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Abstract

Glioblastoma (GBM) is the most common and aggressive primary brain tumor with very poor patient median survival. To
identify a microRNA (miRNA) expression signature that can predict GBM patient survival, we analyzed the miRNA expression
data of GBM patients (n = 222) derived from The Cancer Genome Atlas (TCGA) dataset. We divided the patients randomly
into training and testing sets with equal number in each group. We identified 10 significant miRNAs using Cox regression
analysis on the training set and formulated a risk score based on the expression signature of these miRNAs that segregated
the patients into high and low risk groups with significantly different survival times (hazard ratio [HR] = 2.4; 95% CI = 1.4–3.8;
p,0.0001). Of these 10 miRNAs, 7 were found to be risky miRNAs and 3 were found to be protective. This signature was
independently validated in the testing set (HR = 1.7; 95% CI = 1.1–2.8; p = 0.002). GBM patients with high risk scores had
overall poor survival compared to the patients with low risk scores. Overall survival among the entire patient set was 35.0%
at 2 years, 21.5% at 3 years, 18.5% at 4 years and 11.8% at 5 years in the low risk group, versus 11.0%, 5.5%, 0.0 and 0.0%
respectively in the high risk group (HR = 2.0; 95% CI = 1.4–2.8; p,0.0001). Cox multivariate analysis with patient age as a
covariate on the entire patient set identified risk score based on the 10 miRNA expression signature to be an independent
predictor of patient survival (HR = 1.120; 95% CI = 1.04–1.20; p = 0.003). Thus we have identified a miRNA expression
signature that can predict GBM patient survival. These findings may have implications in the understanding of gliom-
agenesis, development of targeted therapy and selection of high risk cancer patients for adjuvant therapy.
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Introduction

The grade IV astrocytoma, GBM, is the most common and

malignant primary adult brain cancer [1]. Despite advances in

treatment modalities, the median survival is very poor. Since

postoperative radiotherapy alone did not provide great benefit to

GBM patients, several attempts have been made to find suitable

adjuvant chemotherapy. The present standard treatment appears to

be maximal safe resection of the tumor followed by irradiation and

temozolomide adjuvant chemotherapy [2]. However, it was found

that not all patients were benefited from the addition of

temozolomide. Further analysis revealed that methylation of MGMT

promoter to be the strongest predictor for outcome and benefit from

temozolomide chemotherapy [2]. In addition, recent molecular and

genetic profiling studies have identified several markers and unique

signatures as prognostic and predictive factors of GBM [3,4].

MicroRNAs (miRNAs) are endogenous non-coding small RNAs,

which negatively regulate gene expression either by binding to the

39 UTR leading to inhibition of translation or degradation of

specific mRNA. Since miRNAs can act as Oncogenes or tumor

suppressor genes, they have been linked to a variety of cancers [5]. It

has been shown that classification of multiple cancers based on

miRNA expression signatures is more accurate than mRNA based

signatures [6]. There have been a few attempts to profile miRNA

expression either by microarray or RT-PCR in different grades of

glioma [7–11]. Rao et al., profiled the expression of 756 miRNAs

using 39 malignant astrocytoma and 7 normal brain samples and

identified a 23-miRNA expression signatures which can discrimi-

nate anaplastic astrocytoma from glioblastoma [11]. Other studies

investigated the target identification and functional characterization

of specific miRNAs [8,10,12–17]. Many studies identifying miRNA

expression signatures predicting patient survival have been done in

several cancers like lung cancer, lymphocytic leukemia; lung

adenocarcinoma, breast and pancreas cancers [18–23]. However,

a miRNA signature that can predict the clinical outcome in GBM

patients has not been found so far.

In this study, we have subjected the miRNA expression data

from a total of 222 GBM patients derived from The Cancer

Genome Atlas (TCGA) data set to Cox proportional regression

analysis to identify the miRNAs that can predict patient survival.

By using a sample-splitting approach, a 10 miRNA expression

signature that can predict survival both in training and testing sets

was identified. More importantly, using multivariate analysis along

with patient age, the 10 miRNA expression signature was found to

be an independent predictor of patient survival.

Results

Identification of a 10 miRNA expression signature from
training set

The 222 GBM samples were divided randomly into a training

set (n = 111) or a testing set (n = 111). Table 1 gives the age and
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gender distribution of the patients in both sets and the entire set.

miRNA expression data corresponding to 305 miRNAs derived

from the training set was subjected to Cox proportional hazard

regression analysis to identify miRNAs, whose expression profile

could be significantly correlated to patient survival. We identified a

set of 10 miRNAs that were significantly correlated with patient

survival (Table 2). These 10 miRNAs were then used to create a

signature by calculating a risk score for each patient. A risk score

formula was obtained for predicting the patient survival (see

[materials and methods] for detail). Using the risk score formula,

the 10 miRNA expression signature risk score was calculated for

all patients in the training set. The patients were then ranked in

the training set according to their risk score. Using the 60th

percentile risk score as cutoff in the training set, the patients were

divided into high and low risk groups. Patients belonging to high

risk group had a shorter median survival than patients with low

risk score (12.6 months versus 19.3 months, HR = 2.4; 95%

CI = 1.4–3.8; p = 0.0006) (Figure 1 A; Table 3). Survival was

greater in the low risk group than in the high risk group

throughout the follow-up. Overall survival in the training set was

41.8% at 2 years, 25.6% at 3 years, 23.6% at 4 years and 14.8% at

5 years in the low risk group, versus 9.0%, 3.0%, 0.0 and 0.0%

respectively in the high risk group (HR = 2.4; 95% CI = 1.4–3.8;

p = 0.0006) (Table 3; Figure S1).

Validation of the 10 miRNA expression signature for
survival prediction in the testing set

To validate our finding, we calculated the risk score for the 111

patients from the testing set. Using the same cut-off value that was

used for training set, the patients from the testing set were classified

into low risk and high risk groups and subjected to survival

comparison. Similar to the results obtained in the training set,

patients in the high risk group had shorter median survival than

patients in the low risk group (12.1 months versus 18.0 months;

HR = 1.7; 95% CI = 1.1–2.8; p = 0.0207) (Figure 1 B; Table 3).

As was seen in the training set, patient survival in the low risk group

was better than that in the high-risk group throughout the 5 year

follow-up time (Table 3). Risk score based classification of the

entire patient set also gave a similar result with the high risk group

having a shorter median survival than the low risk group (12.6

months versus 18.3 months, HR = 2.0; 95% CI = 1.4–2.8;

p,0.0001) (Table 3). The higher overall survival of the low risk

group throughout the study period in training, testing and entire

patient sets compared to the high risk group is shown (Figure S1).

Nature of 10 miRNA expression signature
Additional investigation of 10 miRNA set yielded several

interesting observations. The distribution of miRNA expression

Table 1. Clinical characteristics of GBM patients according to their low or high risk group in the training set, the testing set and the
entire patient set.

Characteristic Training set p-value* Testing set p-value* Entire patient set p-value*

Low risk
(N = 69)

High risk
(N = 42)

Low risk
(N = 68)

High risk
(N = 43)

Low risk
(N = 137)

High risk
(N = 85)

Age (Mean 6 SD) 51.566.6 54.461.9 0.5 54612.7 58.3610.2 0.1 52.8614.8 56.4611.2 0.1

Gender

Female (%) 26 (37.7) 13 (31) 0.5 27 (39.7) 12 (27.9) 0.2 53 (38.7) 25 (29.4) 0.2

Male (%) 43 (62.3) 29 (69) 41 (60.3) 31 (72.1) 84 (61.3) 60 (70.6)

*Two-tailed p-value obtained from Mann-Whitney test.
doi:10.1371/journal.pone.0017438.t001

Table 2. Ten miRNA signature that predicts survival in glioblastoma patients.

No miRNA Type
Hazard
Ratio Coefficient

Permutation
p-value Median log2 ratio# GBM Vs Normal

Low risk High risk Regulation$ p-value*

1 hsa-miR-20a Protective 0.68 20.39 0.0004 1.83 0.86 upregulated ,0.0001

2 hsa-miR-106a 0.66 20.41 0.0005 1.67 0.65 upregulated ,0.0001

3 hsa-miR-17-5p 0.68 20.39 0.0008 1.60 0.69 upregulated ,0.0001

4 hsa-miR-31 Risky 1.32 0.28 0.0001 21.83 20.82 downregulated 0.0022

5 hsa-miR-222 1.26 0.23 0.0004 22.15 20.70 downregulated 0.0002

6 hsa-miR-148a 1.21 0.19 0.0010 1.16 2.83 upregulated ,0.0001

7 hsa-miR-221 1.27 0.24 0.0014 21.93 20.53 downregulated 0.0003

8 hsa-miR-146b 1.25 0.22 0.0025 0.10 1.22 upregulated ,0.0001

9 hsa-miR-200b 1.21 0.19 0.0029 20.02 0.83 upregulated ,0.0001

10 hsa-miR-193a 1.34 0.29 0.0045 1.05 2.10 upregulated ,0.0001

#Median of the log 2 transformed ratios of GBM vs Normal.
$type of regulation (upregulated or downregulated) in GBM in comparison to Normal.
*Two-tailed p-value obtained from Mann-Whitney test.
doi:10.1371/journal.pone.0017438.t002
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values, patient risk scores and survival status of patients were

analyzed independently for both training and testing set (Figure 2
and 3). There were 3 miRNAs that were protective and 7

miRNAs that were risky based on correlation of their expression

and association with patient survival (Table 2). Tumors from

patients belonging to high risk group tend to express higher levels

of risky miRNAs, whereas tumors from patients with low risk

group tend to express higher levels of protective miRNAs

(Figures 2A). Similar results were obtained in the testing set as

well (Figure 3A). A comparison of risk score with patient survival

status and risk score distribution among GBM patients of the

training set and test set are shown (Figure 2 B, C and 3 B, C). It

is interesting to note that the three protective miRNAs are up

regulated in glioblastomas (GBMs) compared to normal samples

(Table 2). However among risky miRNAs, three were down

regulated and four were up regulated in GBMs (Table 2).

We further carefully analyzed the 10 miRNA set to determine

whether a subset of miRNAs can be used to predict GBM patient

survival. The four most significant miRNAs from the set of 10, all

with permutation p#0.0005 with (miR-20a, miR-106A, miR-31

and miR-222) were chosen and their expression signature derived

risk score was used to predict GBM patient survival. The results

showed that unlike the ten miRNA signature, the four miRNA did

not consistently correlate with patient survival in training and

testing set (data not shown).

Multivariate regression analysis shows that the 10 miRNA
expression signature is independent of age

In order to ascertain whether the 10 miRNA expression

signature based risk score is an independent predictor of GBM

patient’s survival, we carried out Cox multivariate analysis. As has

been shown before, patient age also predicted the GBM patients

survival in univariate analysis (p,0.0001; HR = 1.027; B = 0.027)

(Table 4). The effect of risk score and age on GBM patient

survival was further evaluated by multivariate Cox proportional

hazard model. We found that both risk score (p = 0.003;

Figure 1. Kaplan-Meier survival estimates overall survival of glioblastoma patients according to the 10 miRNA expression
signature. A) 111 GBM patients in the training data set. B) 111 GBM patients in the testing data set.
doi:10.1371/journal.pone.0017438.g001

Table 3. Kaplan Meier overall survival analysis in the training set, the testing set and the entire patient set.

Patient set
Deaths/Patient
(%)

Hazard Ratio
(95% CI)

Median survival
(months, 95% CI) Survival (95% CI)

1 year (%) 2 years (%) 3 years (%) 4 years (%) 5 years (%)

Training set

Low risk
(n = 69)

57/69 (82.6) 1 19.3 (12.7–25.9) 66.5 (54.9–78.1) 41.8 (29.5–54.1) 25.6 (14.5–6.7) 23.6 (12.6–34.6) 14.8 (5–24.6)

High risk
(n = 42)

38/42 (90.5) 2.4 (1.4–3.8) 12.6 (10.1–15.1) 50.6 (35.1–6.1) 9.0 (0.0–18.4) 3.0 (0.0–8.7) 0.0 0.0

Test set

Low risk
(n = 68)

55/68 (80.9) 1 18.0 (14.5–21.5) 64.8 (52.8–76.8) 28 (16.4–39.6) 17.3 (7.5–27.1) 13.5 (5.1–21.9) 6.2 (0–13.5)

High risk
(n = 43)

36/43 (83.7) 1.7 (1.1–2.8) 12.1 (6.8–17.4) 49.8 (34.5–64.1) 13.3 (2.2–24.4) 8.9 (0.0–19.3) 0.0 0.0

Entire
patient set

Low risk
(n = 137)

112/137 (81.8) 1 18.3 (15–21.6) 65.6 (57.4–72.8) 35.0 (26.4–3.2) 21.5 (14.1–28.9) 18.5 (11.2–25.8) 11.8 (5.5–18.1)

High risk (n = 85)74/85 (87.1) 2.0 (1.4–2.8) 12.6 (10.3–14.9) 51.4 (40.6–62.2) 11.0 (3.5–18.5) 5.5 (0–11.2) 0.0 0.0

doi:10.1371/journal.pone.0017438.t003
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HR = 1.120; B = 0.113) and age (p = 0.004; HR = 1.020;

B = 0.019) are independent predictors of GBM patient survival

(Table 4).

Discussion

In this study, we have identified a ten miRNA signature that is

associated with survival of GBM patients. We confirmed these

findings in a testing set. Patients with a high risk score had shorter

survival even after including patient age as a variable in a

multivariate Cox model. These results suggest that miRNAs play

an important role in molecular pathogenesis, progression and

prognosis of GBMs.

Predicting the benefit of various cancer therapies to patients is

very important and forms the foundation of personalized cancer

therapy. While the clinical features like age and Karnofsky

performance status are known prognostic markers among GBM

patients, MGMT gene promoter methylation status is of great

interest in recent times because it predicted response of GBM

patients receiving temozolomide chemotherapy in addition to

irradiation [2]. Several other molecular markers with prognostic

and predictive significance in GBMs have been identified [24].

Except for a few recent reports on the role of miRNAs in GBM

prognosis, the possibility of prognostic miRNA signatures have not

been investigated [25]. To our knowledge, this is the first report of

a miRNA expression signature predicting GBM patient survival.

The ten miRNA signature identified in this study included three

miRNAs (miR-20a, miR-106a and miR-17-5p) that were

protective and seven miRNAs (hsa-miR-31, hsa-miR-222, hsa-

miR-148a, hsa-miR-221, hsa-miR-146b, hsa-miR-200b and hsa-

miR-193a) that were risky with respect to their association

between their expression and patient survival. The protective

miRNAs were expressed at a higher level in the low risk group

compared to the high risk group and the risky miRNAs were

expressed at a higher level in the high risk group than in the low

risk group. The protective and risky nature of these miRNAs is

suggestive of their functions being either inhibitory or promoting,

respectively, of various properties of cancer cells like proliferation,

migration and invasion etc.

miR-31 has been shown to be an inhibitor of breast cancer

metastasis by targeting RhoA, RDX and ITGA which are

involved in tumor motility, invasion and resistance to anoikis

[26]. However, miR-31 has also been shown to be an oncogenic

miRNA in lung cancer by targeting tumor suppressor genes and in

head and neck cancer by targeting factor-inhibiting hypoxia-

inducible factor (FIH) [27,28]. Both miR-221 and 222 have shown

to be upregulated in multiple cancers including glioblastoma,

linked to promoting proliferation and radioresistance by targeting

PTEN, p27 and p57 [29–31]. Overexpression of miR-221 and

miR222 has been shown to be associated with poor survival in

hepatocellular carcinoma, pancreatic cancer and cervical cancer

[32–34]. Further, a low expression of p27Kip1, a target of miR-

221 and 222, has been correlated to poor prognosis in astrocytoms

[35–37]. miR-148a has been shown to regulate DNA methylation

by targeting DNA methylatransferase 1 (DNMT1) [38]. While

Chou et al. [39] reported higher expression of miR-146b in high

risk adult papillary thyroid carcinoma, other reports indicate miR-

146b is a metastatsis suppressor by targeting matrix metallopro-

teases [39–41]. Similar to our results, higher miR-146b levels is

correlated to poor prognosis in squamous cell lung cancer [42].

With respect to miR-200b, while Xia et al identified it to promote

S-phase entry by targeting RND3 and increasing cyclin D1

Figure 2. Ten miRNA Risk-Score Analysis of 111 GBM patients (training set). A) Heat map of ten miRNA expression profiles of GBM patients;
rows represent risky and protective miRNAs, and columns represent patients. The blue line represents the miRNA signature cutoff dividing patients
into low-risk and high-risk groups. B) Patient survival status along with risk score. C) miRNA risk-score distribution of the GBM patients.
doi:10.1371/journal.pone.0017438.g002
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expression, other reports suggest miR-200 to be an inhibitor of

epithelial-to mesenchymal transition with decreased cell migration

and increased sensitivity to EGFR-blocking agents [40,43]. In

malignant cutaneous melanoma, while increased expression of

miR-193a is associated with poor survival, miR-193a has been

identified as epigenetically silenced tumor suppressor miRNA in

oral cancer [44,45].

miR-106a, one of the protective miRNAs was found to be

overexpressed and oncogenic in human T-Cell leukemia [46].

However in good correlation with our data, low expression of

miR-106a was found to be associated with poor patient survival in

glioma and colon cancer [25,47]. The miR-17,92 cluster, which

contains two protective miRNAs, miR-17-5p and miR-20a, has

been found to accelerate the disease onset of Em-myc-induced B-

cell lymphoma, promote lung cancer growth in vitro, activated by c-

myc and promote tumor angiogenesis [48]. Interestingly, in breast

cancer, ovarian cancer and melanoma, miR-17,92 has been

shown to be deleted and found to inhibit cell proliferation upon

overexpression suggesting miR-17,92 cluster may have context

dependent functions [48]. Our results show that both miR-17-5p

and miR-20a are upregulated in GBMs with higher expression

correlating with increased survival. In good correlation with our

data, lower expression of E2F1, a target of miR-20a and cyclin D1,

a target of both miR-20a and miR-17 was found to predict longer

survival in gliomas [49–51].

Even though the median survival time remains in the 12–15

months range, the prognosis of individual patients is variable and

approximately 10% of the patients are known to survive for more

than 2 years [52]. At present, several molecular markers, including

MGMT promoter methylation status for GBM patient prognosis,

have been identified and many needs further validation before

their use in clinical settings [24]. The ten miRNA signature,

identified in this study, classifies patients successfully into low risk

and high risk groups in both training and testing sets. This may

help clinicians to identify patients belonging to high risk for more

effective adjuvant therapy in addition to the standard treatment

protocol. We also found that the ten miRNA signature is an

independent predictor of GBM patient survival.

Our finding that ten miRNA signature can predict GBM

patient’s survival also likely to generate potential molecular targets

for the development of anticancer therapy. Since miRNAs can

target multiple genes, more thorough studies are needed to

understand the mechanism of action of these miRNAs which is

likely to result in better understanding of glioma. In conclusion, we

Table 4. Cox regression analysis of risk score and age in the
entire patient set (n = 222).

Variable Hazard ratio (95% CI) p-value*

Univariate analysis

Risk score 1.17 (1.09–1.25) ,0.0001

Age 1.03 (1.02–1.04) ,0.0001

Multivariate analysis

Risk score 1.12 (1.04–1.20) 0.003

Age 1.02 (1.01–1.03) 0.004

*Two-tailed p-value obtained from Mann-Whitney test.
doi:10.1371/journal.pone.0017438.t004

Figure 3. Ten miRNA Risk-Score Analysis of 111 GBM patients (test set). A) Heat map of ten miRNA expression profiles of GBM patients;
rows represent risky and protective miRNAs, and columns represent patients. The blue line represents the miRNA signature cutoff dividing patients
into low-risk and high-risk groups. B) Patient survival status along with risk score. C) miRNA risk-score distribution of the GBM patients.
doi:10.1371/journal.pone.0017438.g003

microRNA Signature and GBM Patient Survival

PLoS ONE | www.plosone.org 5 March 2011 | Volume 6 | Issue 3 | e17438



have found a ten miRNA signature that can predict GBM patient

survival with a lot of potential prognostic and therapeutic

implications for the GBM patient management.

Materials and Methods

TCGA miRNA dataset and patient information
miRNA expression data and the corresponding clinical data for

glioblastoma samples were downloaded from The Cancer Genome

Atlas (TCGA) data portal. The level 1 raw data for 364 samples,

which included 354 GBM and 10 normal samples, on the Agilent

Human 8x15K miRNA platform was downloaded from the TCGA

data portal in July 2010. The raw data was quantile normalized and

log2 transformed, and the probe-centric signals were converted to

gene-centric signals using the AgiMicroRNA package in R software

[53]. After filtering out genes that were not detected, there were a

total of 305 miRNAs for the 364 samples. We then calculated the

mean value for the normal samples for each miRNA, and

subtracted this value from all the samples for that miRNA, to come

up with a log2 ratio of GBM vs normal.

We obtained clinical information for those patients who had

survival information. We only selected those patients who had

undergone both radiotherapy and some form of chemotherapy. In

addition, we eliminated patients who had Karnofsky’s score lesser

than 70, and survival time lesser than 30 days, since these patients

might have died for reasons other than the disease itself. A total of

222 patients who fit these criteria were included for further analysis.

Statistical analysis
The 222 samples were randomly assigned to a training data set

(n = 111) or a testing data set (n = 111). The expression level of

each miRNA (n = 306) was assessed by Cox regression analysis

using the BRB array tools [54] package in the training set.

Parametric test (p#0.01) identified a set of miRNAs significantly

correlated with survival. Using the permutation test method, with

10,000 permutations, we found 10 miRNAs were strongly

correlated with survival (p#0.005).

Using these 10 significant miRNAs, we constructed a formula

that would predict survival. This formula was devised using the

Cox regression coefficients derived from the Cox proportional

hazard analysis. Specifically, we assigned each patient a risk score

that is a linear combination of the expression levels of the

significant miRNAs weighted by their respective Cox regression

coefficients [55]. According to this model, patients having high risk

scores are expected to have poor survival outcomes as compared to

patients having low risk scores. The risk scores are calculated as

follows:

Risk score = (20.39 x expression of hsa-mir-20a) + (20.41 x

expression of hsa-mir-106a) + (20.39 x expression of hsa-mir-17-

5p) + (0.28 x expression of hsa-mir-31) + (0.23 x expression of hsa-

mir-222) + (0.19 x expression of hsa-mir-148a) + (0.24 x expression

of hsa-mir-221) + (0.22 x expression of hsa-mir-146b) + (0.19 x

expression of hsa-mir-200b) + (0.29 x expression of hsa-mir-193a).

The significant miRNAs that formed the signature were of two

types - risky and protective. Risky miRNAs were defined as those

that had hazard ratio for death greater than 1. Protective miRNAs

were defined as those that had hazard ratio for death less than 1.

Using this definition, we found 3 protective miRNAs and 7 risky

miRNAs.

We divided patients in the training data set into high-risk and

low-risk groups by risk score. We used the 60th percentile risk score

as the cut-off, since this divided the training set patients into two

groups having different survival times with highest significance.

The Kaplan-Meier method was used to estimate overall survival

time for the two groups. Differences in survival times were

analyzed using the two-sided log rank test. We followed the

strategy of splitting patients into training and testing sets, as we

had no independent cohort that we could verify our signature

with. We used the splitting strategy as opposed to cross-validation,

since this has been found to be a better strategy [56]. We also used

Cox multivariate analysis to evaluate the contribution of patient

age as an independent prognostic factor. The miRNA risk score

and age were used in the multivariate analysis.

Supporting Information

Figure S1 study period in the training, the testing and the entire

patient sets.
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