
deBWT: parallel construction of

Burrows–Wheeler Transform for large collection

of genomes with de Bruijn-branch encoding

Bo Liu,† Dixian Zhu† and Yadong Wang*

Center for Bioinformatics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors.

Abstract

Motivation: With the development of high-throughput sequencing, the number of assembled gen-

omes continues to rise. It is critical to well organize and index many assembled genomes to pro-

mote future genomics studies. Burrows–Wheeler Transform (BWT) is an important data structure

of genome indexing, which has many fundamental applications; however, it is still non-trivial to

construct BWT for large collection of genomes, especially for highly similar or repetitive genomes.

Moreover, the state-of-the-art approaches cannot well support scalable parallel computing owing

to their incremental nature, which is a bottleneck to use modern computers to accelerate BWT

construction.

Results: We propose de Bruijn branch-based BWT constructor (deBWT), a novel parallel BWT con-

struction approach. DeBWT innovatively represents and organizes the suffixes of input sequence

with a novel data structure, de Bruijn branch encoding. This data structure takes the advantage of

de Bruijn graph to facilitate the comparison between the suffixes with long common prefix, which

breaks the bottleneck of the BWT construction of repetitive genomic sequences. Meanwhile,

deBWT also uses the structure of de Bruijn graph for reducing unnecessary comparisons between

suffixes. The benchmarking suggests that, deBWT is efficient and scalable to construct BWT for

large dataset by parallel computing. It is well-suited to index many genomes, such as a collection

of individual human genomes, with multiple-core servers or clusters.

Availability and implementation: deBWT is implemented in C language, the source code is avail-

able at https://github.com/hitbc/deBWT or https://github.com/DixianZhu/deBWT

Contact: ydwang@hit.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

With the rapid development and ubiquitous application of high-

throughput sequencing, many genomes have been sequenced in cut-

ting-edge genomics studies. For example, 1000 Genomes (The 1000

Genomes Project Consortium, 2015) and UK10K (The UK10K

Consortium, 2015) projects have sequenced many thousands of indi-

vidual human genomes. Moreover, as the cost of sequencing con-

tinuously decreases, e.g. the cost of sequencing a human sample has

already been lower than 1000 dollars (Watson, 2014), the number

of genomes may explosively increase in the future. Under this cir-

cumstance, it is fundamental to well organize and index the large

amount of genomes to facilitate future genomics studies.

Burrows–Wheeler Transform (BWT; Burrows and Wheeler,

1994; Ferragina and Manzini, 2000) is a self-indexing data structure

having many fundamental applications, such as genome indexing

(Hon et al., 2004; Karkkainen, 2007), sequence alignment (Lam

et al., 2008; Li and Durbin, 2009a; Langmead and Salzberg, 2012),

genome compression (Makinen et al., 2010; Cox et al., 2012), gen-

ome assembly (Simpson and Durbin, 2012; Li, 2012) and sequenc-

ing error correction (Cox et al., 2011). However, the BWT

construction of genomic sequence(s) is a non-trivial task. Mainly,

the core of BWT construction is to determine the lexicographical

order of all the suffixes of the input sequence(s). Because there could

be many repetitive sequences within a genome (Treangen and

Salzberg, 2012), the cost would be prohibitively high to straightfor-

wardly compare all the suffixes to determine their lexicographical

orders. The problem is even more serious for constructing the BWT

of many highly similar genomes, such as a large collection of

VC The Author 2016. Published by Oxford University Press. i174

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 32, 2016, i174–i182

doi: 10.1093/bioinformatics/btw266

ISMB 2016

https://github.com/hitbc/deBWT
https://github.com/DixianZhu/deBWT
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw266/-/DC1
http://www.oxfordjournals.org/


individual human genomes, as there would be many common se-

quences to make the whole input even more repetitive.

Efforts have been made to BWT construction. As the BWT of in-

put sequence(s) can be directly derived from the corresponding suf-

fix array (SA), many extant SA construction methods (Smyth and

Turpin, 2007) are applicable to this task. However, the memory

footprint may be not practical for large genomic sequences, e.g. se-

quence over tens of Giga basepairs (Gbp), as proposed SA construc-

tion methods usually need to store the entire SA in memory.

Although there are also proposed SA construction methods having

smaller memory footprints (Crauser and Ferragina, 2008; Nong

et al., 2014), however, they are at the expense of speed, as they need

to use external memory.

Most of the state-of-the-art BWT construction methods take the

advantage of the incremental construction approach, which is on the

basis of the property that the relative lexicographical order of a set

of sorted suffixes will not be changed by adding new suffixes. (Hon

et al., 2007) proposed the first compressed suffix array (CSA) con-

struction method using this property. Mainly, it logarithmically par-

titions the input sequence into blocks, and incrementally builds the

CSA from shortest to longest suffixes in three steps: (i) construct the

SA for a new block of suffixes; (ii) sequentially insert each of the suf-

fixes within the new block into the CSA of the old blocks, based on

the property that the relative order of the suffixes within the old

blocks do not change, and the CSA values monotonically increase

for the suffixes having the same initial character; (iii) merge the new

and old blocks to update the CSA. There are other proposed BWT

construction methods in this incremental blockwise approach,

which have various implementations. (Ferragina et al., 2012) pro-

posed a BWT construction method, bwt-disk, similar to (Hon et al.,

2007), which also logarithmically partitions the input sequence. But

it sorts each new block with a modified DC3 algorithm, and takes

advantage of the last-first mapping (LF-mapping) property of BWT

(Ferragina and Manzini, 2005) to merge new and old blocks. (Liu

et al., 2014b) also proposed a BWT construction method,

ParaBWT, in a similar manner. It uses a longest common prefix

table to facilitate the sorting of newly added suffixes, but also

merges the new and old blocks based on LF-mapping. The main con-

tribution of this method is that it implements parallelization for the

sorting of newly added blocks, which is beneficial for processing

large input sequences. Other than constructing BWT for one or

more large sequences, this approach is also used for indexing large

collections of sequencing reads. Bauer et al. (2013) proposed BCR,

an algorithm for constructing the BWT of a large set of reads. It uses

a specific partition of SA, i.e. partitioning all the suffixes into blocks

by their positions on the corresponding sequencing reads. With this

partition, the markers (denoted as specific characters) of the reads

can be fully used for improving the efficiency of the sorting and

merging of blocks. (Li, 2014) also proposed a similar method,

RopeBWT2, with improved ability of handling the sequences in

various lengths.

Besides the blockwise incremental approach, there are also other

approaches proposed. (Karkkainen, 2007) proposed a method that

constructs BWT in a different blockwise manner. It samples a set of

suffixes as splitters to bin all the suffixes into various blocks, and for

each of the blocks, the proposed method addresses all the suffixes

with difference cover sample (DCS). (Liu et al., 2014a) proposed a

graphics processing unit (GPU-based) BWT construction method,

CX1, for indexing a large set of short reads. The main idea of the

method is to bin all the suffixes by their initial k-mers, and address

all the bins with GPU-based radix sort. This method is mainly

designed for reads with limited length, as the radix sort relies on the

auxiliary characters attached to the reads.

The major advantage of the incremental blockwise approach is

that, based on the LF-mapping property, it provides an effective way

to compare suffixes with long common prefix, which is critical to

the BWT construction of large repetitive genomes. However, owing

to the incremental nature, this approach is not suitable for parallel

computing. Considering the rapid increase of assembled genomes,

the input sequence will be much larger than before. In this situation,

processing the large sequence with parallel computing is favorable,

especially that modern servers and clusters have much more CPU

cores and RAM than before. Recent studies have made the efforts to

BWT construction with parallel computing. ParaBWT implemented

the parallel BWT construction for large sequence; however, the re-

sults demonstrated that it is not scalable, i.e. the speedup will satur-

ate when a couple of threads (e.g. eight threads) are used. This is

mainly owing to the bottleneck of the incremental blockwise ap-

proach. As a non-incremental approach, CX1 is scalable; however,

it has limitation on the length of input sequences.

Herein, we propose de Bruijn branch-based BWT constructor

(deBWT), a novel scalable parallel BWT construction method,

which draws support from de Bruijn graph (dBG). The relationship

between dBG and suffix trie was explored in previous studies

(Marcus et al., 2014); however, it has still not been fully used in

BWT construction. The main contribution of deBWT is to represent

and organize the suffixes of input sequence with the property of

dBG that all the copies of the same k-mer within the input se-

quence(s) collapse to the same vertex of the dBG of the sequence(s).

The critical point of deBWT is to represent the suffixes with a novel

data structure, de Bruijn branch encoding, which is derived from the

unipaths of the dBG of the input sequence. This data structure facili-

tates the comparison between the suffixes with long common prefix.

Moreover, deBWT partitions the whole BWT into blocks by their

initial k-mers, and uses the property of dBG to avoid unnecessary

sorting for some of the blocks, i.e. the BWT characters of some

blocks can be derived in constant time based on the topology of the

graph.

We benchmarked deBWT with various datasets, and the result

suggests that it has fast speed and good scalability to multiple

threads. Especially, deBWT is well-suited to the BWT construction

of a collection of highly similar genomic sequences, such as multiple

human genomes, which may have wide application in the future

genomics studies.

2 Methods

2.1 Preliminary
Let a DNA sequence, G, be a sequence over the alphabet

R ¼ A;C;G;Tf g having Gj j characters. Further, we assume the se-

quence to be indexed is S ¼ G$, where $ is an auxiliary character,

and the lexicographical order of the alphabet of S is

A < C < G < T < $. Moreover, S i½ �; i ¼ 0; . . . ; Gj j denotes the

i-th character of S, and S½i; j� denotes the substring of S starting at

S i½ � and ending at S j½ �.
A suffix of S is a substring S½i; Gj j�, i ¼ 0; . . . ; Gj j, and the SA of

S is a function that SA i½ � ¼ j, i ¼ 0; . . . ; Gj j, where j is the starting

position of the i-th lexicographically smallest suffix of S. The BWT

of S, BS, is the permutation of the characters of S that,

BS i½ � ¼ S½SA i½ � � 1�, if SA i½ � 6¼ 0, and BS i½ � ¼ $, otherwise.

The dBG of G, DG, is a directed graph, where the vertices consist

of all the k-mers of G. Each of the vertices is denoted as KMi,

deBWT i175



i ¼ 1; . . . ; DG
�� ��, where DG

�� �� is the total number of distinct k-mers.

For any pair of vertices of DG, KMi; KMj

� �
, there is a directed edge

KMi ! KMj, only if KMi and KMj have a k-1 overlapping, i.e.

KMi 1; k� 1½ � ¼ KMj½0; k� 2�. With this definition, a set of max-

imal non-branched paths can be derived from DG. Here, a maximal

non-branch path indicates a path that meets the following

conditions: (i) for the first vertex, the in-degree is 0 or>1, and the

out-degree is 1; (ii) for the last vertex, the out-degree is 0 or>1, and

the in-degree 1; (iii) for all the other internal vertices, the in- and

out-degrees are exactly 1 (Tomescu and Medvedev, 2016). Such

paths are usually termed as ‘unipaths’ or ‘unitigs’, which are com-

monly used in the de novo assembly of genome (Gnerre et al., 2011;

Zimin et al., 2013; Tomescu and Medvedev, 2016). We used the

term ‘unipath’ in the following sections. For the convenience of dis-

cussion, we assign each of the unipaths of DG an identity,

Uj; j ¼ 1; . . . ; UG
�� ��, where UG

�� �� is the total number of the unipaths.

In the following subsections, we present the unipath-based BWT

construction approach at first (Section 2.2), then the overview of

deBWT (Section 2.3) and more detailed information about the im-

plementation of the various steps of the method (Section 2.4-2.7).

2.2 Unipath-based BWT construction
2.2.1 The unipath representation of suffix

The DNA sequence G can be represented by a specific walk on the

dBG DG, i.e. it equals to the sequence of collapsing a specific

ordered list of the vertices of DG, KMG
0 ;KMG

1 ; . . . ;KMG
Gj j�k

� �
,

where each KMG
i ; i ¼ 0; . . . ; Gj j � k is the corresponding k-mer

starting at position i of G, and each of the two neighboring vertices

within the list is a specific edge of DG. With this observation, we

have the following lemma.

Lemma 1: a DNA sequence can be represented by an ordered list

of the unipaths of the dBG.

This lemma is easy to justify by collapsing all such edges,

KMG
i ! KMG

iþ1, within the ordered list KMG
0 ;KMG

1 ; . . . ;KMG
Gj j�k

� �
,

where KMG
i and KMG

iþ1 are respectively single-out and single-in ver-

tices. Thus, the ordered list can be re-written as

UG
1 ; UG

2 ; . . . ;UG
UGj j

� �
, where UGj j is the total number of the uni-

paths representing G, each UG
i ; i ¼ 1; . . . ; UGj j represents a unipath.

It is also worth noting that, some of the identities within the list may

be same to each other, as a unipath could have multiple copies. For

each UG
i , we further define its starting position on G as a Unipath

Change Point (UCP), UCPG
i . An illustration is in Supplementary

Figure 1. Furthermore, we have the following corollary.

Corollary 1: Each of the suffixes can be represented as an ordered

list of unipaths, or a substring of a specific unipath appending an

ordered list of unipaths.

Each of the suffixes, S½i; Gj j�, can be directly represented by the

ordered list KMG
i ;KMG

iþ1; . . . ;KMG
Gj j�k

� �
, where KMG

i is the cor-

responding k-mer at position i. If position i is a UCP, the ordered

list of k-mers can be re-written as the ordered list of

unipaths, UG
j ;U

G
jþ1; . . . ;UG

UGj j

� �
; otherwise, it can be re-written as

S i;UCPG
jþ1 � 1

h i
;UG

jþ1; . . . ;UG
UGj j

� �
, where UG

jþ1 is the UCP closest

to position i downstream, and S i;UCPG
jþ1 � 1

h i
is the substring of

the unipath that KMG
i is within (Supplementary Fig. 1). We term

this list as the unipath representation of the suffix.

2.2.2 The unipath-based comparison between two suffixes

Given two suffixes of S, Suf S
i ¼ S½i; Gj j� and Suf S

j ¼ S½j; Gj j�, where

i 6¼ j, i < Gj j � k and j < Gj j � k, the comparison between the

two suffixes can be deduced as the following two situations.

First, considering the two ordered lists of k-mers,

KMG
i ;KMG

iþ1; . . . ;KMG
Gj j�k

� �
and KMG

j ;KMG
jþ1; . . . ;KMG

Gj j�k

� �
, if

KMG
i 6¼ KMG

j , the lexicographical order of the two suffixes can be

easily determined by their initial k-mers.

Secondly, if KMG
i ¼ KMG

j , the comparison is more complicated.

In this situation, the two suffixes are two walks on DG starting at

the same vertex, as all the copies of the same k-mers collapse to the

same vertex of the dBG. Thus, S i;UCPG
iþ1 � 1

� �
¼ S j;UCPG

jþ1 � 1
h i

,

as the two strings are the same substring of the corresponding uni-

path. An illustration is in Figure 1a.

Then it becomes an iterative comparison between the aligned

unipaths, i.e. if the two unipaths, UG
iþ1 and UG

jþ1, are different, the

lexicographical order can be determined, otherwise we need to com-

pare the following unipaths until we meet two different unipaths

(Fig. 1b).

Considering the property of dBG, if the two unipaths, UG
iþl and

UG
jþl, are identical to each other, the starting vertices of UG

iþlþ1 and

UG
jþlþ1 must be two vertices with the same precursor; thus, the first

k-1 characters of the two vertices must be same, i.e. the comparison

can be done by only checking the k-th characters of the two uni-

paths, i.e. G UCPG
iþlþ1 þ k� 1

h i
and G UCPG

jþlþ1 þ k� 1
h i

(Fig. 1c).

Moreover, if the last vertex of UG
iþl (UG

jþl) is a single-out vertex, the

comparison can be also omitted because the next unipaths must be

the same.

With these observations, we designed a novel data structure

named as de Bruijn branch encoding (Fig. 1d). The de Bruijn branch

encoding of G, dEG, is defined as the concatenation of all such char-

acters G iþ k½ �; i ¼ 0; . . . ; Gj j � k� 1 meeting the condition that

KMG
i corresponds to a multiple-out vertex. Each of the characters of

dEG is also called a branching character. Then, for each of the Suf T
j ,

j < Gj j � k, we define its projection suffix on dEG as

dEG / jð Þ; dEG
�� ��� 1

� �
, where / jð Þ is the dEG coordinate of the first

branching character after the position j in S, and dEG
�� �� is the length

of dEG.

Lemma 2: For two suffixes at least k bp long, their lexicograph-

ical order can be determined by comparing their projection suffixes

defined by the de Bruijn branch encoding of the DNA sequence, if

the initial k-mers of the two suffixes are identical.

This lemma is easy to justify with the observations mentioned

above, and it provides a cost-effective solution of the comparison be-

tween two suffixes with long common prefix.

2.2.3 The k-mer partition of BWT

According to the definition of SA, the suffixes starting with identical

k-mers (suppose it as KMi) constitute a continuous block in SA, as a

suffix with a different initial k-mer (e.g. KMj) must be larger or

smaller than all the suffixes starting with KMi. Thus, given DG, the

BWT of S can be partitioned into DG
�� ��þ k parts. DG

�� �� of them cor-

respond to the DG
�� �� k-mers of DG, i.e. each of the DG

�� �� parts in-

volves all the suffixes with a specific k-mers of DG; and each of the

remaining k parts corresponds to a specific suffix whose starting

position is less than k bp previous to the end of S. This partition

(called k-mer partition of BWT) can be constructed in two steps: (i)

sort all the k-mers of DG and the last k suffixes of S by their lexico-

graphical order; (ii) bin all the> k bp long suffixes of S into the

i176 B.Liu et al.

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw266/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw266/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw266/-/DC1


corresponding parts by their initial k-mers. After the two steps, the

BWT construction becomes DG
�� �� sub-problems, i.e. separately

determining the lexicographical order of the suffixes within each of

the DG, as the lexicographical order of the suffixes with different

k-mers have been implicitly determined during the construction of

the k-mer partition.

Thus, for each of the DG
�� �� parts corresponding to various initial

k-mers, the task is the comparison of a series of suffixes with the

same initial k-mer, which can be implemented with the help of the

de Bruijn branch encoding dEG. Moreover, the problem can be fur-

ther reduced with the following lemma.

Lemma 3: If a vertex KMi of DG (i ¼ 1; . . . ; DG
�� ��) is single-in,

the corresponding BWT part consists of KMij j same characters,

where KMij j is the number of the copies of KMi in G, only except if

the part involves the first suffix.

This lemma is obtained with the observation that if a vertex of

the dBG is single-in, all the suffixes with this k-mer must have the

same previous character, i.e. the BWT of this part is purely KMij j
copies of the first character of the precursor of KMi. This is except

for the parts involving the first suffix, as the BWT character of the

first suffix is $. With this lemma, only the parts labeled by multiple-

in vertices need to be sorted. Thus, there are at most UG
�� �� sub-

problems, as such vertices must be the initial k-mers of the unipaths.

2.3 Overview of the deBWT method
As in many cases, the input is not only one, but a set of DNA se-

quences, such as a set of genomes, chromosomes or assembled con-

tigs, we re-define the sequence to be indexed as S ¼ G1 G2 . . . GND
$,

where ND is the number of input DNA sequences, and each of

Gi; i ¼ 1; . . . ; ND is a specific sequence. is another auxiliary char-

acter, and the alphabet becomes A<C<G<T< <$.

DeBWT constructs the BWT of S in the following three major

phases.

i. dBG building and analysis: deBWT builds a dBG of all the

involved sequences G1;G2; . . . ;GNDf g with a user-defined par-

ameter k, sort the k-mers to build the k-mer partition of the

BWT, recognize all the unipaths as well as the multiple-out and

multiple-in vertices and solves all the parts corresponding to

single-in vertices.

ii. de Bruijn branch encoding generation: deBWT computes the de

Bruijn branch encoding of S (dES), bins all the suffixes of S cor-

responding to the unsolved parts of BWT and computes their

projection suffixes.

iii. BWT construction with projection suffixes: for each of the un-

solved BWT parts, deBWT builds the SA of the involved projec-

tion suffixes to determine the BWT characters of the part.

A schematic illustration of the method is in Figure 2.

2.4 dBG building and analysis
It needs all the k-mers as well as the numbers of their copies in

G1;G2; . . . ;GNDf g to build the k-mer partition and solve the single-in

parts, i.e. a k-mer counting task. In the current version of deBWT,

Jellyfish (Marçais and Kingsford, 2011) is used. As both of the multiple-

in and multiple-out vertices are needed in later steps, deBWT counts the

edges of the dBG, i.e. the (kþ1)-mers, instead of the k-mers.

To build the k-mer partition of the BWT, deBWT sorts all the

(kþ1)-mers by their lexicographic order, and respectively merges

all the (kþ1)-mers with identical first k bp prefixes into k-mers to

build the partition. For each of the k-mers, its number of copies is

calculated by directly summing up the corresponding (kþ1)-mers.

Fig. 1. The unipath-based comparison between two suffixes with the same

initial k-mer. (a) Because all the copies of the same k-mers collapse to the

same vertex of the dBG, two suffixes, Suf G
i and Suf G

j with the same initial

k-mer must link to the same offset of the same unipath (the copies of the uni-

paths on the DNA sequence are marked by segments with various colors).

Thus, the lexicographical order of the two suffixes cannot be determined until

the comparison reaches the end of the unipath, as all the corresponding char-

acters of the two suffixes are same to each other. (b) When the comparison

goes to new unipaths from the finished (same) unipath, the lexicographical

order can be determined only if the two suffixes have two different unipaths

on the corresponding positions of their unipath representation, otherwise,

more unipaths are needed. In this case, both of the two suffixes have the

same unipath (the red unipath) successive to the first unipath (the blue uni-

path), so that the comparison continues to the third unipaths. For the third

unipath, the lexicographical order can be determined as the two suffixes

goes to two difference branches (green and purple, respectively) at the end of

the second unipath. (c) Owing to the property of dBG, two different unipaths

must be different to each other at their first k-mers. Furthermore, if two differ-

ent k-mers have the same precursor, their first (k-1) characters must be same

to the last (k-1) characters of their precursor (the gray segments in the figure),

i.e. the two branching k-mers are only different at their k-th character

(the blocks marked as green and purple in the figure). In this situation, it

only needs to compare the k-th characters of two unipaths to determine if

they are the same unipath. (d) With this property, the de Bruijn encoding,

dEG , is defined as a string concatenating all such characters,

G x þ k½ �; x ¼ 0; . . . ; Gj j � k � 1, along the DNA sequence, G, where the k-mer,

KMG
x , at the position x of G is a copy of a multiple-out vertex. Each of the

G x þ k½ �s is also termed as a branching character (marked as colored blocks

in the figure). And for a position j of G, / jð Þ is defined as the position of Br jð Þ
on dEG , where Br jð Þ is the branching character downstream and closest to

the position j in S.

deBWT i177



Meanwhile, the multiple-out vertices can also be recognized during

the merging, and deBWT records all the multiple-out vertices for

building the de Bruijn branch encoding in the later step.

The multiple-in vertices is then recognized based on the sorted

(kþ1)-mer list. That is, deBWT partitions the sorted (kþ1)-mer list

into four ordered lists, each corresponding to a specific initial char-

acter, A, C, G or T. Then deBWT recognizes all the multiple-in verti-

ces by a four-way merging on the lists. During the merging, two

tasks are done simultaneously, i.e. if a vertex is recognized as single-

in, deBWT assigns it the first character of the corresponding (kþ1)-

mer and the number of copies to solve the BWT part; otherwise,

deBWT records the k-mer in another data structure to generate the

/ �ð Þ function in the later step.

It is worth noting that, owing to the existence of the auxiliary

character #, deBWT recognizes all the k-mers that have at least one

copy previous to and next to # as multiple-out and multiple-in

k-mers, respectively.

The parallelization of this step is straightforward. The k-mer

counting can be directly parallelized (Marçais and Kingsford, 2011).

There are many feasible parallel integer sorting approaches for sorting

the (kþ1)-mers and we used a simple approach, i.e. a radix sort is im-

plemented to partition all the (kþ1)-mers into blocks, and each of

the blocks is further processed in parallel by integer quick sort. The

merging of the k-mer lists is not executed in parallel; however, the

cost is linear to the number of (kþ1)-mers and not expensive.

2.5 The generation of de Bruijn branch encoding and

projection suffixes
DeBWT builds a hash table-based data structure, de Bruijn branch

index, to index all multiple-in and multiple-out k-mers

(Supplementary Fig. 2). With this index, the de Bruijn branch encod-

ing and the / �ð Þ function are simultaneously generated by scanning

S one time.

DeBWT initially allocates an empty string as dES, a counter

CdES recording the length of dES and a linear table, PdES, which re-

cords the positions and the / �ð Þ values for all the copies of the

multiple-in k-mers (Supplementary Fig. 2). Each of the multiple-in

k-mers occupies a series of cells of PdES as a sub-table for their own

copies. Each of the sub-table can be accessed with a specific pointer.

DeBWT then scans S from upstream to downstream to check

each of the k-mers. For a position i of S, if the corresponding k-mer,

KMS
i , is a multiple-in k-mer, deBWT records the character S i� 1½ �

and the value CdES þ 1
� �

into the corresponding sub-table of PdES;

if KMS
i is a multiple-out k-mer, deBWT appends the branching char-

acter S iþ k½ � to dES and updates CdES. Here, S i� 1½ � is the BWT

character of KMS
i , and CdES þ 1

� �
is the / ið Þ value, as the next

branching character must be the first character of the projection suf-

fix of KMS
i , and CdES þ 1

� �
is its position on dES.

The parallelization of this step is implemented as follows.

DeBWT divides S into P segments, and assigns each of the segments

to a specific thread to generate local dES and / �ð Þ values. The value

P is equal to the number of threads. It is worth noting that all the

threads share the same hash table and PdES data structures with

read-write locks, but have their own CdES and dES. When all the

threads accomplish their own tasks, deBWT appends all the local

dESs and updates the local / �ð Þ values generated by thread p

2 1; 2; . . . ;Pf g by the following operation: assume the length of

the dES of the j-th segments is ldE
j ; j 2 1; 2; . . . ;Pf g, for each of

multiple-in k-mers, KMS
i , within the p-th segments (p > 0), the cor-

responding / �ð Þ value, / ið Þ, is updated as / ið Þ þ
Pp�1

j¼0 ldE
j .

2.6 BWT construction with projection suffixes
For each of the BWT parts corresponding to the multiple-in k-mers,

deBWT constructs the SA of the projection suffixes with the dES and

the / �ð Þ function. The SA is built by straightforwardly quick-sorting

the involved projection suffixes. As all the unsolved parts are inde-

pendent, it is also easy to accomplish the tasks in parallel.

We did a modification on the recursive process of the original

quick-sort method to improve the efficiency. That is, for a specific

sub-array of suffixes transferred into the recursive function, deBWT

checks whether all the suffixes have the same BWT characters at

first. If this is the case, deBWT marks the sub-array as sorted, as the

precise lexicographical order of these suffixes is not necessary for

the BWT construction; otherwise, deBWT calls the original recursive

function to further sort the sub-array. This modification can also be

seen as an extension of Lemma 3.

2.7 Additional processing
After all the operations mentioned above, there are still ND � k un-

solved BWT characters, each corresponding to one of the suffixes,

which start less than k positions before # or $. These suffixes are ini-

tially set aside, and deBWT builds the SA of such suffixes stand-

alone to fill the BWT string. As there are only few such suffixes, this

sorting is implemented by directly comparing the original sequences

of the suffixes.

Fig. 2. A schematic illustration of the deBWT method. (a) DeBWT initially

builds a dBG of the input sequence(s) with a user-defined parameter, k, which

determines the size of the vertices. The dBG is then analyzed to build the

k-mer partition of the BWT and recognize all the unipaths (the colored bars in

the figure indicate the copies of various unipaths of the input sequence). With

the unipaths, all the multiple-in and multiple-out vertices are indexed by a

hash table-based data structure, de Bruijn branch index. Moreover, all the

multiple-in vertices are marked. In this case, the red block indicates the first

k-mer of the ‘red’ unipath of the dBG which is a multiple-in vertex, and the

grey and the white blocks respectively indicate other multiple-in and -out

k-mers. (b) DeBWT scans the input sequence(s) to recognize the branching

characters with de Bruijn branch index (marked as colored reverse rectangles

above the input sequence) and generate the de Bruijn branch encoding.

Meanwhile, the suffixes with initial k-mers corresponding to multiple-in verti-

ces, i.e. the suffixes belonging to the unsolved parts of the BWT, are also rec-

ognized with the index (marked as colored rectangles below the input

sequence). Furthermore, for each of the suffixes within the unsolved parts,

deBWT calculates its / �ð Þ value to determine the corresponding projection

suffix and also recorded it into the de Bruijn branch index. (c) With de Bruijn

branch index, deBWT addresses all the unsolved BWT parts by sorting the

projection suffixes

i178 B.Liu et al.

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw266/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw266/-/DC1


3 Results

We benchmarked deBWT with three datasets mimicking various

real application scenarios. (i) A dataset consists of 10 in silico

human genomes (totally 30.9 Gbp). Each of the genomes is gener-

ated by integrating the variants of a specific sample from 1000

Genomes (The 1000 Genomes Project Consortium, 2015) into the

human reference genome GRCh37/Hg19. This dataset mimics the

indexing of multiple individual human genomes, which has many

applications in genomic studies. (ii) A dataset consists of a set of

simulated contigs. As long read sequencing technologies, such as

Single Molecular Real-Time sequencing, have improved the contig

N50 of human genome assembly to >10 million bp (http://www.

pacb.com/blog/toward-platinum-genomes-pacbio-releases-a-new-

higher-quality-chm1-assembly-to-ncbi/), we randomly extracted

3000 sequences (each is about 10M bp long, totally 30.2 Gbp) from

the 10 in silico human genomes with an in-house script, which is

revised from Wgsim simulator (Li et al., 2009b; https://github.com/

lh3/wgsim). (iii) A dataset consists of eight primate genomes includ-

ing gibbon, gorilla, orangutan, rhesus, baboon, chimp, bonobo and

human (downloaded from: http://hgdownload.soe.ucsc.edu/down

loads.html). This dataset assessed the ability of deBWT to index

more diverse genomes.

The benchmark was implemented on a server with four Intel

Xeon E4820 CPUs (32 cores in total) at 2.00 GHz and 1 Terabytes

RAM, running Linux Ubuntu 14.04. DeBWT uses Jellyfish (version

2.1.4; Marçais and Kingsford, 2011) for implementing the k-mer

counting of the input sequences (the parameter k is configured as

31). Two recently published methods, RopeBWT2 (Li, 2014) and

ParaBWT (version 1.0.8-binary-x86_64) (Liu et al., 2014b), were

also performed on the same datasets for comparison.

At first, we tested the performance of deBWT with 32 threads,

i.e. running with all the 32 CPU cores of the server. ParaBWT was

also run with 32 threads, but RopeBWT2 was run with its default

setting, as it does not support parallel computing. The elapsed time

(Table 1) indicates that deBWT and ParaBWT have comparable

speed, while RopeBWT2 is slower, likely owing to the fact that it

does not support parallel computing and the algorithm could not be

suited to long sequences. We further investigate the processing of

deBWT, and found that the speed of deBWT was largely slowed

down by Jellyfish owing to the format of its output file. The default

output of Jellyfish is a binary file in an unpublished format. As the

details about the format is unknown for us, we used the ‘dump’

command of Jellyfish to convert the output file into text file, and

then converted the text file into binary file in our own format as the

input of further steps. This file conversion costs a couple of hours

for all the three datasets, i.e. about 60–70% of the total running

time. The time cost would be much reduced if the output format of

jellyfish was available, or if other k-mer counting tools with similar

performance and readable output format were used. Deducting the

time of file conversion, deBWT is much faster than the other two

methods.

We investigated the time cost of the various steps of deBWT

(Table 2). Mainly, two issues are observed.

First, most of the core steps of deBWT, i.e. k-mer counting, k-

mer sorting, de Bruijn branch encoding and / �ð Þ values generation

and projection suffixes sorting, are efficient. This is because of a

couple of reasons. (i) The de Bruijn branch code greatly reduces the

cost of sorting suffixes with long common prefixes. We investigated

the lengths of the generated de Bruijn branch code, and found that,

for both of the genomes and the contigs datasets, their lengths are

respectively one order shorter than those of the original input se-

quences. Under this circumstance, the comparison between projec-

tion suffixes is much less expensive than that of the original suffixes.

Furthermore, the k-mer partition of BWT also helps to reduce many

unnecessary comparison operations. (ii) The designs of these steps

are suitable for parallel computing, which can fully use the multiple

CPU cores. It is worth noting that, besides the parallel implementa-

tion of the core steps of deBWT, the state-of-the-art k-mer counting

tool also has good parallelization. As k-mer counting is still an open

problem with wide application, there are a few choices for this step.

We also tried a newer published tool, KMC2 (Deorowicz et al.,

2015), and obtained even faster speed (Table 2). However, KMC2

also outputs a binary file, which is hard to directly interpret. It

would be beneficial if the state-of-the-art k-mer counting tools have

an easy-to-interpret output file. (iii) Besides the parallelism, multiple

steps, i.e. k-mer counting, the radix sort of k-mers, de Bruijn branch

encoding and / �ð Þ values generation, have quasi linear time

complexity.

Second, the I/O operation is the main issue slowing down the

method. Other than the file conversion step mentioned above, there

are also many I/O operations in the ‘de Bruijn graph analysis’ and

the ‘additional processing’ steps. That is, in the dBG analysis step,

deBWT needs to merge the files recording the four ordered lists of

k-mers to recognize the multiple-in k-mers; and in the additional

processing step, deBWT needs to convert the large sequences to be

indexed from text (fasta format) into binary format and merge vari-

ous BWT parts. Although these operations theoretically have low

time complexity, they also depend on the performance of the file sys-

tem of the computer as well as the implementation of the program.

Table 1. Running Time with 32 CPU cores (in minutes)

Methods Human

genomes

Human

contigs

Primate

genomes

deBWT 134 129 330

deBWT (no conversion) 48 56 100

ParaBWT 241 262 180

RopeBWT2 1694 2247 1546

‘DeBWT’ indicates the elapsed time of deBWT, and ‘deBWT (no conver-

sion)’ deducts the time of the format conversion of Jellyfish output.

Table 2. The time of the various steps of deBWT (in minutes)

Steps Human

genomes

Human

contigs

Primate

genomes

Phase1: dBG building and analysis

k-mer counting 16 16 26

File conversion 87 74 229

k-mer sorting 3 3 8

dBG analysis 8 7 19

Phase2: The generation of

de Bruijn branch encoding

and projection suffixes

de Bruijn branch encoding and

/ �ð Þ values generation

9 12 16

Phase3: BWT construction with

projection suffixes

Projection suffixes sorting 4 12 10

Additional processing

Additional processing 7 6 22

Supplement

k-mer counting with KMC2 7 9 12

deBWT i179

http://www.pacb.com/blog/toward-platinum-genomes-pacbio-releases-a-new-higher-quality-chm1-assembly-to-ncbi/
http://www.pacb.com/blog/toward-platinum-genomes-pacbio-releases-a-new-higher-quality-chm1-assembly-to-ncbi/
http://www.pacb.com/blog/toward-platinum-genomes-pacbio-releases-a-new-higher-quality-chm1-assembly-to-ncbi/
https://github.com/lh3/wgsim
https://github.com/lh3/wgsim
http://hgdownload.soe.ucsc.edu/downloads.html
http://hgdownload.soe.ucsc.edu/downloads.html


It is also an important future work for us to further optimize these

operations.

Other than the two issues mentioned above, the time cost of the

projection suffixes sorting step is especially critical, as it is the core

step to handle the long repetitions within the input sequence(s). The

total time cost of this step is
P UGj j

j¼1 t UG
j

� �
, where t UG

j

� �
is the time

for solving the j-th unsolved part of the BWT. As each of the un-

solved parts are handled by quicksort, the time cost can be repre-

sented as follows (Bentley and Sedgewick, 1997; Karkkainen, 2007):

t UG
j

� �
¼ O NjlogNj þ

PNj

i¼1

DP PSið Þ
 !

, where Nj is the number of

the projection suffixes involved in the unsolved part j, and DP PSið Þ
is the length of the distinguishing prefix of the i-th projection suffix

(denoted as PSi) of the part. Here, the distinguishing prefix of PSi is

the shortest prefix of PSi, which is necessary to determine the BWT

characters of the corresponding part. For the highly similar input se-

quences, G1, G2, . . ., GND
, the upper bound of DP PSið Þ is O

dEGM
�� ��� �

in theory, owing to the existence of long repetitions, where

GM is the input sequence having the longest de Bruijn branch encod-

ing, and dEGM
�� �� is the length of the corresponding de Bruijn branch

encoding. For example, two sequences Gi and Gj could be almost

the same; thus, the length of distinguishing prefix could be close to

the length of the de Bruijn branch encoding of the sequences. As the

total number of the branching characters of GM, the value dEGM
�� ��

does not only depend on how many unipaths GM has, but also how

many copies of the unipaths there are.

Although the theoretical upper bound is large, however, DP PSið Þ
also greatly depends on the distributions of genomic variations as

well as the repetitiveness of the input sequences, which could make

it lower in practice. To more precisely investigate the time cost, we

assessed the DPj values and the DPM
j values of the most repetitive

dataset in the benchmark (i.e. the 10 human genomes dataset),

where DPj and DPM
j are respectively the mean and maximal length

of the distinguishing prefix of the projection suffixes within the j-th

unsolved part. A series of quantiles of DPj and DPM
j values of the

10 human genomes dataset are shown in Table 3. These quantiles in-

dicate that, for most of the blocks, the distinguishing prefixes are

short, e.g. the 0.90 quantile of DPM
j is 11 872, indicating that for

90% of the unsolved BWT parts, the max length of the distinguish-

ing prefixes is shorter than 11 872 characters. This is not expensive

to determine their lexicographical orders by a straightforward com-

parison. Thus, the overall cost of this step is not high, although there

is still a small proportion (<0.1%) of BWT parts having long distin-

guishing prefixes (average value is>298k).

We also run deBWT with 8, 16, 24 threads to investigate its scal-

ability. The results (Table 4) suggest that deBWT can gradually

speedup with the increase of threads, i.e. it has good scalability.

However, the speed of ParaBWT is nearly the same with the various

settings on threads. This is likely owing to the incremental nature of

the ParaBWT method, which may limit its performance on modern

servers and clusters. The time of the various steps of deBWT with

various numbers of threads is in Figure 3. It indicates that the two

core steps, de Bruijn branch encoding and / �ð Þ values generation

and projection suffixes sorting (steps 4 and 5 in the figure), are most

scalable steps, i.e. they speedup with the increasing number of

threads. This property is beneficial for implementing the method

with more computational resources.

We further run deBWT on the in silico human genome dataset

with various configurations on the k parameter to investigate its ef-

fect Table 5. It can be observed from the result that, on a large range

of k parameters, i.e. k¼23–31, the total running time is close, but

for smaller k parameter, the time consumption is higher. This is

likely owing to the fact that the moderate long k-mers (such as 23-

to 31-mers) may have similar ability to span short repeats. In this

situation, the structure of the dBG does not change much with these

k configurations, i.e. there are similar numbers of unipaths as well

as their copies in the graph. However, when k is smaller, the uni-

paths will be shorter and have more copies, which would make the

de Bruijn branch encoding longer and more projection suffixes

need to be sorted. k> 32 could have better ability to span repeats,

which may improve the overall performance; however, it requires

much more RAM space, as a k-mer cannot be stored by one 64-bits

cell.

The memory footprint of deBWT (Table 6) depends on both of

the method itself and the used k-mer counting tool. The memory

usage of Jellyfish and KMC2 is highly configurable, and we set them

to use relatively large memory to accomplish the k-mer counting

step as fast as possible. The major RAM costs of the three phases of

deBWT are different. In the first phase, the major cost originates

from the data structure of k-mer sorting. Briefly, deBWT uses a lin-

ear table like PdES to bin all the k-mers; however, each cell of the

table costs 16 bytes to record the string of the k-mer as well as its

number of copies. The cost of the second phase is more complicated.

It needs to simultaneously keep the input sequences, the de Bruijn

branch index and the generated de Bruijn branch encoding in mem-

ory. Thus, the memory usage mainly depends on several issues, i.e.

the size of the input sequence(s), the numbers of multiple-out and -in

k-mers and the numbers of the copies of the multiple-out and -in k-

mers. The last two items respectively determine the length of de

Bruijn branch encoding and the number of unsolved suffixes, which

need to record in memory. The numbers of the multiple-out and -in

k-mers and their copies highly relate to the repetitiveness of the in-

put genomes. We did statistics on the two human datasets (as they

are more repetitive), and observed two issues (Table 7).

Table 3. Quantiles of DPj and DP M
j values of the 10 human gen-

omes dataset

Quantiles 0.50 0.90 0.95 0.99 0.999 0.9999

DPj 107 588 2382 95 019 298 598 515 006

DPM
j 1760 11 872 238 368 1 925 600 3 232 832 3 387 040

Table 4. Running time with various numbers of threads (in

minutes)

Methods 8 threads 16 threads 24 threads 32 threads

Human genomes

deBWT 194 153 142 134

deBWT (no conversion) 109 68 56 48

ParaBWT 265 240 240 241

Human contigs

deBWT 183 154 123 129

vdeBWT (no conversion) 116 86 56 56

ParaBWT 294 277 276 262

Primate genomes

deBWT 423 355 332 330

deBWT (no conversion) 193 125 105 100

ParaBWT 196 182 181 180

‘DeBWT’ indicates the elapsed time of deBWT, and ‘deBWT (no conver-

sion)’ deducts the time of the format conversion of Jellyfish output file.

i180 B.Liu et al.



First, for both the datasets, the numbers of multiple-out and

-in k-mers are much less than Sj j, i.e. the number of characters of the

input sequences. Thus, the cost of the hash table is not expensive com-

paring with the entire input sequences. Moreover, it is also worth not-

ing that for highly similar genomes, the increment of the numbers of

multiple-out and -in k-mers would be much smaller comparing with

the increment of involved genomes, as there are many common se-

quences and they would not introduce new branches into the dBG.

Second, the numbers of the copies of multiple-out and -in k-mers

are also an order lower than Sj j, although human genomes are re-

petitive. In this situation, the de Bruijn branch encoding can be seen

as a DNA sequence an order shorter than S, so that the space cost is

not large. The major cost originates from the copies of multiple-in

k-mers, as it needs to record the / �ð Þ value and the BWT character

with a few bytes for each copy.

The RAM cost of the third step is also similar to that of the se-

cond phase. To sort the projection suffixes, it needs to keep the de

Bruijn branch encoding and the / �ð Þ values and the BWT characters

of the copies of the multiple-in k-mers in RAM.

4 Discussion

The well organization and indexing of many genomes will be on wide

demand in future genomics studies, with the rapid increase of assembled

genomes. As an important genome indexing data structure, BWT may

have many applications; however, the construction of BWT for a large

collection of genomes, especially highly similar re-sequenced genomes

(e.g. many human individual genomes), is still a non-trivial task.

Moreover, owing to the incremental nature of the state-of-the-art meth-

ods, it is hard to construct BWT with scalable parallel computing. This

is a bottleneck to fully use the computational resources of modern ser-

vers or clusters to handle large amount of data.

We propose deBWT, a novel parallel BWT construction ap-

proach, to break the bottleneck. The main contribution of deBWT is

its dBG-based representation and organization of suffixes, which fa-

cilitates the comparison of suffixes with long common prefixes and

avoid unnecessary comparisons. Moreover, owing to its non-

incremental design, deBWT has good scalability to various compu-

tational resources. These properties make deBWT well-suited to

construct BWT for large collections of highly similar or repetitive

genomes with modern servers or clusters. In the experiments,

deBWT achieves a substantial improvement on the speed of indexing

multiple individual human genomes and contigs. For more diverse

genomes, e.g. multiple primate genomes, deBWT also shows faster

speed and better parallelization; however, the improvement is

smaller, likely owing to that the density of the dBG is lower. That is,

there are more k-mers and unipaths to handle, but the overall repeti-

tiveness of the input is lower than highly similar genomes.

Comparing with state-of-the-art approaches, deBWT has obvi-

ously larger memory footprint. There are potential solutions to re-

duce the memory footprints of the various phases of deBWT.

For phase 1, it is feasible to bin the k-mers into several subsets

and separately sort each of the subsets with limited memory. The

Fig. 3. Time consumption of the various steps of deBWT. The bars respect-

ively indicate the elapsed time (in minutes) of the various steps of deBWT for

the 10 human genomes dataset (a), the human genome contig dataset (b)

and the 8 primate genomes dataset (c). Bars in the same color correspond to

a specific number of threads, i.e. blue, red, green and purple bars are respect-

ively for 8, 16, 24 and 32 threads

Table 5. Running time of the in silico human genome dataset with

various configurations on the k parameter (in minutes)

Methods k¼ 19 k¼ 23 k¼ 27 k¼ 31

deBWT 142 124 131 134

deBWT (no conversion) 75 51 47 48

‘DeBWT’ indicates the elapsed time of deBWT, and ‘deBWT (no conver-

sion)’ deducts the time of the format conversion of Jellyfish output file.

Table 6. Memory footprints with 32 CPU cores (in Gigabytes)

Methods Human genomes Human contigs Primate genomes

deBWT 120/78/38 120/63/34 235/203/58

ParaBWT 30 30 29

RopeBWT2 30 24 40

Supplement

KMC2 119 119 119

For the ‘x/y/z’ of deBWT in the memory columns, the x, y and z values re-

spectively indicate the memory footprints of Jellyfish, phase1 of deBWT, and

phases2 and phases3 of deBWT.

Table 7. Statistics on the in silico human genomes and contigs

Statistics Human genomes Human contigs

length of input sequences 30955436371 30200003020

distinct k-mers 5073730669 4025285321

multiple-out k-mers 18820763 17238123

multiple-in k-mers 18821805 17237511

copies of multiple-out k-mers 2364004617 2301293218

copies of multiple-in k-mers 2364445711 2300904807

deBWT i181



results of the multiple subsets can be straightforwardly merged into

the ordered list of all the k-mers with small memory space.

For phase 2, it is also possible to reduce the memory footprint by

keeping only a proportion of / �ð Þ values and BWT characters, which

can be implemented with the following strategy. Because all the

multiple-in k-mers and their numbers of copies are known before the

second phase, it can partition the whole set of multiple-in k-mers into

several subsets. Each of the subsets has a limited number of k-mer

copies. Thus, the second phase can be done with multiple times of

scanning on the input sequences, instead of one time. In each time of

scanning, only the copies of the multiple-in k-mers within the corres-

ponding subset are recognized, recorded and output to a specific file

with limited RAM space. As all the subsets are independent to each

other for the third phase, the files of the subsets can be separately pro-

cessed to generate various parts of BWT. Further, the BWT parts can

be directly merged to accomplish the construction. This strategy is

feasible to limited workspace, but at the expense of time owing to the

fact that it needs multiple executions of phase 2.

For phase 3, it can also keep only a proportion of unsolved of

BWT partitions in memory as all such partitions are independent.

There are two possible improvements on deBWT, which are im-

portant future works for us.

First, deBWT straightforwardly sorts the projection suffixes by

quick-sort. Because the de Bruijn branch encoding can be also seen as a

special DNA sequence, it is also possible to use other approaches to fur-

ther accelerate the projection suffix sorting step. For example, the

method proposed by Karkkainen (2007) uses DCS to accelerate the sort-

ing of the binned suffixes of the original input sequence. This method

could be also used for sorting the binned projection suffixes without loss

of the ability of parallel computing, as it is non-incremental.

Second, for the current version of deBWT, the I/O-intensive steps

are still not optimized, which slowed down the speed. We plan to fur-

ther optimize the I/O-intensive steps to improve the efficiency of

deBWT. Meanwhile, as k-mer counting is still an open problem, and

advanced k-mer counting tools are developing (Perez et al., 2016), we

also plan to replace Jellyfish by other more advanced k-mer counting

tools, or remove the file conversion step by directly accessing the default

Jellyfish output file, to break the practical bottleneck of the method.

Funding

This work has been partially supported by the National Nature Science

Foundation of China (Nos: 61301204 and 31301089), the National High-

Tech Research and Development Program (863) of China (Nos:

2015AA020101, 2015AA020108 and 2014AA021505) and the National

Science and Technology Major Project (No: 2013ZX03005012).

Conflict of Interest: none declared.

References

Bauer,M.J. et al. (2013) Lightweight algorithms for constructing and inverting

the bwt of string collections. Theor. Comput. Sci., 483, 134–148.

Bentley,J.L. and Sedgewick, R. (1997) Fast algorithms for sorting and search-

ing strings. In Proceedings of the 8th Annual Symposium on Discrete

Algorithms ACM, San Francisco, California.

Burrow,M. and Wheeler, D.J. (1994) A block-sorting lossless data compres-

sion algorithm. Technical Report 124, Digital Equipment Corporation,

California.

Cox,A.J. et al. (2011) Poster abstract: hypothesis-free detection of splice junc-

tions in RNA-Seq data. In Proceedings of CSHL conference on Genome

Informatics. Spring Harbor, New York.

Cox,A.J. et al. (2012) Large-scale compression of genomic sequence databases

with the Burrows-Wheeler transform. Bioinformatics, 28, 1415–1419.

Crauser,A. and Ferragina,P. (2008) A theoretical and experimental study on the

construction of suffix arrays in external memory. Algorithmica, 32, 1–35.

Deorowicz,S. et al. (2015) KMC 2: fast and resource-frugal k-mer counting.

Bioinformatics, 31, 1569–1576.

Ferragina,P. and Manzini,G. (2000) Opportunistic data structures with appli-

cations. In: Proceedings of 41st Annual Symposium on Foundations of

Computer Science (FOCS). Redondo Beach, California, 390–398.

Ferragina,P. and Manzini,G. (2005) Indexing compressed text. J ACM, 52,

552–581.

Ferragina,P. et al. (2012) Lightweight data indexing and compression in exter-

nal memory. Algorithmica, 63, 707–730.

Gnerre,S. et al. (2011) High-quality draft assemblies of mammalian genomes

from massively parallel sequence data. Proc. Natl. Acad. Sci. USA, 108,

1513–1518.

Hon,W.K. et al. (2004) Practical aspects of compressed suffix arrays and FM-

Index in searching DNA sequences. In: Proceedings of the Sixth Workshop on

Algorithm Engineering and Experiments and the First Workshop on Analytic

Algorithmics and Combinatorics. New Orleans, LA, USA, 2004, pp. 31–38.

Hon,W.K. et al. (2007) Constructing compressed suffix arrays with large al-

phabets. Algorithmica, 48, 23–36.

Karkkainen,J. (2007) Fast BWT in small space by blockwise suffix sorting.

Theor. Comput. Sci., 387, 249–257.

Lam,T.W. et al. (2008) Compressed indexing and local alignment of DNA.

Bioinformatics, 24, 791–797.

Langmead,B. and Salzberg,S.L. (2012) Fast gapped-read alignment with

Bowtie 2. Nat. Methods, 9, 357–359.

Li,H. and Durbin,R. (2009a) Fast and accurate short read alignment with

Burrows-Wheeler transform. Bioinformatics, 25, 1754–1760.

Li,H. et al. (2009b) The sequence alignment/map format and SAMtools.

Bioinformatics, 25, 2078–2079.

Li,H. (2012) Exploring single-sample snp and indel calling with whole-

genome de novo assembly. Bioinformatics, 28, 1838–1844.

Li,H. (2014) Fast construction of FM-index for long sequence reads.

Bioinformatics, 30, 3274–3275.

Liu,C. et al. (2014a) GPU-accelerated BWT construction for large collection

of short reads. arXiv, 1401.7457

Liu,Y. et al. (2014b) Parallel and space-efficient construction of Burrows-

Wheeler transform and suffix array for big genome data. IEEE/ACM Trans.

Comput. Biol. Bioinform., in press.

Makinen,V. et al. (2010) Storage and retrieval of highly repetitive sequence

collections. J. Comp. Biol., 17, 281–308.

Marçais,G. and Kingsford,C. (2011) A fast, lock-free approach for efficient

parallel counting of occurrences of k-mers. Bioinformatics, 27, 764–770.

Marcus,S. et al. (2014) SplitMEM: a graphical algorithm for pan-genome ana-

lysis with suffix skips. Bioinformatics, 30, 3476–3483.

Nong,G. et al. (2014) Suffix array construction in external memory using

d-critical substrings. ACM Trans. Inform. Syst., 32, article 1.

Perez,N. et al. (2016) Computational performance assessment of k-mer count-

ing algorithms. J. Comp. Biol., 23, 248–255.

Simpson,J.T. and Durbin,R. (2012) Efficient de novo assembly of large gen-

omes using compressed data structures. Genome Res., 22, 549–556.

Smyth,W.F. and Turpin,A.H. (2007) A taxonomy of suffix array construction

algorithms. ACM Comput. Surv., 39, article 4.

The 1000 Genomes Project Consortium (2015) A global reference for human

genetic variation. Nature, 526, 68–74.

The UK10K Consortium (2015) The UK10K project identifies rare variants in

health and disease. Nature, 526, 82–90.

Tomescu,A.I. and Medvedev,P. (2016) Safe and complete contig assembly via

omnitigs. RECOMB 2016, LNBI, 9649: 152–163

Treangen,T.J. and Salzberg,S.L. (2012) Repetitive DNA and next-generation

sequencing: computational challenges and solutions. Nat. Rev. Genet., 13,

36–46.

Watson,M. (2014) Illuminating the future of DNA sequencing. Genome Biol.,

15, 108.

Zimin,A.V. et al. (2013) The MaSuRCA genome assembler. Bioinformatics,

29, 2669–2677.

i182 B.Liu et al.


	btw266-TF1
	btw266-TF2
	btw266-TF3
	btw266-TF4

