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Abstract

Background

Surveying the scientific literature is an important part of early drug discovery; and with the

ever-increasing amount of biomedical publications it is imperative to focus on the most inter-

esting articles. Here we present a project that highlights new understanding (e.g. recently

discovered modes of action) and identifies potential drug targets, via a novel, data-driven

text mining approach to score type 2 diabetes (T2D) relevance. We focused on monitoring

trends and jumps in T2D relevance to help us be timely informed of important

breakthroughs.

Methods

We extracted over 7 million n-grams from PubMed abstracts and then clustered around

240,000 linked to T2D into almost 50,000 T2D relevant ‘semantic concepts’. To score

papers, we weighted the concepts based on co-mentioning with core T2D proteins. A pro-

tein’s T2D relevance was determined by combining the scores of the papers mentioning it in

the five preceding years. Each week all proteins were ranked according to their T2D rele-

vance. Furthermore, the historical distribution of changes in rank from one week to the next

was used to calculate the significance of a change in rank by T2D relevance for each protein.

Results

We show that T2D relevant papers, even those not mentioning T2D explicitly, were priori-

tised by relevant semantic concepts. Well known T2D proteins were therefore enriched

among the top scoring proteins. Our ‘high jumpers’ identified important past developments
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in the apprehension of how certain key proteins relate to T2D, indicating that our method will

make us aware of future breakthroughs. In summary, this project facilitated keeping up with

current T2D research by repeatedly providing short lists of potential novel targets into our

early drug discovery pipeline.

Introduction

Drug discovery often involves prioritising potential drug target candidates based on a combi-

nation of researchers’ knowledge, data from wet-lab experiments, and in-silico predictions.

The researchers’ knowledge typically comes from their own work as well as publicly available

scientific literature. Due to recent technological advancements, publicly available knowledge

bases are growing exponentially via large-scale omics, human genetics studies, imaging proj-

ects, and electronic health records [1, 2]. Thus, for the most well-studied diseases thousands of

relevant articles are available. Text mining is one of the most common tools to help choosing

which articles to read, and extract explicit facts, but also to combine independent pieces of

knowledge, thereby prioritising resources in the early drug discovery phase.

Type 2 diabetes (T2D) is a chronic disease with about half a billion diagnosed patients, and

probably the seventh leading cause of death due to its many co-morbidities (such as blindness,

kidney failure, heart attacks, stroke, and lower limb amputation) [3]. T2D is a multi-factorial

disease associated with many proteins (from 30 in OMIM [4], through more than 200 genetic

loci [5], to over 3,000 postulated associations in OpenTargets [6]). The continuous growth of

our understanding of signalling events in T2D, and therefore relevant literature, is consider-

able. No single person, group, or even large organisation is able to keep up with all details, but

is instead more likely to catch the high impact literature only. In 2018 more than 1 million arti-

cles were indexed by PubMed, or around 20,000 articles per week, of which we estimate 1–2%,

equivalent to hundreds per week, to be relevant for T2D.

A simple keyword search for T2D synonyms will of course find all known articles where the

association to T2D has already been established, but may also find articles on, for example,

patient care that are less interesting in a drug discovery context. Such articles will dilute the

overall results and the ability of text mining to support drug target identification. On the other

hand, many relevant papers regarding the complex underlying biology may not mention T2D

synonyms, either because the association is not yet established, or it may be understood from

the context. Such papers may investigate co-morbidities of T2D or related metabolic processes,

and may therefore not be found in a keyword search.

Text mining could be described as the process of discovering, and capturing, knowledge

from a large number of unstructured texts, and it is being applied to more and more problems

in drug discovery [7]. Text mining tools vary from simple over-representation statistics

between two sets of keywords like [8] to more complex NLP approaches like [9]. To date, most

text mining tools in the biomedical field are specialised to specific tasks [10–13]. Some systems,

e.g. BioReader [14], find both direct and indirect associations by considering large numbers of

search terms using machine learning algorithms, and a recent application [15] applied the

Word2vec [16] algorithm to materials science literature successfully. Other tools are designed

to work on a general level, such as IBM Watson [17] and SciBite’s TERMite [18].

In order to find associations you have to specify what you are looking for, i.e. your vocabu-

lary, in a Named Entity Recognition (NER) step. This means that you are inherently limited to

those concepts in the specified vocabulary. There has been focus on solving this out-of-
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vocabulary problem for example by using machine learning to determine the vocabulary from

data using n-grams [19]. Alternatively, ToPMine [20] (and tools built on this like Moliere

[21]) is a purely data-driven approach which focus on identifying significant, frequent phrases.

Another approach is the ‘question/answer’ approach in which you focus on predicting the

next word(s) given a certain set of preceding words [22].

There are also methods trying to find the implicit link between two concepts based on the

ABC co-occurrence model, where if A and B are co-mentioned, and B and C are co-men-

tioned, you assume there is a link between A and C, for example [23] or similar approaches

like [24]. Relying on the MeSH annotation [25] for individual papers instead of text mining,

[26] studies co-annotations, aiming at forming new medical hypotheses based on evolutional

trajectories of their embeddings for different five years’ time slices.

In the present work we focus on, potentially right after publication, linking proteins and rel-

evant mechanisms learned from the literature itself to diseases, in this case T2D, as proteins

are the actual agents driving the underpinning physiological mechanisms; this is the very heart

of molecular medicine. Several projects seek to associate genes/proteins to diseases; two popu-

lar, such databases, OpenTarget and DisGeNET [27] currently list thousands of T2D associ-

ated proteins. More specifically, DisGeNET currently lists 1,671 genes when querying for T2D,

while Open Targets currently lists 3,346 associated genes. These numbers are growing as more

knowledge is disseminated. In addition, some disease proteins yet remain to be well described

in literature (see S1 File S1.1). This makes it a challenge to determine appropriate statistical cri-

teria for disease associations. However, only a handful of proteins are currently used as targets

for drugs for T2D, so we reason there is still a potential for identifying novel drug targets.

Here we present a project that addressed the problem of quantifying, and at the same time

providing an explanation for, the relevance of papers for T2D. This work is being used to

guide the discovery of novel T2D drug targets. Fig 1 illustrates, on a high level, how we used

our text mining scores of papers’ T2D relevance to help obtain new knowledge and identify

new targets. Similar to other projects, it prioritised among the thousands of proteins already

tentatively linked to T2D, glucose control, and/or insulin resistance. A benefit to our approach

is that we broadened the definition of the disease by learning and focusing on the underlying

biological mechanisms. The broadening was done by basing our relevance score on a purely

data-driven detection of multi-word terms, n-grams, and their clustering into what we call

‘semantic concepts’, rather than a set vocabulary. The molecular focus and T2D relevance was

ensured by weighing the concepts according to their enrichment with articles mentioning one,

Fig 1. Using text mining to guide early drug discovery. Keyword searches for publications, like in PubMed, may find thousands of

articles (borders highlighted), including those less relevant to drug discovery, e.g. on the care of patients. Yet, articles describing

potential drug targets (background coloured) risk not being found as the disease association may be implicit or not yet established.

To address these issues, articles are ranked using text mining, focusing on molecular biology without requiring direct mentioning of

the disease. Proteins are then ranked, and the information system shows the articles with relevant terms highlighted in addition to

pertinent information, providing a convenient workflow for advancing knowledge and identifying drug targets.

https://doi.org/10.1371/journal.pone.0233956.g001
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or more, of the 100 proteins most significantly associated to T2D via simple synonym searches.

We could then identify T2D relevant proteins, potentially even before they have been explicitly

co-mentioned with T2D. Each protein was scored based on five years’ worth of articles. It is

well known that certain proteins have, at some points in time, started receiving more attention

in the T2D relevant literature. To face the unsolved challenge of ensuring awareness of such

proteins, we investigated trends and changes in T2D relevance. We introduced the term ‘high-

jumpers’ for proteins that significantly change their rank in comparison to the distribution of

rank changes seen over the previous years. Utilising existing infrastructure, the project contin-

ues to present interesting articles and proteins on a weekly basis, as it is essential for early drug

discovery to be made timely aware of potential novel drug targets.

Methods

We text mined PubMed abstracts using NER to find the proteins mentioned in each abstract.

For our project we used a custom text mining engine implemented in C and Python (see S1

File S1.1), but any NER system that can find proteins mentioned in a text using a set of well-

curated synonyms (e.g. PubTator [10–12], TERMite [18], or the system used at JensenLab

[13]) can be used by the method we present. PubMed abstracts were also mined for mention-

ings of T2D, and we used Fisher’s exact test to measure how co-mentioned a protein was with

T2D (see S1 File S1.2 for details). All proteins were ranked by their p-values for being related

to T2D (see S1 File S1.3 for details), and we chose to denote the 100 most significantly associ-

ated as ‘core proteins’ as they have well-established and well-known associations to T2D

(according to the literature captured in PubMed).

We used these 100 core proteins to characterise our biological area of interest and pro-

ceeded to construct an article scoring scheme by favouring terms co-mentioned with the 100

core proteins, and used these individual article scores to prioritise proteins according to T2D

relevance.

A rigorous mathematical description of our methods and statistical analyses is found in S1

File sections S1.1 through S1.10.

Scoring T2D relevance of articles using semantic concepts

Fig 2 outlines our data-driven method for scoring article abstracts for T2D relevance. We

focused on the relevant biology by revolving the analysis around the 100 core T2D proteins,

and we broadened the search by looking for phrases related to the core T2D proteins rather

than the disease directly. As will be further discussed under ‘T2D relevance of articles’ in the

‘Results’ section, we could in this way give high scores to articles with abstracts that did not

mention T2D explicitly, but instead used many of the same phrases and terms as abstracts

mentioning proteins known to be related to T2D. In addition to expanding the scope of the

biological space, e.g. our understanding of how the disease works, this meant that we could

potentially identify proteins before they become well known in a T2D context.

To broaden our search beyond articles mentioning T2D explicitly, and to focus on articles

on molecular biology (in contrast to e.g. care of diabetes patients), we set out to find articles

that discuss the same biology in their abstracts as articles mentioning the 100 core T2D pro-

teins. For this, we needed a set of entities and synonyms that could be used to properly charac-

terise the abstracts. Even though a large effort has been put into creating ontologies like MeSH

and UMLS [28] for biomedical terms as well as repositories like Semantic MEDLINE database

[29], these resources did not encompass all relevant phrases. Instead, we decided to extract a

terminology directly from PubMed in a purely data-driven manner where we identified fre-

quently used sequences of words, n-grams (see S1 File S1.4).
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Many n-grams, even for different sizes of n, refer to the same semantic object (e.g. ‘lower

glucose’ and ‘lowers blood sugar level’). Considering all these n-grams individually diminishes

the overall statistical power. We therefore grouped similar, and related, n-grams into what we

coined ‘semantic concepts’. We first constructed a similarity measure to join textually similar

n-grams that are spelled slightly differently, or have their words rearranged, e.g. ‘type 2 diabe-

tes’ and ‘diabetes type II’ (see S1 File S1.5 for details). Secondly, we measured the semantic

relatedness between n-grams by computing how often they co-occur in relevant articles by

constructing a similarity matrix where each cell contains the over-representation ratio for the

two n-grams corresponding to the row and the column (see S1 File S1.6). The rationale for

using this similarity matrix, was that if, say, two rows in the matrix were very similar, the two

n-grams would be co-mentioned with the same set of n-grams and hence tend to be used in

the same context, and would be likely to share the same ‘meaning’, even though they need not

be synonyms (for example ‘leptin treatment’ and ‘elevated leptin’ are not synonyms but are

considered part of the same semantic concept). We finally used the MCL algorithm [30] to

group n-grams into semantic concepts based on these two similarity measures simultaneously

(see S1 File S1.7 for details).

Our semantic concepts are therefore clusters of n-grams that have both some degree of

string similarity as well as similar co-mentioning with other n-grams; i.e. they behave the same

way semantically and look alike string-wise. It is important to note that the individual n-grams

for each semantic concept need not be synonyms, but they are expected to be equally relevant

in a given context (e.g. ‘increased glucose’, ‘decreased glucose’ and ‘total glucose’ are clustered

together by our method along with other glucose related n-grams).

We assigned weights to the semantic concepts by first computing how much more than

expected by random they were co-mentioned with the core set of 100 T2D proteins. For each

of the core proteins, and for each semantic concept, this ratio was log-transformed to get the

what is known as the pointwise mutual information [31], and the weight for each semantic

concept was computed as the average across all the core proteins (see S1 File S1.8 for details).

An article was scored by simply taking the sum of the individual weights of all the semantic

concepts with n-grams in the article, thereby broadening our search beyond articles explicitly

mentioning T2D, and at the same time zooming in on articles related to the molecular biology

Fig 2. Scoring T2D relevance of articles. Named entity recognition is used to find the 100 core T2D proteins that are most significantly co-mentioned

with T2D in PubMed abstracts. Commonly used word sequences (n-grams) are learned from the abstracts and T2D relevant ones are clustered into

‘semantic concepts’, if they are textually similar, or used in the same context. The semantic concepts are assigned weights based on how often they are

co-mentioned with the core T2D proteins. All articles, old and new, are then scored by summing the weights of the semantic concepts found in them.

https://doi.org/10.1371/journal.pone.0233956.g002
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of T2D. In other words, an article will get a high score, if it uses similar words as articles men-

tioning the 100 core T2D proteins, and the more specific these words are, the higher the score.

Determining T2D relevance of proteins

In this project we computed two different T2D relevance scores for proteins, both based on

the scores of the articles mentioning them (see Fig 3).

Five years’ T2D relevance score. As the weekly score of a protein we used the highest

score of an article mentioning the protein in that particular week. We then ranked the previous

260 weekly protein scores in order to determine which proteins are the most relevant to T2D

as per the combined recent research (in a five years’ sliding window). The 40 highest were then

weighted so the highest contributed most to the T2D relevance score for the protein. In this

way, contributions had to be spread out over time and not all come from the same week (e.g. a

single conference’s proceedings). This is described more formally in S1 File S1.9. By shifting

the time period one week at a time, we could retrospectively visualise trends in T2D relevance

for individual proteins.

Weekly high-jumping proteins. In order to find novel T2D proteins, we focused on the

current week and identified proteins with high upward jumps and the abstracts causing these.

This expanded our more traditional weekly literature survey, by selecting a different set of arti-

cles, and by focusing on the most important proteins in these (for example insulin tend to be

mentioned in all articles but is not interesting from a new drug target point of view).

Fig 3. Scoring T2D relevance of proteins. Articles from PubMed are grouped by the week they were added to the database. The T2D relevance of

proteins is prioritised in different ways: 1) the highest T2D relevance score for an article mentioning the protein and published a given week; 2) these

scores for the last five years combined into one consensus score (updated weekly using a sliding window); and 3) p-values assessing a protein’s change

in the overall ranking, pinpointing high-jumping proteins that are suddenly mentioned in a T2D relevant context. In addition, looking at long-term

trends of the combined scores may reveal interesting biology or proteins.

https://doi.org/10.1371/journal.pone.0233956.g003
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Seeing a top ranking protein improve its rank by, say, three places is not very likely, and is

certainly something we should be made aware of if it happens. It is more likely, but less inter-

esting, for a protein further down the list to improve its rank by three places. A protein that

jumps hundreds or thousands of places may be relevant, depending on how typical such

jumps are.

To address this, the empirical distribution of jumps for each initial rank was used, i.e. we

looked back in time and observed both the jumps and their starting ranks. When a protein’s

weekly rank changed, we consulted the distribution corresponding to its initial rank to get a p-

value for the jump. However as not all jumps were observed, we smoothed the distributions by

applying a sliding window (see S1 File S1.10 for details). Hence, a jump in a proteins rank got a

low p-value if the protein was unexpectedly mentioned in an article with high T2D relevance

score, based on the combined previous knowledge about the protein.

Supporting early drug discovery

On a weekly basis, all new articles abstracts from PubMed were text mined and ranked by our

scoring scheme that prioritised abstracts with the same semantic concepts as those mentioning

the core T2D proteins. The high ranking article abstracts were presented in the web interface

where protein synonyms, diseases, drugs, and anatomical entities were highlighted in order to

easier derive novel biological insight.

The same framework was also used to display the most relevant proteins for a given week,

based on the protein scores described previously. In order to be kept informed of new trends

in T2D research we ranked the proteins according to their weekly scores. In addition, in order

to find novel targets before they are T2D associated, we also highlighted the ‘high-jumping’

proteins, i.e. the proteins that were suddenly ranked more T2D relevant than previously (as

described in the previous section). For each featured protein we both retrieved annotations

and linked to other internal information systems with pertinent details, such as if this protein

is already known in a T2D context or not.

Results

Of the 30.3 million articles registered in PubMed in November 2019, we text mined the 19.8

million (65%) with both a title and an abstract. From these abstracts we first identified and

reviewed the set of the 100 most T2D associated proteins (see S1 File S1.3) that was the starting

point for our main results described in the following sections.

T2D relevance of articles

We broadened the scope of the disease biology, trying to better characterise T2D by imple-

menting an unsupervised method of generating, and evaluating semantic concepts with thou-

sands of these contributing towards the article scores. Among the more than 7 million n-

grams we extracted (see S1 File S1.4), 235,382 were over-represented with T2D and these were

clustered into 48,381 semantic concepts.

The use of unsupervised detection of semantic concepts directly from PubMed rather than

using traditional vocabularies enabled us to capture terms that we might not necessarily have

included otherwise. Investigation of the important concepts expanded our understanding of

the disease, the mechanisms behind it, and the relevant tissues.

For each semantic concept we computed a weight that was used to score individual articles

(see the section ‘Scoring T2D relevance of articles using semantic concepts’ in ‘Methods’ and

S1 File S1.8). Table 1 shows the top 50 semantic concepts we found (and their assigned

weights), each represented by their most common n-gram. They all had weights close to 1,
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meaning that they were on average co-mentioned 10 times as often as expected by random

with one of the top 100 core proteins. The highest scoring semantic concept is a cluster of n-

grams about glucose metabolism. The most frequently used n-gram in this concept is simply:

‘glucose homeostatis’ but since the literature has a natural focus on describing and understand-

ing disease-states, the other n-grams reference dysfunction of this metabolic process, hence the

concept also includes ‘disturb glucose homeostasis’, ‘disturbed glucose homeostasis’, ‘defective

glucose metabolism’, ‘impair glucose homeostasis’, and ‘impairs glucose homeostasis’.

We manually inspected the 1,000 highest scoring article abstracts (since 2014) to assess

their relevance for T2D. Of these, 406 mentioned T2D explicitly, 181 had the MeSH term ‘Dia-

betes Mellitus, Type 2’ (with 168 overlapping). The remaining 581 abstracts were often about

insulin resistance, or a well-known co-morbidity such as obesity, non-alcoholic fatty liver dis-

ease, diabetic neuropathy, kidney, or cardiovascular disease. Another prevalent theme among

the inspected abstracts is that they talk about genes (variation, expression or knockout) or

experiments in animals. Occasionally, gestational diabetes, type 1 diabetes, or streptozotocin

induced diabetes would instead be the focus on the abstract.

We also inspected abstracts with the ‘Diabetes Mellitus, Type 2’ MeSH term, but with low

scores, and found that these articles were often about case reports, the care of T2D patients, or

it was not evident from the title or abstract alone why the article was tagged with the MeSH

term for T2D, for example [32] which discusses an extension of a patient questionnaire that

was then evaluated on T2D patients.

Table 1. Top 50 semantic concepts for T2D. The semantic concepts with the highest weights for T2D are focused on glucose homeostasis or tolerance as well as insulin

resistance, sensitivity, levels, secretion, and the insulin receptor substrate 1 before the db/db mouse model and T2D itself.

Rank Most common n-gram Weight Abstracts Rank Most common n-gram Weight Abstracts

1 glucose homeostasis 1.208 8,916 26 fasting insulin 0.975 6,865

2 insulin resistance 1.155 59,462 27 leptin levels 0.962 20,700

3 insulin sensitivity 1.132 21,599 28 insulin glucose 0.961 2,550

4 aims hypothesis 1.130 5,728 29 plasma glucose concentration 0.961 5,093

5 glucose tolerance 1.121 16,714 30 diet induced obese 0.960 1,287

6 insulin receptor substrate 1 1.113 2,939 31 obese diabetic mice 0.960 611

7 insulin secretion 1.104 17,655 32 phase insulin secretion 0.959 1,743

8 improved glucose tolerance 1.099 2,330 33 improve insulin resistance 0.958 1,034

9 insulin levels 1.093 10,194 34 glucose tolerance tests 0.957 2,366

10 db db mice 1.092 4,104 35 cell counting kit 0.957 16,141

11 type 2 diabetes mellitus t2dm 1.088 13,215 36 oral glucose challenge 0.955 1,583

12 increased insulin sensitivity 1.074 2,475 37 diet induced 0.946 7,837

13 insulin resistant 1.071 5,928 38 obese mice 0.943 5,735

14 type 2 diabetes 1.070 91,290 39 diet induced changes 0.940 1,895

15 glucose metabolism 1.046 26,156 40 increased insulin 0.938 1,098

16 impaired glucose tolerance 1.041 20,710 41 plasma insulin levels 0.937 5,026

17 high fat diet 1.038 16,674 42 glucose stimulated insulin secretion 0.937 3,029

18 β cell function 1.027 2,591 43 insulin resistance ir 0.935 5,129

19 diabetes t2d 1.022 12,100 44 insulin receptor substrate 0.934 1,589

20 plasma glucose 1.017 13,480 45 insulin glucagon 0.931 5,633

21 induced insulin resistance 1.005 2,432 46 insulin tolerance test 0.930 1,393

22 beta cells 0.997 20,780 47 insulin receptor 0.929 9,195

23 high fat diet hfd 0.993 9,226 48 homeostasis model assessment 0.929 6,774

24 ob ob mice 0.987 4,394 49 lipid metabolism 0.928 31,435

25 plasma insulin 0.984 8,133 50 insulin resistance homa ir 0.927 5,059

https://doi.org/10.1371/journal.pone.0233956.t001
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As can be seen in Table 1 the system separated semantic concepts of a similar nature like

‘type 2 diabetes’, ‘type 2 diabetes mellitus t2dm’, and ‘diabetes t2d’; even though these would

normally be considered synonyms for the same biological concept. While this may at first

seem surprising, we do note that these concepts get similar, high weights. In general, the data-

driven approach generated higher resolution concepts compared to manually maintained

ontologies, enabling us to separate terms and thereby gave us a greater understanding of the

biological space. For example, ‘glucose tolerance’ had the 5th highest weight, ‘improved glu-

cose tolerance’ had the 8th highest, while ‘normal glucose tolerance’ had the 54th highest

weight (not shown).

As a curiosity we noted that the semantic concept with the 4th highest weight contained the

n-gram ‘aims hypothesis’ because abstracts from the journal Diabetologia all have the heading

‘aims/hypothesis’. Also, the 35th highest ranking semantic concept is represented by the n-

gram ‘cell counting kit’ in the table as this is the most prevalent n-gram for the semantic con-

cept that also encompasses more than 100 different n-grams including ‘pancreatic β cells’.

Apart from these two cases, all the semantic concepts with the highest weights are, as expected,

highly relevant for T2D (or obesity).

T2D relevance of proteins

As we computed T2D relevance scores for proteins from the last five years’ of literature, we

expected well-known T2D proteins to get the highest scores. We benchmarked this by examin-

ing how well the scoring scheme for this project was able to find three sets of T2D proteins via

ROC curves; 1) T2D proteins from the Human Diabetes Proteome Project [33], 2) a manual

benchmark list of proteins selected for this project, and 3) proteins from public T2D pathways

(KEGG [34–36], WikiPathways [37]) or annotated in UniProt [38] as relevant for T2D (Fig 4,

left and centre). All had AUCs above 0.88, i.e. using our scoring scheme, the set of high scoring

proteins was clearly enriched for the well known T2D proteins. We also compared our scoring

to the text mining scores from Open Targets [39] (Fig 4, right) and noted that we have sligthly

higher AUCs.

Fig 4. Benchmarking the T2D protein relevance scores. Left: The ROC curves show that we find a) the 100 core proteins used to characterise our area of interest (with

an AUC very close to 1), b) the 100 diabetes relevant proteins identified by the HDPP project (3 of these proteins are not be found by text mining), c) a set of 209 proteins

of particular interest to the project, and d) 66 proteins from public type 2 diabetes pathways (KEGG and WikiPathways) or annotated in UniProtKB as relevant for T2D.

Centre: Here, the 100 core T2D proteins are removed from each benchmark set (62 remain in HDPP, 181 in the internal set, and 47 in the T2D pathways), which

obviously lead to slight AUC reductions. Right: The curves when using text mining scores from Open Targets [39].

https://doi.org/10.1371/journal.pone.0233956.g004
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Table 2 shows the 100 proteins with the highest relevance scores. There is, not surprisingly,

a large overlap with the 100 core proteins. The proteins, and papers, that we had not previously

flagged were investigated, and almost all of them were deemed interesting. This shows that this

automatic data-driven approach works, as it keeps the focus on T2D while at the same time

expanding the bio-molecular knowledge space around T2D.

Trends in T2D relevance. It is known that pharmacology for T2D has advanced rapidly

during the last 10 years and it is now possible to target different pathophysiological defects (as

the existing classes of T2D drugs do). Accordingly, we observed that for certain proteins the

strength of their association to T2D change over time; e.g. going from the initial discovery to a

more detailed understanding of the protein’s biological role. To study this evolution, we plot-

ted the protein ranks as they changed over the last 10 years. Fig 5 shows these curves for the

proteins that improved their ranks two-fold, or more, over the period plus the 10 most associ-

ated proteins. We found these trend curves to be generally representative of the development

in T2D research, as we will show in the following sections by highlighting a few examples.

As expected, insulin is constantly the top ranking T2D protein (it’s effective in all disease

stages and necessary to achieve glycemic control [40]). The second place belonged to adipo-

nectin for more than 8 years. This protein is secreted by adipose tissue and is a metabolic regu-

lator of glucose control and breakdown of fatty acids [41]. In addition, adiponectin can reverse

insulin resistance in mice in combination with leptin [42]. Adiponectin is therefore strongly

involved in T2D processes. In the beginning of 2018 its second place was taken by glucagon

(GLP-1).

The high ranking of leptin can be explained by the fact that it was discovered as the hor-

mone regulating appetite in obese mice, which is a known co-morbidity to T2D, but also raised

considerable interests within the T2D research community for its possible implication in sus-

taining insulin resistance [43] and ability to positively influence plasma glucose levels in dia-

betic mice [44]. Leptin was a clear third from the beginning of our trend analysis until the end

of 2016 where glucagon (GLP-1) caught up.

The 5th place is PPARA (Peroxisome proliferator-activated receptor alpha) which since

2000 has been known to improve insulin sensitivity [45]. Eleven genetic variances (11 SNPs)

were associated with response to an anti-diabetic drug (acarbose) in 2007 [46]. The recent

development around PPARA is in large part due to [47], as well as [48] and [49].

On a global level we saw considerable more movement than we expected within the 100

most associated T2D proteins. To illustrate this, we overlaid the 2 proteins that improved their

rankings at least 5 times and ended up among the top 100 (green curves, Fig 5). For example,

FGF21 (fibroblast growth factor 21) is implicated in uptake of glucose in adipose tissue, but

Table 2. Top 100 most T2D relevant proteins from the last 5 years according to our scoring scheme, sorted alphabetically by gene name. The 54 proteins with an

asterisk (�) are also part of the set of 100 core T2D proteins.

ACOX1 BCL2 DECR1 GCGR� HSD11B1� ITGAX NAMPT� PNPLA2 RBP4� SOCS3

ADIPOQ� CASP3 DGAT1 GCK� HSPA5 LDLR NFE2L2 POMC REN� SREBF1�

ADIPOR1� CAT DPP4� GHRL� ICAM1 LEP� NFKBIA PPARA� RETN� SREBF2

AGT� CCK EEF1A2� GIPR� IGF1� LEPR� NOS2 PPARD� SCD STAT3

AKT1� CCL2� FABP4� GLP1R� IL10 LPL� NOS3� PPARG� SERPINE1� STK11

AKT2 CD36� FASN GOT2 IL1B MAPK3 NOX4 PPARGC1A� SIRT1 TGFB1

APOA1� CD68 FGF21� GPX1 IL6� MAPK8 NR1H3 PRKCE SLC2A1� TLR4

APOB� CEBPA FOXO1� GSK3B� INS� MGAM� PCK1 PTEN SLC2A2� TNF�

APOC3� CPT2 G6PC� HMGCR INSR� MLXIPL PDK4 PTGS2 SLC2A4� UCP1�

APOE� CRP� GCG� HMOX1 IRS1� MTOR PDX1� PTPN1� SLC5A2� VCAM1�

https://doi.org/10.1371/journal.pone.0233956.t002
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not in other tissues [50], it had an initial rank of 125 at the beginning of 2010, yet managed to

improve its rank 5.2 times ending up at rank 24 by the end of 2019. Another significant mover

that came from well outside top 100 (place 322) but settled within top 100, at place 55, was

SLC5A2, or sodium/glucose cotransporter 2, responsible for retention of blood glucose by re-

absorption of glucose in the kidneys [51].

Detecting jumps in T2D relevance. Although many likely T2D targets are part of the top

scoring proteins, they do not represent a source of novel disease associations. Thus, we were

also interested in suggesting articles that either establish a ‘first’ strong connection to the dis-

ease or greatly improve an already existing weak association. We expected traditional text min-

ing approaches based solely on numbers of co-mentionings to only find well-studied proteins

with obvious disease associations, as novel proteins would not have sufficiently many mention-

ings to be found. Thus, to allow novel proteins and valuable research findings to be uncovered,

even with few mentionings, we investigated if a protein was suddenly mentioned in a T2D rel-

evant context.

Fig 5. Evolution and jumps of protein rankings. For a selection of proteins the curves show the ranks during the last 10 years. We

include the top 10 proteins at the time of our analysis, where the top 5 are coloured in blue. Additionally, 180 proteins that improved

their ranks with a factor of at least 2 are included. The green curves show FGF21 and SLC5A2, the 2 proteins among the top 100

which improved their ranks 5 times, or more. The redish curves show proteins improving ranks at least 10 times, ending up among

the top 300 proteins: KLB (beta-klotho), FNDC5 (dashed), PRDM16, NLRP3 and ANGPTL8 (betatrophin; dotted). In addition, the

golden curve near the bottom shows MKRN1, an example that has 2 significant weekly jumps.

https://doi.org/10.1371/journal.pone.0233956.g005
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To investigate how proteins changed their T2D rank each week, and to study when the

most significant jumps occur, we computed the empirical distribution of jumps given the ini-

tial rank of a protein and then investigated the most extreme changes. In general, most pro-

teins retained their rank from week to week, and hence the median change is very close to

zero. This is the result of either no new published associations, or because there were no papers

with large enough scores to improve the overall protein rank. Only a few proteins compete for

a top placement and most are irrelevant for early drug discovery since they have already been

examined as potential drug-targets. When proteins do change rank, the typical jump was −1

caused by a large positive jump of another protein. An interesting minority of changes were

jumps for proteins jumping hundreds of places, signifying a specific publication with a large

impact towards our understanding of the protein’s function in T2D context.

Incidentally, angiopoietin-like 8 (ANGPTL8), previously known as RIFL or betatrophin,

was identified as an ‘insulin target’ in 2012 by [52] causing a jump of 8,645 places from rank

17,955 to 9,310, corresponding to a p-value of 0.000075 (the first jump for the dotted, dark red

curve in Fig 5). It was considered a potential drug-target due to its alleged role as a pancreatic

β cell peptide growth hormone [53]. Although this claim was quickly retracted [54] as other

groups failed to replicate the finding, research still continued into ANGPTL8’s function due to

its negative correlation with improved fasting glucose levels [55], [56] and its ability to regulate

serum triglyceride levels [57]). This combined research led to a total placement in the top 400

in 2018 when it was discovered that disinhibition of adipose tissue lipoprotein lipase is a novel

therapeutic modality of ANGPTL8, to enhance adipose lipid uptake and treat non-alcoholic

fatty liver disease and insulin resistance [58]. This finding (see Fig 6) caused another significant

jump in rank corresponding to the almost vertical, dashed, red line in mid 2018 in Fig 5.

Fig 6. An example of a high scoring article causing a significant jump. This paper on angiopoietin-like 8 caused the rank of ANGPTL8 to jump up

107 places from rank 312 to 205, corresponding to a p-value of 0.000038 in week 22 of 2018. The text is reprinted from the abstract of [58], licensed

under the Creative Commons Attribution 4.0 International License [59].

https://doi.org/10.1371/journal.pone.0233956.g006
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Another example of an interesting high-jumping event is an article that does not mention

T2D explicitly, but argues that AMPK degradation represents a therapeutic strategy for meta-

bolic disorders. It describes an observation where the deletion of MKRN1 promotes glucose

consumption and suppress lipid accumulation. The main focus of the abstract is on obesity

and its co-morbidities, such as nonalcoholic steatohepatitis (NASH) [60]. The article’s score is

low enough that it was only the 55th most T2D relevant paper in week 34 of 2018, so without

the high-jumper analysis we could have missed it (Fig 7 depicts the abstract text, its semantic

concepts, and their corresponding weights).

This article corresponds to the first (p = 0.00087) of the two significant, golden coloured

jumps seen in the second half of 2018 Fig 5. The second jump (p = 0.00019) was for the 11th

most T2D relevant article in week 41 which concludes with ‘implicating MKRN1 as a possible
therapeutic target for metabolic syndromes, such as obesity, type II diabetes, and fat liver dis-
eases’ [61]. Therefore our high-jumping analysis correctly suggested MKRN1 as a new T2D

target before it was explicitly stated, and before the suggestion that glycemic regulation by

AMPK could be a therapy for T2D [62].

Discussion

By integrating this project into the pre-existing, weekly literature surveys we made it easier to

investigate the literature in multiple ways, thereby accelerating and empowering the early drug

discovery process for T2D.

Our data-driven, automatic scoring of papers using text mining guided researchers to

papers they may not otherwise have been aware of. Automatic detecting and weighting n-

grams prioritised papers that did not mention T2D explicitly, but rather focused on the molec-

ular biology, as we built our scoring scheme around the 100 most significantly disease associ-

ated proteins. In particular, we found and used n-grams that were not present in relevant

dictionaries. A possible limitation of this part of our method is that the clustering of n-grams

needs to be done for each disease individually, as only n-grams co-mentioned with T2D were

considered. We believe however, that we can further enhance our method and get a set of uni-

versal semantic concepts. In addition, the grouping of n-grams into semantic concepts

Fig 7. An example of a significant high-jumping article. This single article caused MKRN1 to jump from rank 10,853 to 9,082 with

a p-value of 0.00087 in week 34 of 2018. The text is reprinted from the abstract of [60], licensed under the Creative Commons

Attribution 4.0 International License [59].

https://doi.org/10.1371/journal.pone.0233956.g007
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occasionally led to some artefacts, such as splitting synonyms across multiple concepts, or

grouping n-grams that were not equivalent. Nonetheless, we believe we obtained a more fine-

grained understanding of the underlying biological processes from investigating the semantic

concepts separating for instance the positive, negative, and neutral regulation of a specific

function. A benefit of our scoring scheme was that it is easily explainable as it sums the con-

cepts’ weights, each of which can be visualised as per e.g. Fig 7.

The article scoring scheme we introduced here aims at giving high scores to papers leading up

to establishing new associations between a protein and T2D biology. These individual article

scores were turned into weekly protein scores, that were investigated across a five years’ window,

and we have shown that this integrated score could identify the well-known T2D proteins with a

slightly better performance than with the text mining scores from Open Targets. By focusing on

different sliding windows we found well-known past changes of direction in T2D research. While

we have thoroughly vetted the NER for the 100 T2D associated proteins our scoring scheme is

based on, the possibility of false positive NER results represents a limitation to our method when

identifying proteins. We faced this by incorporating NER results and markup in our framework

for displaying the outcome of our analysis, making false positives easier to discern.

Our relevance scoring of proteins, and subsequent identification of high-jumping proteins,

overcomes the inherent issue in protein-centric text mining that the best characterised pro-

teins typically dominate the results. It is a major strength of our method that we can detect

T2D relevance in single papers, even for proteins with no strong, prior association to T2D.

These novel proteins are more intriguing from a target identification point of view, but at the

same time require more validations. Typically, we investigated a handful of high-jumping pro-

teins each week. As we re-discovered previous case-stories we believe we have a useful surveil-

lance mechanism in place likely to make us aware of scientific breakthroughs early on.

The fact that we were encouraged to extend the project to cover other disease areas is per-

haps the best indication that it contributes positively to the early drug discovery process.
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