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ABSTRACT: X-Entropy is a Python package used to calculate the entropy of a
given distribution, in this case, based on the distribution of dihedral angles. The
dihedral entropy facilitates an alignment-independent measure of local protein
flexibility. The key feature of our approach is a Gaussian kernel density estimation
(KDE) using a plug-in bandwidth selection, which is fully implemented in a C++
backend and parallelized with OpenMP. We further provide a Python frontend,
with predefined wrapper functions for classical coordinate-based dihedral entropy
calculations, using a 1D approximation. This makes the package very
straightforward to include in any Python-based analysis workflow. Furthermore,
the frontend allows full access to the C++ backend, so that the KDE can be used
on any binnable one-dimensional input data. In this application note, we discuss
implementation and usage details and illustrate potential applications. In
particular, we benchmark the performance of our module in calculating the
entropy of samples drawn from a Gaussian distribution and the analytical solution
thereof. Further, we analyze the computational performance of this module compared to well-established python libraries that
perform KDE analyses. X-Entropy is available free of charge on GitHub (https://github.com/liedllab/X-Entropy).

■ INTRODUCTION
Biomolecules constantly fluctuate between various conforma-
tions.1,2 Therefore, all physicochemical properties correspond
to an ensemble of structures with varying probabilities and not
to a single structure alone.3−5 It is well established that
countless physiological processes, such as biomolecular
recognition,6−8 catalytic activity,2 or drug binding,9 are directly
linked to a biomolecule’s conformational ensemble. Thus,
improving our fundamental understanding of these mecha-
nisms relies on a robust characterization of conformational
ensembles. In particular as the relevance of biopharmaceuticals
steadily increases, also the thorough exploration of protein
dynamics becomes ever more important. Molecular dynamics
(MD) simulations are a vital tool to study the conformational
flexibility of biomolecules, as they capture conformational
ensembles in atomistic detail with reliable state probabilities.3,9

One major challenge in working with MD simulations is the
intractable complexity of the raw output data. As the motions
of biomolecules comprise large domain movements as well as
delicate side-chain rearrangements, numerous analysis tools are
available to characterize the captured ensembles. Typical
analysis approaches range from interaction- or contact-based
analyses, like H-bond, ionic, or native contact analyses, over
structural characterizations like 1D- and 2D-RMSD, or
clustering analyses, to flexibility metrics, like RMSF, or
conformational entropy analyses. In this work we focus on a
residuewise dihedral entropy metric, previously presented by
our group.10,11 A major advantage of this metric is that it is

completely alignment-independent and quantifies local flex-
ibilities directly from the fundamental thermodynamics
encoded in the simulation. The presented approach is based
on a plug-in bandwidth selection method presented by Botev
et al.,12 which facilitates automatized bandwidth optimization.
The entropy is then calculated by integrating the probability
density functions (PDF) of the individual backbone dihedral
angle distributions of the simulated protein. It is worth
mentioning that we are calculating the classical coordinate-
based dihedral entropy and use a 1D approximation of the
entropy. There are other approaches for calculating the
dihedral entropy, e.g., quasiharmonic calculation,13 2D
Entropy,14 MIST,15 or the use of Gaussian Mixtures.16 In
contrast to our approach, these aim at calculating the total
entropy of the entire system whereas our approach calculates
localized entropies of the individual residues. The sum of these
local entropies can be considered an approximation of the total
entropy in the system, i.e., the approximation that neglects all
higher order terms to the entropy.
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In this application note we present a new, complete, and
self-contained package, which calculates dihedral entropies on
an input data set of dihedral angles. The package consists of a
C++ backend, which performs the calculations, and a Python
frontend, which serves as API for the user. This setup allows
for an easy incorporation of the package in any Python-based
analysis workflow. The C++ backend performs initial binning
of the input data, followed by the kernel density estimation
(KDE) itself. The kernel bandwidth is optimized via plug-in
selection, and the resulting PDF is integrated to yield an
entropy. To accelerate the calculation, the C++ backend was
parallelized using the OpenMP library.17 The Python frontend
provides the user with prewritten functions for data processing
as well as the ability to pass weights for each input frame to the
calculation. Consequently, the method can be applied to
classical, as well as enhanced (nonequilibrium), simulations. A
detailed description of the theory and the implementation can
be found in the following section.
While the focus of this application note lies on the

calculation of dihedral entropies from biomolecular simula-
tions, the X-Entropy package was designed and implemented
for general purpose applications. This means that the KDE can
be directly accessed from the Python frontend and applied to
any binnable, 1D input data.

■ THEORY AND IMPLEMENTATION
The entropy of a continuous system can be calculated via eq 1.
The calculation of the integral can easily be performed
numerically.18

∫= − ·S R p x p x x( )ln( ( )) d
(1)

where p is the probability density of the observable x, R is the
gas constant, and S is the entropy in this observable. The
calculation of the entropy for dihedrals is thus straightforward
and can be done numerically, once a continuous PDF has been
found. However, the main challenge is to find this underlying
PDF. A prominent way to achieve this is to use a KDE and the
most common KDE uses a Gaussian function as a kernel. The
kernel in a KDE is applied on each data point individually and
serves to approximate density away from the exact position of
the data points. The Gaussian KDE for any PDF can be written
as
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where N is the number of Gaussian kernels used to represent
the PDF. In most cases, this is equal to the number of data
points. However, it can also be the number of bins in case of
binned data, then a factor representing the number of data
points within the bin has to be added, more details can be
found in the Supporting Information (SI), section 2. Xi is the
location of the Gaussian function, and t is the squared
bandwidth of the Gaussian kernel, i.e., the squared variance of
the Gaussian. Finally, x is the location where the density is
calculated at.
Of all the parameters mentioned above, only the bandwidth

(t) is unknown. Many implementations use empirical
estimators to calculate this bandwidth. This works well for
cases, where enough data points are available. We use a plug-in
bandwidth selection to calculate the optimal bandwidth, as
introduced by Botev et al.,12 which allows better performance

even with fewer data points. In order to guarantee a rapid
calculation of the KDE, we use a fast Fourier transform
approach. However, for this approach binned data has to be
used. Therefore, the initial data is binned first. The number of
bins for this part will be referred to as resolution. Then the
bandwidth is calculated using the plug-in bandwidth approach
mentioned above, again details can be found in the SI, sections
2 and 3. Finally, we calculate the PDF, using the KDE. This
PDF can then be used to calculate the entropy via any
numerical integration scheme.
We want to mention here that we are only considering 1D

data, also for the entropy calculation of dihedrals. This is a
non-negligible approximation, when calculating the total
entropy of the system, as the dihedrals in proteins are usually
correlated. However, as shown by Polyansky et al.,19 the 1D
entropy, i.e., not considering cross terms for the entropy,
correlates decently well with higher orders, i.e., R2 = 0.75 for
the pure entropy, this improves substantially when calculating
entropy differences R2 = 0.93.
We use a combination of Python, Cython,20 and C++ to

maximize the usability and the speed of X-Entropy. C++ is
used in the backend, to guarantee fast and efficient
calculations. For the calculation of the fast Fourier trans-
formation, the FFTW library is used.21 Due to the widespread
use of Python in many analysis pipelines, it is the natural
choice for the frontend. Cython is used to connect the backend
to the frontend. It is worth noting that some initial analysis is
already performed on the Python side.
The Python package was developed with an eye on usability

and versatility. Despite our focus on dihedral entropy and
working with dihedral data, the package was kept as
generalized as possible, so that any data can be analyzed
with the package. Therefore, we allow access to the KDE itself,
as well as to our dihedral entropy calculation class. When
working with dihedral data, the user can then use this class to
analyze the dihedrals that were gathered through third-party
software (e.g., cpptraj from AmberTools22); compare Schemes
1 and 2.

The interface was designed in a way that entropies of flexible
molecules may be calculated in the same scheme as other data
distributions. We provide illustrating examples including code
and visualization in the version controlled online repository on
GitHub: https://github.com/liedllab/X-Entropy.
We implemented a selection of rules of thumb for the

estimation of the optimal resolution presented in the SI,
section 6.1. The resolution can therefore either be chosen by
the user, or calculated with one of the different rules of thumb.
We apply a specialized resolution selection for dihedral data, as

Scheme 1. Example Code to Obtain the PDF of a Chosen
Observable Stored in the Data Variable

Scheme 2. Example Code to Obtain the Entropy of a Set of
Dihedrals Stored in the Data Variable
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there is more information available for dihedral data, i.e.,
dihedrals can only have a value between −180° and 180°.
Additionally, dihedrals are periodic in higher and lower ranges.
Therefore, we use another method, as described in the SI,
section 6.2.
Furthermore, the package allows the user to reweigh data

from accelerated MD simulations. We use a straightforward
reweighing approach as introduced by Miao et al.23

■ APPLICATION AND ILLUSTRATING EXAMPLES

To demonstrate the versatility of our module, we evaluate its
accuracy and performance. Therefore, we quantify the
deviation of the calculated entropy of samples from a Gaussian
distribution with the analytical result. Furthermore, we show a
benchmark of the performance of X-Entropy against other
established python modules. We show that the computational
performance of X-Entropy is superior to other implementa-
tions, especially since we use a plug-in selection approach for
automatized bandwidth optimization. Finally, we show
exemplary data on how to obtain the conformational entropy
of biomolecules from molecular dynamics simulations (MD).
Analytical Solution for Entropy of Gaussian Distribu-

tion. Accuracy of Entropy Estimations. As described in the
SI, section 5, to analyze the accuracy of the entropy estimation,
we compared the estimated entropy from a data set of random
numbers with the analytical entropy of the underlying
Gaussian distribution. We find that our estimator is able to
accurately predict the entropy of the underlying system. For
the different data sets, we report a relative error of around 5%,
when using a very small sample size (N < 103). Once we reach
higher sample sizes, we can lower this error to under 1%.
Therefore, the accuracy of the prediction is satisfactory,
especially for sufficiently large data sets (N ≈ 103). Given the
asymptotic behavior of the relative errors, which can be seen in
Figure S1 in the SI, one can argue that the limiting factor is the
size of the data set. In addition, differences from the true value
occur, when decreasing the resolution. In summary, there are
two factors steering the accuracy of the entropy calculation: on

the one hand, the number of observations, i.e., the sample size,
and, on the other hand, the resolution, with which the initial
binning is performed. Therefore, we suggest using a high
resolution when enough data are available but a lower
resolution for smaller sample sizes. Thereby, performance
may be optimized. Thus, we implemented a procedure to
automate the selection of the resolution. This is explained and
discussed in the SI, section 6.

Performance. To compare the performance of our X-
Entropy module with other established python packages, we
sampled random data sets as mentioned above and evaluated
the time it takes on an ordinary PC to perform a KDE of these
data. We chose to compare our module with the scipy24 and
the sklearn packages.25

Since these modules are not equally well automatized, we
decided to compare them in the following way: Since, sklearn
does not estimate the bandwidth on its own, we generally used
the estimated bandwidth from X-Entropy for the calculation.
Furthermore, we evaluated the PDF on the grid, which X-
Entropy returned for the given resolution. Therefore, in our
benchmark, sklearn’s performance actually strongly depends on
the calculations of X-Entropy, which have been done
beforehand. In the case of scipy, we tested two different
approaches: First, we used the default way of estimating the
bandwidth of the module (which is Scott’s rule26), and second,
we used the bandwidth estimated from X-Entropy for the
same data.
Generally, the maximum accuracy with which a PDF can be

obtained strongly depends on the input samples (see above).
Furthermore, depending on the quality and size of the sampled
data, a better resolution may be obtained. Therefore, we
decided to use two different modes for benchmarking: First,
we used a high resolution (2048) for all evaluated data sets
independent of their size. Second, we used the automated
estimation of the resolution, as explained in the SI, section 6.
This resulted in an increasing resolution with an increasing
number of samples in the data set. As we show in the SI, figure
S4, the resulting accuracy of the PDF is still reasonable with

Figure 1. Performance in comparison to other established Python packages. We show the mean calculation time for the KDE of random data sets
of increasing size (N) with sklearn, scipy, and X-Entropy. For scipy, we show two different results: Obtained determining the bandwidth with
Scott’s rule (“scipy scott”) and with the bandwidth, which we calculated beforehand with X-Entropy. (upper) Results with fixed resolution of r =
2048 for all data sizes. (lower) Results with automatically determined resolution. Both panels show the data plotted on a log−log scale.
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both of these approaches. However, the performance obviously
differs. In Figure 1, we compare the performance of scipy,
sklearn, and X-Entropy with the above-mentioned approaches.
Dihedral Entropy of Alanine Dipeptide. As an

illustrative example for the calculation of the dihedral entropy,
we performed both, a classical MD simulation (cMD) and an
accelerated MD simulation (aMD) of alanine dipeptide.
Classical MD simulations are generally hardware limited to
the lower microsecond time scale, while most biologically
relevant processes occur at much slower time scales.2

Numerous enhanced sampling techniques have emerged over
the last decades aiming to circumvent this limitation.27

Although these techniques vary significantly in their
fundamental assumptions, they share the common feature of
a bias energy, which is incorporated to accelerate phase space
exploration. However, since this bias substantially distorts the
free energy surface, reweighting schemes need to be applied to
retrieve the system’s unbiased thermodynamics.23 Here we use
aMD as an example enhanced sampling method to showcase
X-Entropy’s ability to reweigh biased data on the fly.
Both simulations were performed in a solvated box, at a

temperature of 300 K (simulation details can be found in the
SI, section 8), and for a total length of 2 μs. We used cpptraj22

to obtain the dihedrals of snapshots of these simulations, which
we extracted every 10 ps along the trajectory. All data from
aMD simulations were reweighed using a McLaurin series of
the 10th order.23 For convenient usage, we provide the option
for X-Entropy to calculate a reweighted KDE from the raw
data and the weights of the data points. In the SI, Figure S5, we
show the distributions of the dihedrals ϕ and ψ with KDE. To
reduce the noise caused by the nonoptimal reweighing of the
distribution, we use a lower resolution for the processing of the
aMD simulation (for visualization in this plot only). The
obtained PDF can straightforwardly be transformed to a

projection of the free energies on the respective observable.
The corresponding 2-dimensional histogram (Ramachandran
plot) of these simulations can be found in the SI, Figures S6
and S7.
Furthermore, we calculated the entropy of both dihedrals

with X-Entropy for increasing simulation times for both
simulations, Figure 2. Since, the spread of the distribution of
dihedrals is well-known we apply a modified routine to
determine the optimal resolution for KDE of dihedral
distributions. For large data sets of dihedrals, the resolution
for the KDE is 4096 per default. For a detailed discussion, see
the SI, section 8. We report that the processing of the data of
this 2 μs aMD simulation took ∼2.6 s altogether (200 000 data
points for each dihedral). We obtained dihedral entropies of Sϕ
= 5.01 J/(mol K) and Sψ = 9.54 J/(mol K), respectively. These
results are completely in line with the results of the cMD
simulation, which can be found in the SI, section 8.3.

BPTI. To illustrate the performance on very long
simulations, containing large amounts of data we analyzed a
BPTI simulation performed in the D.E. Shaw Research lab of
just over 1 ms length.28 The simulation contains 103 105
frames, with frames stored each 10 ns. As a first step, we
calculated the backbone ϕ and ψ dihedral angles from all
snapshots of the trajectory (114 in total). These were
subsequently analyzed using X-Entropy. In Figure 3, we
visualize the flexibility of BPTI captured in the full 1 ms
trajectory using dihedral entropies. Similar to previous
studies8,11 the calculated entropy for the backbone dihedrals
of each amino acid was mapped onto the crystal structure for
an intuitive representation of the protein’s dynamics. We use
this as an example for a potential analysis tool-chain starting
from simulation data, using Python for the analysis and
visualizing the results using PyMol.29

Figure 2. Entropy calculation of the aMD simulation of alanine dipeptide for the dihedrals ϕ and ψ. (upper) Resulting entropies with increasing
simulation time: blue ϕ, green ψ. We use dark colors and circles for results obtained with automatic resolution. In light colors and diamonds with
fixed resolution, r = 4096. (lower) Calculation time for X-Entropy with auto resolution with black circles and a fixed resolution, r = 4096, in light
red diamonds. The resolution calculated with the auto keyword can be found in the SI, Figure S9.
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In the SI, Figure S10, we further present a comparison of the
automated resolution selection and a very high resolution, of
4096. Additionally, we compared the entropy with the RMSD,
as another structural analysis method. For the calculation of
the entropy, we report a wall clock time of 75.6 s, for all
103 105 frames comprising the BPTI simulation on a standard
PC.

■ CONCLUSION
We have shown that our results for the entropy are accurate
and robust. In the showcase of Gaussian distributions, we have
shown that any deviations from the exact analytical result stem
from nonideal sampling or finite resolution. Furthermore, we
evaluated X-Entropy to be strikingly fast overall. In fact, it
outperforms state-of-the art modules, especially for large data
sets. Moreover, it can conveniently be used to perform a KDE
for arbitrary data without any prior knowledge. First, due to
the very straightforward API and second, due to the
implemented processing of the data: We automatically provide
reasonable estimates of the required resolution and reliably and
accurately determine the bandwidth by a plug-in selection
method. These automations are of particular convenience, if
numerous data sets or simply data sets of high variability are
being processed. Most available alternative tools do not
provide reasonable estimates for either resolution or
bandwidth of the KDE. Choosing these values appropriately
by hand can be very tedious. Therefore, we conclude that our
tool may be used to accurately, rapidly, and conveniently
obtain the PDF of any arbitrary data and calculate the entropy
from that.
The conformational entropy of biomolecules is of particular

importance for computational chemistry and biophysics. This
property may be quantified by the dihedral entropy of these
molecules. With X-Entropy, we have presented an extremely
fast and convenient tool to perform such calculations for
arbitrary molecules. Exemplarily, we calculated the classical,
coordinate-based dihedral entropy of alanine dipeptide from a
simulation of multiple microseconds. This calculation took a
few seconds on an ordinary PC and is in good agreement with
prior publications.11 Furthermore, we used our tool on an
extremely long simulation of a relatively small protein. We

report not only good performance but also very reasonable
correlation of the calculated conformational entropy with other
conformational descriptors (RMSD).
These types of calculation are achievable with X-Entropy

with as much as three lines of code. Hence, it is a particularly
useful tool for the calculation of localized, classical conforma-
tional entropies of proteins, polymers, or any other molecule.
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Figure 3. Residuewise dihedral entropy. To illustrate potential
applications of X-Entropy we show the residuewise dihedral entropies
captured in a 1 ms trajectory projected onto the molecular structure
of BPTI (PDB 5PTI).
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