KCs and main-
tains sparseness across large variations in odor attributes
by controlling the propensity of KCs to respond. In high-
connectivity regimes, a threshold that causes one of the
KCs to fire invariably allows most KCs to fire. A small in-
crease in threshold can lead to a condition where none of
the KCs fire. Noisy changes in input statistics can thus
drive the KC responses leading to large trial-trial variability.
While the variability of the odor representation is maximal
for connection densities in the 80-95% range, as men-
tioned previously, even networks with connection densities
in the range of 45-60% show poor classification ability
when exposed to multiple trials of the same odor. This is
clearly not ideal for a system attempting to represent sen-
sory information in a stereotyped way over different trials
and learn from experience.

Temporal patterning of PN activity reveals functional
differences among PN-KC connectivity regimes

A key insight from the simulations performed in this
study is the observation that the categorization of odors in
the insect MB is dependent on an interaction between
PN-KC connectivity and temporal patterning of PN input.
The reason for these differences, as shown earlier, is due
to the differing demands of connectivity regimes on the
temporal coincidence of spiking and spike thresholds.
Together, our results reiterate that temporal patterning of
PN input carries information about the identity of odors
(Stopfer et al., 2003). But, more importantly, we show that
this information can be used differently by systems with
different PN-KC connectivity values. Sparse connectivity
regimes use this in a way that allows for reduction in noise
sensitivity, and dense connectivity regimes use it to maxi-
mally separate between odors. Given the complexity of
our sensory world, the olfactory system must balance two
seemingly conflicting goals: resolve highly similar sensory
inputs and do so with considerable reliability despite noisy
variations in the input. Our model suggests that the locust
and Drosophila live in different regimes of a continuum of
possibilities, arriving at different solutions, perhaps driven by
their own evolutionary histories. Importantly, the differences
in the functions of these two circuits are only revealed when
the temporal structure of the odor representation is taken
into account.
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