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Shedding light on dark genes: 
enhanced targeted resequencing 
by optimizing the combination of 
enrichment technology and DNA 
fragment length
Barbara Iadarola1,2,4, Luciano Xumerle1,2,4, Denise Lavezzari1, Marta Paterno1, Luca 
Marcolungo1, Cristina Beltrami1, Elisabetta Fortunati1, Davide Mei3, Annalisa Vetro3, Renzo 
Guerrini3, Elena Parrini3, Marzia Rossato1 & Massimo Delledonne1 ✉

The exome contains many obscure regions difficult to explore with current short-read sequencing 
methods. Repetitious genomic regions prevent the unique alignment of reads, which is essential for 
the identification of clinically-relevant genetic variants. Long-read technologies attempt to resolve 
multiple-mapping regions, but they still produce many sequencing errors. Thus, a new approach is 
required to enlighten the obscure regions of the genome and rescue variants that would be otherwise 
neglected. This work aims to improve the alignment of multiple-mapping reads through the extension 
of the standard DNA fragment size. As Illumina can sequence fragments up to 550 bp, we tested 
different DNA fragment lengths using four major commercial WES platforms and found that longer 
DNA fragments achieved a higher genotypability. This metric, which indicates base calling calculated 
by combining depth of coverage with the confidence of read alignment, increased from hundreds to 
thousands of genes, including several associated with clinical phenotypes. While depth of coverage has 
been considered crucial for the assessment of WES performance, we demonstrated that genotypability 
has a greater impact in revealing obscure regions, with ~1% increase in variant calling in respect to 
shorter DNA fragments. Results confirmed that this approach enlightened many regions previously not 
explored.

Next-generation sequencing (NGS) of targeted sets of regions of interest is one of the most widely used methods 
for genetic diagnostic testing1–3. Whole-exome sequencing (WES) platforms allow the enrichment of the entire 
set of human genes, offering diversity in terms of target region selection, bait length and density, the capture mol-
ecule, and the genomic fragmentation method4,5. Despite some differences in the design of target regions, all cur-
rent platforms perform well6–10 thanks to improvements made over the past few years to enrich poorly-covered 
regions5,11. The performance of WES is usually evaluated according to the depth and uniformity of coverage12 
because minimum site coverage of more than 10-fold13–15 is generally required to identify germline variants6. 
However, current bioinformatics pipelines for the identification of variants generate a standard variant call format 
(VCF) file, which reports variant sites in genomes filtered by both site coverage and mapping quality16. In order 
to rescue variants in well-covered regions with a low mapping quality, base calling (genotypability) calculated by 
combining the confidence of read alignment with the depth of coverage should be considered as a more inform-
ative parameter for the assessment of WES performance17.

There are many regions of low mapping quality in the human genome, often arising from repetitious sequences 
that prevent the unique alignment of short read pairs. Many genes have been duplicated over evolutionary 
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timescales, and if the corresponding genomic regions are large enough to prevent a unique read alignment it 
becomes impossible to determine the source of each read18. Sequence aligners assign quality scores to read pairs 
according to the uniqueness of the alignment, so reads mapping to duplicated regions may gain a high quality 
score if one of the two read mates can be mapped unambiguously18,19.

WES library preparation protocols set the DNA fragment size to the average exon length, which is 170 bp 
in the human genome20–22. Short (<100 bp) paired-end reads are generated to avoid the overlap of read pairs, 
but this fragment length is often shorter than duplicated regions. Furthermore, library preparation protocols 
often start from very low quantities of material (nanograms to picograms)23, limiting the amount of DNA and 
consequently the number of unique fragments that can be produced. For this reason, 2 × 75 sequencing requires 
double the number of fragments to produce the expected depth of coverage that can be achieved by 2 × 150 
sequencing. More amplification is therefore necessary, producing more PCR duplicates that must be removed 
during downstream data analysis, thus limiting the depth of coverage at target regions24.

Here we describe a new approach that increases the standard DNA fragment size, allowing the longer frag-
ments to extend beyond exonic regions to reach introns, which are under less selection pressure than protein cod-
ing sequences but still retain conserved polymorphisms22. We anticipated that such an approach would improve 
the mapping quality of DNA fragments in repetitious genomic regions.

Results
Influence of DNA fragment size on duplicate and off-target rates.  We assessed the performance 
of short (~200 bp), medium (~350 bp) and long (~500 bp) DNA fragments on four major commercial exome 
enrichment platforms produced by IDT, Roche, Agilent and Twist (Table 1). For each platform, libraries were gen-
erated from the genomic DNA of three unrelated individuals and were enriched according to the manufacturers’ 
instructions, and then sequenced on an Illumina HiSeq. 3000 instrument. Short libraries were sequenced in the 2 
× 75 bp format, whereas medium and long libraries were sequenced in the 2 × 150 bp format.

The entire dataset (Supplementary Table S1) was normalized to a 140 theoretical X-fold coverage on the target 
design and the results were aggregated by the mean value of the three replicates (Table 1). The average insert sizes 
in the libraries prepared using the short and the medium fragments were 172–268 and 341–368 bp, respectively, 
whereas the long DNA fragments were often shorter than expected (398–480 bp). We evaluated the frequency 
of duplicates and the number of sequenced bases near and off the target obtained using different DNA fragment 
lengths. Short libraries generated the highest frequency of duplicates in three of the four platforms (12–15%), 
followed by the long libraries in two of the four platforms (9–12%). As expected, the number of sequenced 
near-target bases increased in all four platforms when the insert size was larger, whereas the off-target rate did 
not change in two of the four platforms (IDT and Twist) and declined in the other two (Roche and Agilent). The 
fold enrichment, which is strongly dependent on both the near-target and off-target rates, was lower in all four 
platforms with larger DNA fragment sizes. The differences in duplicate and off-target rates caused by different 
DNA fragment lengths resulted in high variability between the theoretical and mapped coverage values for each 
combination, as anticipated.

Influence of DNA fragment size and enrichment uniformity on genotypability.  To assess the 
genotypability of the targets using different DNA fragment lengths, we compared base calling at uniform coverage 
levels for each platform. We therefore analyzed a set of downsampled BAM files with an average deduplicated 
X-fold coverage of 80 on each target design (Table 2). The enrichment uniformity, evaluated by applying the 

ID

Average 
insert 
size

% 
Duplicates

Mapped 
coverage 
(X) %1X %5X %10X %20X %30X

% 
PASS

% PASS 
RD > 10

% ON 
TARGET

% NEAR 
TARGET

% OFF 
TARGET

Fold 
enrichment

FOLD 
80 
penalty

IDT-S 171.61 12.61 69.38 99.82 99.77 99.61 98.14 92.96 96.81 96.66 60.36 29.42 10.22 50.01 1.60

IDT -M 340.85 7.39 57.92 99.81 99.64 98.84 92.37 79.64 97.58 96.72 48.95 40.63 10.43 40.56 1.95

IDT -L 423.60 8.60 54.28 99.80 99.32 97.01 85.53 70.18 97.39 94.83 45.15 44.10 10.75 37.41 2.28

Roche-S 258.64 11.81 60.10 99.86 99.36 98.33 93.53 83.01 96.17 95.02 51.86 18.13 30.01 35.50 1.89

Roche-M 355.99 10.60 55.76 99.83 99.27 98.03 91.86 79.02 96.90 95.53 49.33 38.52 12.14 33.77 1.90

Roche-L 480.35 8.75 50.31 99.80 99.11 97.37 87.91 71.05 96.79 94.84 42.28 36.04 21.68 28.94 2.02

Agilent-S 267.89 14.89 70.25 99.79 99.33 98.36 94.21 85.84 95.23 94.22 61.57 21.20 17.23 32.85 2.04

Agilent-M 353.80 10.88 66.15 99.75 99.33 98.49 94.48 85.58 96.27 95.40 57.04 26.17 16.79 30.44 1.96

Agilent-L 441.38 11.48 58.31 99.74 99.16 97.73 90.82 78.15 96.13 94.62 50.92 36.96 12.13 27.17 2.06

Twist-S 209.67 5.10 61.80 99.86 99.78 99.33 95.85 89.38 95.51 95.06 52.23 33.16 14.61 45.77 1.59

Twist-M 368.28 5.26 46.41 99.82 99.71 99.21 94.96 83.24 96.57 96.06 38.92 45.65 15.43 34.11 1.47

Twist-L 398.16 3.60 45.17 99.82 99.69 99.05 94.00 80.94 96.56 95.90 37.24 47.04 15.72 32.63 1.51

Table 1.  The 140X dataset. For each platform and DNA fragment length combination, the 140 theoretical 
X-fold coverage is shown for the target design dataset (mean of the three independent experiments). The 
columns show the average insert size, percentage of reads marked as duplicates, mapped coverage on the target, 
percentage of the target covered by at least 1, 5, 10, 20 and 30 reads, percentage of callable bases on the target 
for standard read depth (>3) and read depth >10, percentage of bases on/near/off target, fold enrichment and 
FOLD 80 base penalty. DNA fragment lengths: S = short, M = medium, L = long.
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FOLD 80 penalty value (the fold over-coverage necessary to raise 80% of bases to the mean coverage level in 
those targets – https://broadinstitute.github.io/picard/picard-metric-definitions.html –), was influenced by the 
increase in DNA fragment size in three out of four platforms. Compared to the short DNA fragments, longer 
ones increased the uniformity in one platform (Twist) but reduced it in two others (IDT and Roche), suggesting 
DNA fragment extension had a platform-specific effect. However, the medium and long DNA fragments achieved 
higher base calling values in all platforms (96.58–98.23%) compared to the short DNA fragments (95.52–97.58%).

Given the evident influence of DNA fragment extension on both enrichment uniformity and genotypability, 
we evaluated the single and combined effects of DNA fragment sizes and enrichment uniformity on base calling 
at different coverage levels by producing downsampled BAM files (with an average deduplicated X-fold coverage 
of 10–80) on the corresponding target designs. To assess how enrichment uniformity influenced genotypability 
at different coverage levels, we compared the two platforms with the best (Twist) and worst (Agilent) enrichment 
uniformity for the medium DNA fragments (Table 3). This revealed that the highest uniformity at 80X cover-
age corresponded to the best genotypability both at the standard read depth (PASS, 96.58%) and the minimum 

ID
Mapped 
coverage (X) %1X %5X %10X %20X %30X % PASS

% PASS 
RD > 10

Fold 
enrichment

FOLD 80 
penalty

IDT-S 78.04 99.83 99.77 99.67 98.72 95.26 96.81 96.71 49.99 1.60

IDT-M 80.00 99.82 99.72 99.45 97.01 90.60 97.62 97.32 40.49 1.93

IDT-L 80.29 99.82 99.63 98.89 93.99 85.11 97.55 96.73 37.28 2.28

Roche-S 80.30 99.88 99.55 98.96 96.71 91.89 96.29 95.61 35.46 1.86

Roche-M* 66.83 99.85 99.40 98.54 94.63 86.06 96.99 96.01 33.74 1.91

Roche-L 79.52 99.85 99.49 98.83 95.99 89.65 97.04 96.30 28.82 2.01

Agilent-S 77.73 99.65 99.15 98.25 94.79 88.17 97.58 96.58 32.79 2.05

Agilent-M 80.01 99.64 99.30 98.76 96.26 90.63 98.23 97.64 30.29 1.95

Agilent-L 76.42 99.66 99.27 98.55 94.99 87.51 98.20 97.39 26.82 2.05

Twist-S 80.00 99.86 99.81 99.65 97.94 94.22 95.52 95.36 45.67 1.58

Twist-M 79.96 99.84 99.78 99.70 99.08 97.11 96.58 96.51 33.52 1.42

Twist-L 80.05 99.84 99.78 99.69 98.93 96.66 96.58 96.50 32.17 1.45

Table 2.  The 80X mapped dataset. For each platform and DNA fragment length combination, the 80 mapped 
X-fold coverage is shown for the target design dataset (mean of the three independent experiments). The 
columns show the mapped coverage on the target, percentage of the target covered by at least 1, 5, 10, 20 
and 30 reads, percentage of callable bases on the target for standard read depth (>3) and read depth >10, 
fold enrichment and FOLD 80 base penalty. DNA fragment lengths: S = short, M = medium, L = long. *The 
sequencing data available for this combination did not reach 80X mapped coverage.

Mapped 
coverage (X) %1X %5X %10X %20X %30X % PASS

% PASS 
RD > 10 Fold enrichment

FOLD 80 
penalty

Twist-M

80 99.84 99.78 99.70 99.08 97.11 96.58 96.51 33.52 1.42

70 99.84 99.77 99.66 98.66 95.67 96.57 96.47 33.51 1.42

60 99.83 99.76 99.58 97.87 93.03 96.57 96.40 33.52 1.42

50 99.83 99.73 99.40 96.32 87.50 96.55 96.21 33.51 1.44

40 99.82 99.68 98.94 92.62 74.75 96.53 95.77 33.51 1.46

30 99.81 99.49 97.55 81.67 47.28 96.45 94.39 33.51 1.50

20 99.79 98.64 91.45 47.98 11.39 96.02 88.26 33.51 1.58

10 99.54 89.28 49.25 3.28 0.38 90.86 46.27 33.51 1.58

Agilent-M

80 99.78 99.45 98.86 96.41 90.93 96.31 95.72 30.41 1.94

70 99.76 99.37 98.62 95.16 87.38 96.27 95.50 30.41 1.95

60 99.75 99.27 98.24 93.00 81.79 96.21 95.16 30.41 1.96

50 99.73 99.09 97.54 89.08 73.10 96.12 94.51 30.41 1.97

40 99.69 98.78 96.10 81.57 59.87 95.96 93.13 30.41 1.98

30 99.63 98.05 92.40 67.22 40.83 95.56 89.53 30.41 2.00

20 99.47 95.47 80.96 41.50 17.69 94.11 78.27 30.42 2.13

10 98.63 80.04 43.34 8.65 1.84 84.16 41.31 30.41 2.39

Table 3.  Downsampled mapped coverage for the platforms showing the best and worst FOLD 80 values at fixed 
DNA fragment lengths. Parameters were calculated on 10–80X downsampled sets, including mapped coverage 
on the target, percentage of the target covered by at least 1, 5, 10, 20 and 30 reads, percentage of callable bases on 
the target for standard read depth (>3) and read depth >10, fold enrichment and FOLD 80 base penalty.
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read depth of 10 (PASS10, 96.51%). The platform with the best uniformity (Twist) achieved PASS saturation at 
60X coverage (96.57%), whereas the Agilent platform did not reach saturation and showed a maximum PASS 
value of 96.31% at 80X coverage. PASS10 values are more relevant in a clinical context, and equivalent values 
could be obtained for the two platforms at very different coverage levels: Twist-M = 95.77% at 40X coverage, and 
Agilent-M = 95.72% at 80X coverage.

Next we assessed the influence of the DNA fragment size on genotypability, focusing on the platform showing 
the most variable enrichment uniformity. IDT showed a sharp decrease in coverage uniformity (a greater increase 
in the FOLD 80 penalty) when fragment size was longer than recommended by the manufacturer, jumping from 
1.6 (IDT-S) to 2.28 (IDT-L) as shown in Table 4. With regard to coverage levels, IDT-L produced a greater number 
of over-represented regions (higher %30X values) than IDT-S at 10X and 20X mapped coverage, whereas the pro-
portion of the target region covered by 10 or more reads at higher coverage levels (40X to 80X) was much lower 
for IDT-L, indicating an uneven enrichment of longer fragments. In terms of genotypability, we observed overall 
better PASS values with longer DNA fragments even at coverages as low as 40×. However, the beneficial effect of 
longer fragments on genotypability did not overcome the negative effect on enrichment uniformity, given that 
IDT-L did not achieve higher PASS10 values than IDT-S.

Finally, we evaluated the combined effect of DNA fragment extension and improved enrichment uniformity 
on genotypability in the Twist platform, which demonstrated the most beneficial effect of longer DNA fragment 
sizes on the uniformity of enrichment. The comparison of Twist-S and Twist-M (Table 5) showed that genotypa-
bility improved by more than 1% when both the DNA fragment size and the enrichment uniformity increased, 
and this was the case for both PASS (96.58%) and PASS10 (96.51%) values. DNA fragment extension did not 
affect PASS saturation, which was reached at 60X for both Twist-M and Twist-S, but resulted in ~1% more geno-
typed bases at 80X coverage (96.58% and 95.52%, respectively). The improvement was even higher for the PASS10 
values (Twist-M = 96.51%, Twist-S = 95.36%). Therefore, greater enrichment uniformity and medium-length 
DNA fragments produce a synergistic effect in terms of better genotypability of the target region, especially for 
clinically-relevant thresholds (PASS10).

Genotypability of RefSeq and OMIM genes.  We also evaluated the genotypability of RefSeq genes using 
the downsampled BAM files at 80X mapped coverage on the target designs, focusing on the influence of DNA 
fragment size on the genotypability of each gene. The resulting dataset (Table 6) showed similar trends to those 
described above. The medium and long DNA fragments achieved higher genotypability (96.54–97.14%) in all 
platforms compared to the short fragments (95.72–96.28%).

We then calculated the number of genes that could reach (i) 100% genotypability and (ii) any increase in 
genotypability as a consequence of the increase of the DNA fragment size. The medium-size DNA fragments 
performed best in three of the four platforms, with long libraries performing best in the Roche platform. There 
was a difference of 1656 genes between the best (Twist-M) and worst (Agilent-S) performing platforms (Table 7). 
In the first calculation, the platform with the best enrichment uniformity (Twist) reached 100% genotypability 
for 1107 genes by extending the DNA fragment length (Table 8), including 100 genes that improved by more 

Mapped 
coverage (X) %1X %5X %10X %20X %30X % PASS

% PASS 
RD > 10 Fold enrichment

FOLD 80 
penalty

IDT-S

80 99.88 99.84 99.73 98.77 95.48 96.84 96.72 50.05 1.60

70 99.83 99.77 99.62 98.18 93.15 96.81 96.66 49.98 1.60

60 99.82 99.75 99.51 96.94 88.62 96.80 96.54 49.99 1.61

50 99.82 99.72 99.25 94.25 80.45 96.79 96.29 49.99 1.60

40 99.81 99.64 98.57 88.18 65.63 96.74 95.61 49.99 1.62

30 99.80 99.38 96.34 73.74 40.61 96.62 93.38 49.98 1.64

20 99.77 98.04 86.96 41.40 11.46 95.95 84.03 49.99 1.69

10 99.42 85.07 43.50 4.75 1.72 88.31 40.93 49.99 1.86

IDT-L

80 99.82 99.63 98.89 93.98 85.10 97.56 96.73 37.28 2.28

70 99.81 99.56 98.44 91.65 80.56 97.51 96.27 37.28 2.26

60 99.80 99.44 97.67 88.17 74.47 97.45 95.50 37.28 2.28

50 99.79 99.20 96.28 82.84 66.15 97.31 94.08 37.28 2.34

40 99.77 98.65 93.54 74.46 54.62 96.99 91.32 37.29 2.34

30 99.72 97.23 87.75 60.97 38.36 96.14 85.47 37.28 2.34

20 99.54 92.90 74.56 38.95 17.37 93.33 72.26 37.28 2.35

10 98.21 74.64 40.47 8.48 2.36 79.91 38.37 37.29 2.35

Table 4.  Downsampled mapped coverage for the platform showing the highest variation of FOLD 80 values 
using different DNA fragment lengths. Parameters were calculated on 10–80X downsampled sets, including 
mapped coverage on the target, percentage of the target covered by at least 1, 5, 10, 20 and 30 reads, percentage 
of callable bases on the target for standard read depth (>3) and read depth >10, fold enrichment and FOLD 80 
base penalty.
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Mapped 
coverage (X) %1X %5X %10X %20X %30X % PASS

% PASS 
RD > 10 Fold enrichment

FOLD 80 
penalty

Twist-S

80 99.86 99.81 99.65 97.94 94.22 95.52 95.36 45.67 1.58

70 99.86 99.79 99.52 97.02 92.09 95.51 95.25 45.68 1.58

60 99.86 99.77 99.28 95.56 88.66 95.50 95.01 45.67 1.60

50 99.85 99.71 98.80 93.13 82.65 95.48 94.53 45.67 1.60

40 99.84 99.56 97.74 88.39 70.86 95.41 93.50 45.67 1.62

30 99.83 99.09 95.29 77.32 47.59 95.18 91.09 45.67 1.66

20 99.78 97.36 87.52 47.91 13.60 94.22 83.48 45.67 1.71

10 99.30 86.10 48.97 4.46 0.59 87.35 45.76 45.67 1.88

Twist-M

80 99.84 99.78 99.70 99.08 97.11 96.58 96.51 33.52 1.42

70 99.84 99.77 99.66 98.66 95.67 96.57 96.47 33.51 1.42

60 99.83 99.76 99.58 97.87 93.03 96.57 96.40 33.52 1.42

50 99.83 99.73 99.40 96.32 87.50 96.55 96.21 33.51 1.44

40 99.82 99.68 98.94 92.62 74.75 96.53 95.77 33.51 1.46

30 99.81 99.49 97.55 81.67 47.28 96.45 94.39 33.51 1.50

20 99.79 98.64 91.45 47.98 11.39 96.02 88.26 33.51 1.58

10 99.54 89.28 49.25 3.28 0.38 90.86 46.27 33.51 1.58

Table 5.  Downsampled mapped coverage for the platform showing the most beneficial effect of longer DNA 
fragments on FOLD 80 values. Parameters were calculated on 10–80X downsampled sets, including mapped 
coverage on the target, percentage of the target covered by at least 1, 5, 10, 20 and 30 reads, percentage of callable 
bases on the target for standard read depth (>3) and read depth >10, fold enrichment and FOLD 80 base 
penalty.

ID
Mapped 
coverage (X) %1X %5X %10X %20X %30X % PASS

% PASS 
RD > 10

Fold 
enrichment

FOLD 80 
penalty

IDT-S 78.43 99.16 99.02 98.93 98.15 94.96 95.72 95.63 50.41 1.60

IDT-M 79.36 99.22 99.03 98.73 96.21 89.55 96.59 96.27 40.31 1.95

IDT-L 79.61 99.26 98.96 98.17 93.07 83.84 96.54 95.68 37.10 2.31

Roche-S 82.94 99.80 99.48 98.99 97.31 93.82 96.21 95.67 36.62 1.74

Roche-M* 69.35 99.77 99.36 98.69 95.77 89.05 96.98 96.23 35.01 1.81

Roche-L 83.25 99.79 99.44 98.93 96.82 91.89 97.03 96.47 30.18 1.92

Agilent-S 86.86 99.76 99.44 98.91 96.60 91.58 96.28 95.73 36.63 2.01

Agilent-M 89.27 99.72 99.39 98.97 97.20 93.02 97.03 96.60 33.80 1.94

Agilent-L 86.23 99.74 99.37 98.79 96.06 90.20 96.99 96.37 30.26 2.08

Twist-S 79.50 99.81 99.75 99.60 97.90 94.18 96.18 96.04 45.39 1.58

Twist-M 79.96 99.80 99.73 99.67 99.09 97.19 97.13 97.07 33.51 1.41

Twist-L 80.08 99.81 99.73 99.65 98.94 96.74 97.14 97.06 32.18 1.44

Table 6.  The 80X mapped dataset (RefSeq genes). For each platform and DNA fragment length combination, 
the 80 mapped X-fold coverage is shown for the target design dataset (mean of the three independent 
experiments). The columns show the mapped coverage on the target, percentage of the target covered by at least 
1, 5, 10, 20 and 30 reads, percentage of callable bases on the target for standard read depth (>3) and read depth 
>10, fold enrichment and FOLD 80 base penalty. DNA fragment lengths: S = short, M = medium, L = long. 
*The sequencing data available for this combination did not reach 80X mapped coverage.

Enrichment 
platform

Average DNA fragment size

Short (S) Medium (M) Long (L)

IDT 16,430 16,823 16,144

Roche 16,091 16,299 16,599

Agilent 16,053 16,869 16,547

Twist 16,812 17,709 17,706

Table 7.  Number of RefSeq genes reaching 100% genotypability. Number of RefSeq genes reaching 100% 
genotypability at 80X mapped coverage on the target design dataset using different platforms and DNA 
fragment lengths.
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than 25% in both the short-to-medium and short-to-long fragment extensions (Supplementary Fig. S1A). In the 
second calculation, 1993 genes showed an increase in genotypability (Table 8) due to DNA fragment extension 
(short-to-medium or short-to-long) including almost 200 genes that improved by more than 30% (Supplementary 
Fig. S1A). Overall, more than 800 RefSeq genes reached 100% genotypability in all four platforms and more than 
1800 genes showed some increase in genotypability (Table 8 and Fig. 1). Only for a minimal number of the genes 
which could reach 100% genotypability with the short-size DNA fragments in each platform (99–312), the exten-
sion of the DNA fragment length caused a decrease in genotypability (Fig. 1).

The 3873 OMIM genes associated with a clinical phenotype were analyzed as above to determine the improve-
ment in genotypability achieved with longer DNA fragments (Table 8, Fig. 1 and Supplementary Fig. S1B). More 
than 150 OMIM genes reached 100% genotypability in all four platforms, and more than 280 showed some 
increase in genotypability. The top 20 OMIM genes ranked by improvement in genotypability as a consequence 
of extended DNA fragment size showed that, at equal coverage levels, the genotypability of the target region 
increased with DNA fragment length, from 18% to 52% (Table 9). As seen for the RefSeq dataset, a subset of the 
OMIM genes which could reach 100% genotypability with the short-size DNA fragments (20–80) decreased in 
genotypability extending the DNA fragment length (Fig. 1).

Finally, for each sample we determined the number of variants present in the Twist target design, the platform 
showing the most beneficial effect of longer DNA fragments on the uniformity of enrichment. We observed an 
aggregate mean increase of >1% in both the short-to-medium and short-to-long fragment extensions (Table 10). 
The same >1% increase with longer DNA fragments was observed for the number of variants identified in the 
RefSeq and OMIM genes included in the target design. These results reflect the 1% increase in genotypability 
achieved by increasing the length of the DNA fragments.

Zooming into the 200–400 bp window.  In order to better define the DNA fragment size that determines 
the highest genotypability, we selected 27 samples from our internal database of processed individuals showing 
DNA fragment lengths of 200, 230, 260, 270, 280, 290, 340, 360 and 400 bp. Each DNA fragment size was represented 

Dataset IDT Roche Agilent Twist

RefSeq genes – up to 
100% genotypability 840 1007 1330 1107

RefSeq genes – increased 
genotypability 1837 2247 2429 1993

OMIM genes – up to 
100% genotypability 156 125 270 232

OMIM genes – increased 
genotypability 321 288 459 370

Table 8.  Number of genes showing increased genotypability. Number of RefSeq and OMIM genes showing 
increased genotypability following the extension of the DNA fragment size from short to medium, or short to 
long, at 80X mapped coverage on each target design.

Figure 1.  RefSeq/OMIM genes reaching 100% genotypability. Number of RefSeq (a) and OMIM (b) genes 
reaching 100% genotypability at 80X mapped coverage on each target design using different DNA fragment 
lengths.
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by three different individuals. All these libraries, processed with Twist kit, were sequenced in the 2 × 150 bp  
format, except for the 200 bp library, sequenced in the 2 × 75 bp format.

The initial dataset was normalized to a 200 theoretical X-fold coverage on the Twist target design (Supplementary  
Table S2) and then downsampled to an average deduplicated X-fold coverage of 80 (Table 11). It is interest-
ing to observe the improvement of enrichment uniformity when the DNA fragment size increased from 230 to 
260 bp, with the FOLD 80 dropping from 1.58 to 1.34. This improvement was maintained up to 340 bp and then 
slightly reduced at higher DNA fragment sizes, as also confirmed by the % of bases covered 30X (%30X) that 
increased from 94–95% at 200–230 bp to 99% at 260–290 and then slowly decreased at higher DNA fragment 
sizes. Genotypability followed the same trend, with an evident increase of PASS and PASS10 values between the 
230 and 260 bp length (from 95.55% to 96.37% for PASS, and from 95.38% to 96.33% for PASS10, respectively). 
Moreover, at stationary values of FOLD 80 (1.34–1.37 from 260 to 340 bp), genotypability could still increase as 
a result of the solely DNA fragment extension: from 96.37% to 96.54% for PASS and from 96.33% to 96.49% for 
PASS10. It is worth noting how the improvement of enrichment uniformity reduced the gap between PASS and 
PASS10 values, thus improving variant calling in the clinical setting.

Discussion
Depth of coverage is the parameter used most often to evaluate the performance of WES enrichment technol-
ogies, which are applied during the NGS of selected target regions in the genome6. However, the genotypability 
(base calling) of the target provides more comprehensive information, taking into account not only the depth of 
coverage, but also the quality of the read alignments. We evaluated changes in the genotypability of target regions 
caused by increasing the DNA fragment size beyond the typical length of the average exon (aimed to reduce the 
near-target rate) to improve the alignment of reads derived from repetitious genomic regions.

We found that longer DNA inserts increased the mapping quality of reads and thus the mappability of the 
target region in all four enrichment platforms, suggesting that improvements in base calling can be achieved in 

OMIM

% Genotypability

% Diff.

%10X Coverage

S M L S M L

RPS26 47.13 100 100 52.87 100 100 100

RPL15 49.98 100 100 50.02 99.90 100 100

RPL21 60.60 100 100 39.4 100 100 100

RPSA 63.29 100 100 36.71 100 100 100

GCSH 64.56 100 97.38 35.44 100 100 100

HNRNPA1 66.84 100 100 33.16 100 100 100

CISD2 53.37 85.15 100 31.78 100 100 100

IFNL3 69.43 100 100 30.57 100 100 100

LEFTY2 74.00 100 100 26.00 100 100 100

BMPR1A 74.19 100 100 25.81 100 100 100

RPS23 75.00 100 100 25.00 100 100 100

ISCA1 75.13 100 100 24.87 100 100 100

ALG10 75.15 100 100 24.85 100 100 100

IFITM3 77.53 100 100 22.47 100 100 100

PTEN 78.55 100 100 21.45 98.49 100 100

BANF1 78.64 100 100 21.36 100 100 100

HLA-A 79.02 100 100 20.98 99.88 100 99.82

RPS28 80.79 100 100 19.21 100 100 100

RP9 78.88 97.60 100 18.72 100 100 100

CYP11B1 81.73 100 100 18.27 100 100 100

Table 9.  Top 20 OMIM genes showing the best improvement in genotypability. Top 20 OMIM genes showing 
the best improvement in genotypability following the extension of the DNA fragment length from short 
to medium and short to long (Twist enrichment platform). The data represent the maximum difference in 
genotypability at 80X mapped coverage on the Twist design. DNA fragment lengths: S = short, M = medium, 
L = long.

DNA 
fragment size

#variants in 
design

#variants in 
RefSeq genes

#variants in 
OMIM Genes

S 23,140 20,279 5008

M 23,461 20,509 5057

L 23,521 20,576 5074

Table 10.  Variants in the Twist target design. Total number of variants identified in the Twist target design, and 
in the corresponding RefSeq and OMIM genes, for each DNA fragment size (S = short, M = medium, L = long).
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these platforms by introducing a measure which is more informative than the standard depth of coverage value. 
This was particularly evident when evaluating the genotypability of the coding sequence of RefSeq genes at fixed 
coverage levels (80X mapped). We observed substantial improvements in base calling for many genes, including 
those of clinical interest in the OMIM dataset. For example, the genotypability of genes RPL15 and RPS26 (asso-
ciated with the bone marrow disorder Diamond-Blackfan anemia – OMIM 615550,613309 –) improved to 100%, 
from 49.98% and 47.13%, respectively. Similarly, the genotypability of RPSA (associated with the immunodefi-
ciency disease Isolated congenital asplenia – OMIM 271400 –) improved from 63.29% to 100%, and that of the 
tumor suppressor gene PTEN improved from 78.55% to 100% (Table 9 and Supplementary Table S3). Oddly, a 
few genes showed a slight decrease in genotypability from the medium to the long fragment size, probably due 
to the capture probes’ placement which requires optimization for longer fragments (Supplementary Fig. S3). In 
most cases, longer DNA fragments overcame some of the challenges posed by repetitious genome segments, as 
recognized by the American College of Medical Genetics and Genomics (ACMG) in their guidelines, which 
recommend the development of “a strategy for detecting pathogenic variants within regions with known homol-
ogy”25. Expensive long-read sequencing solutions could be adopted for genes that cannot be characterized by 
short-read sequencing18, but such methods have yet to be implemented in diagnostic laboratories26. Therefore, 
our new approach offers an alternative solution for the analysis of genes whose read mapping quality is low, 
although putative pathogenic variants may be present, especially in genes with the highest medical relevance27.

The number of variants identified among the RefSeq and OMIM genes included in the Twist design showed 
that it is possible to improve variant calling by increasing the DNA fragment length (Table 10). The 1% increase 
in genotypability reported above corresponded to an increase of 1% in variant calling, leading to the identifica-
tion of variants in regions previously considered uncallable because of low mapping quality (Fig. 2). The greater 
number of variants confirms that genotypability is a better parameter for the assessment of WES and that greater 
mappability corresponds to a higher number of detected variants in repetitious genome regions. Such findings 
could be clinically significant, especially when analyzing affected patients, and hence they should be included in 
subsequent variant annotations to prioritize their characterization and assessment.

Longer DNA inserts do not always improve the uniformity of coverage in the target region, as previously 
reported12, and this is another important parameter for the evaluation of enrichment efficiency during targeted 
NGS. Indeed, the four platforms responded differently in terms of enrichment uniformity: whereas the Roche and 
Agilent platforms were largely insensitive to the extension of DNA fragment length, the IDT platform showed 
a dramatic increase in the FOLD 80 penalty (corresponding to low enrichment uniformity), indicating that it 
has already been optimized for very short fragments. Interestingly, the opposite trend was apparent in the Twist 
platform, indicating that the already highly uniform enrichment can be improved even further. It would be inter-
esting to determine whether this reflects the internal calibration procedure of the Twist platform or a favorable 
effect of the double-stranded capture probes. Generally, with high FOLD 80 penalty scores, the genotypability of 
the target region was directly related to the mapped coverage (higher coverage = higher genotypability), whereas 
higher enrichment uniformity resulted in the genotypability reaching a plateau at ~60X coverage, making deeper 
coverage unnecessary.

The advantages of higher enrichment uniformity include the reduction of WES costs and the need for less 
starting material, given that reducing the depth of sequencing also reduces the number of duplicates. Moreover, 
increasing the DNA fragment length also helps to overcome the problem of duplicates because for short DNA 
inserts the use of 2 × 75 bp reads requires the sequencing of twice as many fragments from the same amount 
of DNA compared to 2 × 150 bp reads. In contrast, the fold enrichment value (another important measure of 
enrichment efficiency based on the on-target and off-target rates) was often misleading for two reasons. First, 
fold enrichment depends on the definition of the target region, which in some cases is delineated by the exon 
boundaries but in others corresponds to a much broader area (Fig. 3). Second, fold enrichment does not provide 
comprehensive information about the real efficiency of the enrichment platforms, given that lower values did not 
correlate with a reduction in genotypability (Tables 2 and 6).

DNA 
fragment 
length

Mapped 
coverage (X) %1X %5X %10X %20X %30X % PASS

% PASS 
RD > 10

Fold 
enrichment

FOLD 80 
penalty

200 80.72 99.86 99.82 99.71 98.42 95.21 95.55 95.45 43.50 1.53

230 80.00 99.86 99.81 99.65 97.94 94.22 95.52 95.36 45.67 1.58

260 79.99 99.81 99.73 99.68 99.54 99.13 96.38 96.34 35.13 1.34

270 79.97 99.79 99.72 99.67 99.54 99.13 96.40 96.37 34.72 1.34

280 80.00 99.79 99.71 99.65 99.48 99.01 96.43 96.38 33.79 1.36

290 80.02 99.80 99.71 99.65 99.49 99.01 96.43 96.38 33.10 1.36

340 79.99 99.84 99.78 99.71 99.50 98.88 96.53 96.47 31.59 1.37

360 79.96 99.84 99.78 99.70 99.08 97.11 96.58 96.51 33.52 1.42

400 80.05 99.84 99.78 99.69 98.93 96.66 96.58 96.50 32.17 1.45

Table 11.  The 80X mapped dataset. For each DNA fragment length, the 80 mapped X-fold coverage is shown 
for the Twist target design dataset (mean of three independent experiments). The columns show the mapped 
coverage on the target, percentage of the target covered by at least 1, 5, 10, 20 and 30 reads, percentage of callable 
bases on the target for standard read depth (>3) and read depth >10, fold enrichment and FOLD 80 base 
penalty.
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Taken together, our data show that WES performance should be based on the genotypability of the target 
region, which strictly depends on a combination of the DNA fragment size and the uniformity of the enrich-
ment platform. This parameter will help clinicians to select the optimal combination of DNA insert length and 
enrichment platform during the design of the target region, allowing the correct interpretation of truly positive, 
but especially truly negative, findings. Our new approach will help to overcome current challenges caused by the 
presence of repetitious regions in the human genome.

Methods
Library preparation and exome capture.  Genomic DNA for NA12891 and NA12892 was purchased 
from the Coriell Institute for Medical Research. Sample VR00 was obtained from the whole blood of an unrelated 
third individual, who signed an informed consent form. Samples and clinical information were made de-identi-
fied immediately after collection. All the investigations have been conducted according to the principles expressed 
in the Declaration of Helsinki. The analysis performed on VR00 has been approved by the “Comitato Etico per 
la Sperimentazione Clinica (CESC) delle province di Verona e Rovigo” ethic board. Samples NA12891, NA12892 
and VR00 were processed using four different enrichment platforms: xGen Exome Research Panel V1 (IDT), 
SeqCap EZ MedExome (Roche), SureSelect Human All Exon V6 (Agilent), and the Human Core Exome Kit + 
RefSeq V1 (Twist). We produced three different DNA fragment lengths for each sample: short fragments based 
on the manufacturers’ recommendations (IDT = 150 bp, Roche, Agilent and Twist = 200 bp), medium fragments 
(expected length ~350 bp), and long fragments (expected length ~500 bp). The 27 samples provided by our inter-
nal database were processed using the Human Core Exome Kit + RefSeq V1 (Twist).

Libraries were prepared according to the manufacturers’ protocols. NA12891, NA12892 and VR00 sam-
ples (IDT = 100 ng, Roche = 500 ng, Agilent = 1500 ng, and Twist = 50 ng) apart from Twist-200 bp, which 
were sheared enzymatically, were sheared using a Covaris M220 ultrasonicator, adjusting the treatment time to 

Figure 2.  Variant “chr13:110457271” in COL4A2 gene (RefSeq dataset). Variant called in the NA12891 sample 
using short-size DNA fragment (above) and medium-size DNA fragment (below). The BAM files of the samples 
are shown on the Twist design at 80X mapped coverage. The colour of the bar indicates the mapping quality of 
the read: grey = high quality mapping; white = low quality mapping.

Figure 3.  Differences in BED coordinates. Genomic coordinates of exon 2 of the GZMB gene reported in the 
BED files provided by different enrichment platforms suppliers.
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obtain the desired DNA fragment length (Supplementary Table S4). Given the low quantity of starting material 
for the Twist platform, the preparation of long DNA fragments was carried out twice for each replicate and 
the samples were combined before size selection to produce enough DNA to ensure sufficient library complex-
ity. The size selection was performed with Agencourt AMPure XP (Beckman Coulter) before the pre-capture 
PCR. The DNA fragments and libraries were characterized using a Labchip GX Touch HS Kit (Perkin Elmer) or 
TapeStation (Agilent) to determine the size distribution and to check for adapter contamination. The 27 DNA 
samples selected from our internal database were sheared enzymatically and processed adjusting the Twist pro-
tocol (Supplementary Table S5).

For samples NA12891, NA12892 and VR00, exome capture was performed independently for each combina-
tion of DNA fragment size and enrichment platform. Generally we followed the manufacturers’ protocols, but 
exceptions were made for the Agilent platform (single sample capture was performed) and for the preparation of 
long DNA fragments (the number of PCR cycles was increased by two for all platforms except Twist).

Sequencing and bioinformatics.  The samples were sequenced on a HiSeq3000 instrument (Illumina) 
in 75 bp paired-end mode for the short libraries and in 150 bp paired-end mode for all the other libraries. An 
in-house bioinformatics pipeline was developed for data analysis, integrating different software as described 
below.

Initial FASTQ files were quality controlled using FastQC (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/). Low quality nucleotides have been trimmed using sickle v1.33 (https://github.com/najoshi/
sickle) and adaptors were removed using scythe v0.991 (https://github.com/vsbuffalo/scythe). Reads were then 
aligned to the reference human genome sequence (GRCh38/hg38) using BWA-MEM v0.7.15 (https://arxiv.org/
abs/1303.3997). The SAM output file was converted into a sorted BAM file using SAMtools, and the BAM files 
were processed by local realignment around insertion–deletion sites, duplicate marking and recalibration using 
Genome Analysis Toolkit v3.816. Overlapping regions of the BAM file were clipped using BamUtil v1.4.14 to avoid 
counting multiple reads representing the same fragment. Insert sizes were calculated after read alignment, meas-
uring the distance of the two mates mapped on the genome using CollectInsertSize by Picard v2.17.10 (http://
broadinstitute.github.io/picard/).

For samples NA12891, NA12892 and VR00, from the initial dataset representing each sample we produced 
downsampled BAM files with a 140 theoretical X-fold coverage on the target design, subsampling the required 
number of fragments (calculated as: (140 * design length)/(read length * 2)) using seqtk (https://github.com/
lh3/seqtk). We then produced downsampled BAM files with a 10–80X-fold mapped coverage (the maximum 
mapped coverage value obtained by all the platforms, generated by sub-sampling the full dataset using sambamba 
v0.6.7 – https://github.com/biod/sambamba –). The 27 individuals from our internal database were selected on 
the basis of their average DNA fragment length (200, 230, 260, 270, 280, 290, 340, 360 and 400 bp), considering 
3 individuals for each size. We produced downsampled BAM files with a 200 theoretical X-fold coverage on the 
target design and with a 80X-fold mapped coverage (the maximum theoretical and mapped coverage values 
obtained by all the samples).

We then used CallableLoci in GATK v3.8 to identify callable regions of the target (genotypability), with min-
imum read depths of 3 and 10. These values were integrated as additional WES performance parameters for the 
evaluation of variant detection. CollectHsMetrics by Picard v2.17.10 was used to calculate fold enrichment and 
FOLD 80 penalty values to determine enrichment quality. All WES performance parameters were calculated 
both on the design of each platform and on the standard dataset of RefSeq genes. For each sample, near target was 
defined as the distance from the region of interest corresponding to the average length of the DNA fragments. 
Variant calling was performed using GATK v4.1.2.

Datasets.  The RefSeq database (release 82) was downloaded from the UCSC Genome Table Browser (http://
genome.ucsc.edu/). Online Mendelian Inheritance in Man (OMIM) genes associated with a clinical phenotype 
were downloaded from the OMIM website (https://www.omim.org/, release 15-05-2018).

Data availability
Deposited data generated during the current study are available for download at our public repository at the link: 
http://ddlab.sci.univr.it/files/iadarola_et_al/iadarola_et_al.tar.gz (VCF files with associated BED files of callable 
regions) and at the Sequence Read Archive (SRA) repository under study accession number: SRP253353 (FASTQ 
files).
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