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Abstract

Type 1 diabetes (T1D) is a debilitating autoimmune disease that results from T cell-mediated 

destruction of insulin-producing β cells. Its incidence has increased during the past several decades 

in developed countries 1, 2, suggesting that changes in the environment (including human 

microbial environment) may influence disease pathogenesis. The incidence of spontaneous T1D in 

non-obese diabetic (NOD) mice can be affected by the microbial environment in the animal 

housing facility3 or by exposure to microbial stimuli, such as injection with mycobacteria or 

various microbial products 4,5. Here we show that specific-pathogen free (SPF) NOD mice 

lacking MyD88 protein (an adaptor for multiple innate immune receptors that recognize microbial 

stimuli) do not develop T1D. The effect is dependent on commensal microbes as germ-free (GF) 

MyD88-negative NOD mice develop robust diabetes, whereas colonization of these GF 

NOD.MyD88-negative mice with a defined microbial consortium (representing bacterial phyla 
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normally present in human gut) attenuates T1D. We also find that MyD88-deficiency changes the 

composition of the distal gut microbiota, and that exposure to the microbiota of SPF 

NOD.MyD88-negative donors attenuates T1D in GF NOD recipients. Together, these findings 

indicate that interaction of the intestinal microbes with the innate immune system is a critical 

epigenetic factor modifying T1D predisposition.

Toll-like receptors (TLRs) are innate pattern recognition receptors 6 involved in host 

defense7, control over commensal bacteria and the maintenance of tissue integrity8, 9. The 

role of TLRs involvement in organ-specific autoimmunity is not clear. The MyD88 adaptor 

protein is used by multiple TLRs (except TLR4 and TLR3, which can or must signal via 

TRIF, respectively) and other receptors (e.g. interleukin-1 receptor, IL-1R). To test the 

contributions of these receptors to development of T1D in NOD mice, we examined the 

effect of MyD88 gene disruption on disease incidence and progression. Two MyD88 

knockout (KO) NOD strains were independently derived at the Jackson Laboratory (J) and 

at Yale University (Y). Both showed a loss of diabetes development during 30 week 

observation periods when housed under normal specific-pathogen free (SPF) conditions with 

continuous monitoring for the presence of murine pathogens (Fig. 1). Because multiple 

TLRs signal through the MyD88 adaptor, follow-up studies were conducted in NOD mice 

lacking individual TLRs (TLRKO). We found that TLR2 and TLR4 (as well as TLR3, data 

not shown) were dispensable for development of T1D (or protection from it by complete 

Freund's adjuvant; Supplemental Fig. 1) when deleted individually, in contrast to the effect 

of complete protection from diabetes associated with loss of MyD88 (Fig. 1).

These findings suggested that signaling through receptors which use the MyD88 adaptor is 

critical for T1D development, and that the autoimmune T cells would likely be affected 

systemically in NOD.MyD88KO mice. Two types of experiments were performed to 

examine this hypothesis. First, splenocytes from pre-diabetic MyD88-sufficient and 

NOD.MyD88KO mice were transferred into immunodeficient NOD.SCID animals. All 

recipients of control MyD88-sufficient splenocytes (n=5), and 4 out of 5 recipients of 

NOD.MyD88KO splenocytes became diabetic, arguing against profound systemic tolerance 

of T cells in NOD.MyD88KO mice. Second, an Elispot analysis of interferon-γ (IFN-γ) 

production by T cells in response to four peptides known to be recognized by diabetogenic T 

cells10-13 was performed (Fig. 2). T cells from spleens, mesenteric and pancreatic lymph 

nodes (MLN and PLN, respectively) were analyzed. Spleens and MLN of NOD.MyD88KO 

mice contained activated precursors of the diabetogenic T cells, whereas their numbers were 

clearly reduced in PLN (Fig. 2a). Since individual mice vary in their responses to different 

peptides14, the overall reactivity to all four peptides is shown in Fig. 2a (see Supplemental 

Fig. 2 for primary data). The responses to a prevalent diabetes-associated peptide recognized 

by the 8.3 CD8+ T cell clone 12, 15, were found to be attenuated in the PLN of 

NOD.MyD88KO mice in a statistically significant manner (Fig. 2b). In addition, adoptively 

transferred carboxy-fluorescein succinimidyl ester (CFSE)-labeled naïve CD4+ T cells from 

mice carrying the diabetogenic T cell receptor BDC2.5 proliferated in the PLN but not in 

other (mesenteric or skin-draining) lymph nodes of the NOD mice, however, their 

proliferation was clearly attenuated in the PLN of MyD88 KO mice (Fig. 2c).
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Since the anti-diabetogenic effect of MyD88 deficiency was localized to PLN, it became 

clear that there was no systemic suppression of immune activation in SPF NOD.MyD88KO 

mice, making initial conclusions about the requirement of MyD88 signaling for initiation of 

T1D an oversimplification.

PLN drain both the pancreas and the intestine, and they are an important compartment where 

islet-specific T cells are activated16, 17. Because MyD88 signaling could be critical for the 

interactions of the host with the gut microbiota, we explored the hypothesis that the T1D 

resistance of NOD.MyD88KO could be driven by their intestinal microbiota. First, we 

treated SPF NOD.MyD88KO mice with a broad-spectrum antibiotic (Sulfatrim) throughout 

their lifetime. Antibiotic-treated NOD.MyD88KO animals developed T1D at higher rates 

compared to antibiotic-free NOD.MyD88KO mice (Fig. 3a versus Fig. 1), although they did 

not quite reach the incidence observed in control NOD.MyD88KO/+ mice. Thus, to fully 

eliminate any residual microbes, we re-derived NOD and NOD.MyD88 KO animals as 

germ-free (GF). T1D development in our GF MyD88-sufficient NOD mice was similar to 

previously reported18 and not dramatically different from mice raised in our SPF facilities 

(Fig. 3b; Supplemental Figs. 3 and 4). Thus, initiation of autoimmunity is genetically 

programmed and not affected by the presence of microbiota in immunocompetent SPF NOD 

animals in high-health-standard facilities.

Most importantly, in contrast to our finding that NOD.MyD88KO mice raised under SPF 

conditions did not develop T1D, GF NOD.MyD88KO mice robustly developed diabetes 

(Fig. 3b and Supplemental Fig. 3). This finding clearly shows that neither IL-1R nor 

MyD88-dependent TLRs are required for activation of an anti-islet T cell response [similar 

to MyD88KO, autoimmune regulator (Aire)-deficient mice19]. The efficient T cell priming 

observed in GF NOD.MyD88KO mice does not confirm a previous report that suggested 

that TLR2 signaling, which is MyD88-dependent, is required for T cell priming in NOD 

mice20.

To directly show that T1D development in GF NOD.MyD88 KO mice was indeed a 

consequence of the lack of a microbiota, adult GF NOD.MyD88KO/+ mice were colonized 

with a consortium of bacterial species contained in the Altered Schaedler Flora (ASF)21 and 

intercrossed. After introducing the ASF cocktail, PCR assays revealed that 6 of the 8 species 

colonized the animals (based on sampling of cecal contents, Supplemental results and 

Supplemental Fig. 5). The ASF-colonized NOD.MyD88KO mice exhibited a significant 

reduction in the incidence of diabetes (Fig. 3c): only 34% of males became diabetic at 30 

weeks of age as compared to >80% of GF NOD.MyD88KO males (Fig. 3b), whereas 70% 

of ASF-colonized NOD.MyD88KO/+ males developed diabetes with kinetics similar to 

disease development in SPF NOD.MyD88KO/+ mice (Fig. 3c versus Fig. 1).

A histological analysis of pancreata from SPF, GF and ASF-colonized NOD.MyD88KO 

mice was performed to compare the effects of the microbiota on T cell-mediated destruction 

of the islets of Langerhans. The islets of SPF NOD.MyD88KO mice were less infiltrated 

compared to islets of SPF NOD.MyD88KO/+ mice. Moreover, GF NOD.MyD88KO mice 

had considerably increased islet infiltration, which was moderated by the introduction of the 

ASF (Fig. 3d, histological grading shown in Supplemental Fig. 6). Although, the overall 
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effect of ASF on diabetes development was not fully penetrant, these results suggest that 

bacterial lineages normally present in the gut can modify T1D progression.

We found that MyD88 signaling is critical for development of T1D, and postulated that it is 

needed for control over component(s) of the microbiota that otherwise (in MyD88KO mice) 

can protect against development of T1D. To test how MyD88-dependent innate immunity 

shapes the composition of the gut microbiota, we used a culture-independent, 16S rRNA 

gene sequence-based approach to characterize the microbial communities of SPF 

NOD.MyD88KO/+ and NOD.MyD88KO littermates. Because MyD88 deficiency affects 

T1D development at the early stages (Supplemental Fig. 7), experimental female mice were 

housed individually and killed at 8 weeks of age. DNA was isolated from their cecal 

contents and bacterial 16S rRNA genes were amplified by PCR, and the resulting full-length 

amplicons sequenced (n=36 mice; total of 7,223 16S rRNA gene sequences; average of 201 

sequences/animal; average sequence length of 1,310 nucleotides).

In concordance with previous findings in mice and humans22,23,24 two bacterial divisions 

(phyla) - the Firmicutes (F) and the Bacteroidetes (B) dominated the distal gut (cecal) 

microbiota of mice from all groups (80.7% and 16.9% of all sequences, respectively). The 

remainder of the microbiota was composed of divisions commonly encountered at lower 

abundance in the mouse and human gut: Verrucomicrobia, Proteobacteria, Actinobacteria 

and the candidate phylum TM725. Furthermore, close relatives of ASF strains were detected 

in SPF NOD mice.

Analysis of the cecal microbiota of NOD.MyD88KO/+ versus NOD.MyD88KO mice 

showed significant differences. Antibiotic-free NOD.MyD88KO mice had, on average, a 

significantly lower F/B ratio when compared to all other groups (one-tailed t-test t=-2.31, 

p=0.013) (Fig. 4a). Antibiotic treatment of animals eliminated the statistically significant 

difference in F/B ratio (Fig. 4a). A change of F/B ratio may be important by itself because it 

can influence the efficiency of processing of otherwise indigestible complex polysaccharides 

in the diet 26,27. Diet-related changes in diabetes in GF NOD mice have been observed 28; 

these effects could be related to the components of the diet per se or attributed to the 

presence of microbial products in the feed.

To further characterize the changes in microbiota imposed by MyD88 deficiency, 16S rRNA 

genes were classified taxonomically to the family level (Ribosomal Database Project 

Classifier29). The proportion of sequences in each family was determined for individual 

mice, averaged and compared across treatments. The representation of three bacterial 

families were increased significantly in the microbiota of antibiotic-free SPF 

NOD.MyD88KO mice compared to the SPF NOD animals: the Lactobacillaceae 

(Firmicutes), Rikenellaceae and Porphoromadaceae (both Bacteroidetes) (Fig. 4b). 

Interestingly, the VSL3 probiotic mix, containing four species of Lactobacillaceae affects 

diabetes30 in NOD mice.

Gut microbial communities are known to be inherited from the mother22: this was also the 

case in these experiments, where clustering of 16S rRNA genes was strongly influenced by 

shared mothers (Fig. 4c).
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To show that the changes in the intestinal microbiota of MyD88KO animals were 

responsible for attenuation of T1D development, the newborn progeny of GF NOD mice 

were exposed to SPF NOD.MyD88 KO females and allowed to mature to 8 weeks of age, 

after which time their pancreata were removed and analyzed histologically (Fig. 4d). Islet 

infiltration was significantly reduced in GF NOD animals exposed to microbiota from SPF 

MyD88 KO mouse compared to GF NOD mice [increased percentage of intact islets 

(p=0.001) and reduced percentage of infiltrated islets (p=0.0006)].

Although the precise mechanism of induction of local tolerance by the microbiota remains to 

be elucidated (see Supplemental Fig. 8), the finding that the normal intestinal microbiota can 

alleviate progression of autoimmune diabetes in a MyD88-independent manner provides a 

different perspective about disease pathogenesis. Knowledge-based use of live microbial 

lineages, or microbial products could present new therapeutic options for T1D in the future.

Methods Summary

Mice

B6 mice carrying MyD88 and TLR mutations were backcrossed 10-12 times to NOD/LtJ 

males and intercrossed to produce KO and heterozygous animals. GF animals were re-

derived from NOD/LtJ females impregnated by NOD.MyD88KO males and kept GF at 

Taconic Farms, Germantown, NY, the University of Chicago and Washington University 

(St. Loius, MO). ASF was introduced to GF NOD.MyD88KO mice by adding cecal contents 

from donor mice to sterile drinking water. Wild-type GF mice were colonized with 

microbiota from SPF NOD.MyD88KO animals by co-housing GF NOD females and 

newborn progeny with SPF MyD88.KO females.

Histopathology of diabetes

Damage to the islets was scored in a blinded fashion, and graded as follows: 0 –no visible 

infiltration; I – periinsulitis; II - insulitis with <50% and III – with >50% islet infiltration 

(Supplemental Fig. 6). At least 100 islets in each group of 5 to 12 animals were scored. In 

microbiota transfer experiments 20 sections per pancreas cut at 40μm intervals (≥10 islets/

section) were examined and scored (combining grades II and III).

Elispot analysis

6×105 splenocytes alone, or 2×105 lymph node cells mixed with 4×105 irradiated 

splenocytes from B6.NOD-(D17Mit21-D17Mit10)/LtJ (B6.g7) mice, per well of 96-well 

plates pretreated with anti-IFN-γ antibodies were incubated overnight with listed peptides. 

Lymphocytes were stained with antibodies against CD4 and CD8 to calculate the frequency 

of peptide-specific cells per 106 CD4+ or CD8+ T cells.

Sequence and phylogenetic analysis

16S rRNA gene sequences were edited and assembled into consensus sequences using 

PHRED and PHRAP, aided by XplorSeq23, and bases with a PHRAP quality score of < 20 

were trimmed. Sequences were aligned using the Nast online alignment tool (http://

greengenes.lbl.gov/cgi-bin/nph-index.cgi), and checked for chimeras using the online 
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Greengenes server (http://greengenes.lbl.gov/cgi-bin/nph-bel3_interface.cgi) with a window 

size of 300 and using the nast-aligned sequences31.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. MyD88-negative (MyD88KO) mice are completely protected from development of type 
1 diabetes
Incidence of diabetes in two independently derived NOD.MyD88KO and heterozygous 

NOD.MyD88KO/+ stocks (J-Jackson Laboratory and Y-Yale) (12 back-crosses to NOD). F, 

females; M, males. n, number of animals per group.
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Figure 2. MyD88 deficiency leads to local tolerance to pancreatic antigens

a. The overall reactivity of T cells from secondary lymphoid organs of MyD88-

sufficient (solid bars) and MyD88-negative (open bars) NOD mice was calculated 

as a mean of the percentages of mice in the given group reacting to individual 

diabetes-associated peptides (see Supplemental Fig. 2c).

b. The frequency of CD8+ T cells producing IFN-γ in response to peptide recognized 

by diabetogenic clone 8.3 was determined in the spleens, MLN and PLN of 
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MyD88-sufficient (solid bars) and MyD88-negative (open bars) NOD mice. Error 

bars – s.e.m.

c. Proliferation of CFSE-labeled BDC2.5 CD4+ T cells, depleted of CD25+ T cells, in 

the PLNs of SPF NOD and NOD.MyD88KO mice assayed on day 3 after i.v. 

injection. Representative CFSE dilution profiles are shown for BDC2.5+-gated cells 

in PLN (red) and control skin-draining lymph nodes (blue).

p values in all experiments were determined using unpaired Student's t test. Error bars – 

s.e.m. n, number of animals per group.
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Figure 3. MyD88-negative NOD mice are protected from diabetes by the gut microbiota

a. Diabetes incidence in SPF NOD.MyD88KO (J) females and control heterozygous 

NOD.MyD88KO/+ littermates treated with a broad-spectrum antibiotic from birth.

b. Diabetes incidence in GF NOD.MyD88KO and control MyD88KO/+ mice. 

Incidence is shown for male mice; 100% of female NOD.MyD88KO and 

NOD.MyD88KO/+ female GF mice became diabetic (Supplemental Fig.1).

c. Diabetes incidence in gnotobiotic male NOD.MyD88KO and control 

NOD.MyD88KO/+ mice colonized with a consortium of 6 bacterial strains (ASF 

361,519,356,492,502, and 500; see Supplemental results for descriptions). The 

incidence of diabetes in gnotobiotic NOD.MyD88KO mice was significantly 

different from the incidence in GF NOD.MyD88KO animals (p<0.001), and in 

gnotobiotic NOD.MyD88KO/+ mice (p<0.05) (Kaplan Meier test).

d. Histological scores of islet destruction in SPF, GF and ASF-colonized 

NOD.MyD88KO/+ and NOD.MyD88KO mice. Mice in all groups were males, 

except for the SPF NOD.MyD88KO group, which included both genders.
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Figure 4. MyD88 deficiency leads to specific changes in the composition of intestinal microbiota

a. Ratio of Firmicutes to Bacteroidetes in the cecal microbiota of NOD.MyD88KO/+ 

and NOD.MyD88KO mice who were or were not treated with Sulfatrim. Mean 

values per mouse ± s.e.m. Untreated NOD.MyD88KO mice had, on average, a 

significantly lower F/B ratio than all other mice combined (one-tailed t-test, 

t=-2.31, p=0.013). When comparing post-hoc the effect of sulfatrim in MyD88KO 

mice only, no significant difference in F/B ratios was observed (t= 0.85, p=0.20).

b. Abundance of members of three different bacterial families in the cecal contents of 

NOD.MyD88KO/+ and NOD.MyD88KO mice (not treated with Sulfatrim). Mean 

values ± s.e.m. Each of the three families is enriched in NOD.MyD88KO mice 

(Lactobacilliaceae t=-1.54, p=0.07, Porphyromonadaceae t=2.1, p=0.03, 

Rikenellaceae t=2.74, p=0.007; one-tailed t-test).

c. Clustering of mouse cecal bacterial communities using the unweighted UniFrac 

metric n=7,223 sequences. Diversity, not abundance of bacteria was taken into 

consideration. Top panel: Sulfatrim-treated litters. Bottom panel: Untreated litters. 

Line colors indicate families. Each label is a mouse: red labels are 

NOD.MyD88KO/+ (H); black labels are NOD.Myd88KO (K). The number is the 

common mother, S and N designate exposure to Sulfatrim or no Sulfatrim, 

respectively.
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d. Histological examination of the pancreata of 8 wk old males from SPF NOD, GF 

NOD, as well as GF NOD and GF NOD.MyD88KO exposed from birth to 

microbiota of an SPF NOD.MyD88KO female. The percentages (mean ±s.e.m.) of 

affected islets with no infiltration (open bars), periinsulitis (blue bars) and true 

infiltration (combined grades II and III) are shown. p values were obtained using 

unpaired Student's t test. n, number of animals per group.
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