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Objective: We investigated whether a neural network based on the shape of joints

can differentiate between rheumatoid arthritis (RA), psoriatic arthritis (PsA), and healthy

controls (HC), which class patients with undifferentiated arthritis (UA) are assigned to,

and whether this neural network is able to identify disease-specific regions in joints.

Methods: We trained a novel neural network on 3D articular bone shapes of hand joints

of RA and PsA patients as well as HC. Bone shapes were created from high-resolution

peripheral-computed-tomography (HR-pQCT) data of the second metacarpal bone

head. Heat maps of critical spots were generated using GradCAM. After training, we

fed shape patterns of UA into the neural network to classify them into RA, PsA, or HC.

Results: Hand bone shapes from 932 HR-pQCT scans of 617 patients were available.

The network could differentiate the classes with an area-under-receiver-operator-curve

of 82% for HC, 75% for RA, and 68% for PsA. Heat maps identified anatomical regions

such as bare area or ligament attachments prone to erosions and bony spurs. When

feeding UA data into the neural network, 86% were classified as “RA,” 11% as “PsA,”

and 3% as “HC” based on the joint shape.

Conclusion: We investigated neural networks to differentiate the shape of joints of

RA, PsA, and HC and extracted disease-specific characteristics as heat maps on 3D

joint shapes that can be utilized in clinical routine examination using ultrasound. Finally,

unspecific diseases such as UA could be grouped using the trained network based on

joint shape.
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INTRODUCTION

Arthritis is defined as inflammation of articular structures. As
such, it is heterogeneous condition comprising several different
diseases like rheumatoid arthritis (RA) and psoriatic arthritis
(PsA) (1, 2). Classification of arthritis remains highly challenging,
as specific biomarkers are often lacking. Thus, while in some cases
classification of arthritis is rather straight-forward, e.g., through
the presence of anti-citrullinated protein antibodies (ACPA) (3)
in RA or the presence of plaque psoriasis in PsA (4), many
forms of arthritis remain undefined and are therefore termed as
undifferentiated arthritis (UA) (5).

Arthritis usually imprints on the articular bone structure
and leads to distinct change in the shape of the joint (6).
This structural imprinting can be identified by conventional
radiography searching for cortical breaks (erosions) or local
excess of bone (spurs) on the periarticular cortical bone surface.
However, such approach is notoriously challenging as it is based
on the subjective interpretation of readers, positioning of the
joint and the paucity of data taken up in two-dimensional
radiographs. Hence, while architectural changes in the joints may
allow distilling patterns that are associated with different forms of
arthritis, the hardware and software instruments to detect such
differences were not well developed.

Neural network gain increasing attention in various fields
of medicine (7–9). Switching from classical machine learning
methods to neural networks is motivated by the way, in which
neural network operate (10). With appropriate preparation
of the data and the choice of a suitable model they can
identify structures in volumes that correlate with a certain
defined patterns resembling a defined condition or disease.
We have recently developed the instruments to apply neural
networks to high-resolution peripheral quantitative computed
tomography (HR-pQCT) scans on joints. HR-pQCT is currently
the gold standard in visualizing bone in vivo, combining a three-
dimensional approach with high spatial resolution. In arthritis
patients, the technology is sensitive in detecting and quantifying
surface changes that influence the shape of bone, such as
erosions and bony spurs (6). Based on such HR-pQCT datasets
from arthritis patients we have recently set up a convolutional
supervised auto-encoder (CSAE) network that could reliably
define the form of the articular bone without the need of human
intervention (11).

METHODS

The conception of this study was to train and validate neural
networks on the bone shape of metacarpophalangeal (MCP)
joints from three well-defined conditions (HC, RA, and PsA) in
a first step and then use these data to interpret the nature of
undifferentiated arthritis in a second step.

Patients and Controls
Seropositive RA, PsA, and UA patients as well as healthy
controls were exported from a large HR-pQCT database at
the Department of Internal Medicine 3 of the FAU (12, 13).
Seropositive RA patients had to fulfill the ACR/EULAR 2010

criteria for RA (3) and had to be positive for anti-citrullinated
protein antibodies (ACPA). PsA patients had to fulfill the
CASPAR 2005 criteria for PsA (4). Healthy controls had to be free
of any current or past signs of inflammatory arthritis, any severe
and uncontrolled systemic disease, and had to have negative
rheumatoid factor and negative CCP (12). Undifferentiated
arthritis patients had to (i) have joint disease of more than
6 weeks at the time of HR-pQCT scan, (ii) not fulfill the
criteria for classification of RA and PsA, and (iii) have no
diagnosis of any other joint disease such as osteoarthritis, gout,
or infectious arthritis. All patients and controls were evaluated
by a rheumatologist (AK/GS/DS) and provided written informed
consent. Approval to analyse the images was obtained from
the Ethics Committee of the Friedrich-Alexander-Universität
Erlangen-Nürnberg (approval number 324_16 B).

Imaging
Scans were performed of the dominant hand MCP-2 head using
anHR-pQCT scanner (ScancoMedical, Brütisellen, Switzerland).
The acquisition of HR-pQCT scans closely followed a previously
described procedure (14). Scanning was performed at an
isotropic voxel size of 82µm, an effective energy of 60 kVp,
a tube current of 90 µA, and an integration time of 100ms
yielding a patient dose < 8 µSv for 111 slices. Two hundred and
three hundred slices were acquired depending on the patient’s
anatomy. Scans with motion grades higher than grade three were
excluded from analysis (14).

Classification Using Deep Learning
Classification networks based on deep learning extract features
present in images or volumes by applying mathematical
operations that are referred to as layers. By the repeated
extraction of features in a sequential manner and aggregation
functions that reduce the dimensionality of the data, this results
in a prediction for a given input volume. With the availability of
large amounts of annotated volumes and suitable optimization
techniques, neural networks can be trained to successfully
classify volumes into predefined classes. Our proposed deep
learning model (Figure 1) termed Convolutional Supervised
Auto-Encoder (CSAE) model is based on previous supervised
auto-encoder models by Le et al. (15). Details regarding the
structure of the CSAE are provided on GitHub.

The loss function follows (15) and combines the
reconstruction and the classification loss. However, instead
of requiring the choice of two weights, we propose to just choose
one weight: λ ∈ R. The input image xi ∈ RN is compared
with the reconstructed image x̂i ∈ RN using the mean squared
error, while the predicted class ŷj ∈ RM is compared with the
annotation yj ∈ RM using cross entropy:

Ltotal = (1− λ)
1

N
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FIGURE 1 | Deep learning model for the classification of joint shapes. (A) Proposed deep learning model termed Convolutional Supervised Auto-Encoder (CSAE)

model consists of five stages each for the encoding and decoding branch. Stages closer to the linear classification layer have an increasing number of channels. (B) A

single encoder consists of two 3 × 3 × 3 convolution followed by a Leaky ReLU activation function and three-dimensional dropout. Maximum pooling with a factor of

two is used for down-sampling. The decoding branch is used to generate features in the bottleneck that are discriminative of the image.

Experimental Setup
In our previous work, the second metacarpal bone head was
segmented yielding a binary mask indicating the location of
this region (11). This mask is a dense prediction of the bone
region and does not preserve the internal microstructures of
the bone. Based on this bone mask, a sub-region of the scan is
extracted with the second metacarpal bone head in the center
of the region. Subsequently, the cropped scans are resized to a
uniform extent of 128 × 128 × 80 voxels. Finally, for each scan,
the intensities are normalized by the subtraction of the mean
value of the training set divided by the standard deviation of the
training set defined during the five-fold cross-validation. These
pre-processing steps yield two volumes of equal extent: The sub-
region of the HR-pQCT scan, precisely, the second metacarpal
bone head, and the corresponding bone mask indicating the
region of the bone voxel-wise. For the classification task, in
addition to the HR-pQCT sub-region inputs, we also investigated
the performance of themodel using only the bonemask extracted
by the segmentation model described in reference (11). This way
the model prediction is entirely based on the volumetric shape of

the bone. Additionally, as a third input representation, bonemask
and sub-region were combined using voxel-wise multiplication
(Supplementary Figure 1). Five-fold cross-validation was used
throughout all our experiments and the data split was performed
on a patient level to avoid the presence of patients in the
training and test dataset. To avoid a bias of the networks
toward a more frequent class in the dataset, the loss function
was weighted during training inversely proportional to number
of classes of the specific case. Interpretability remains a valid
concern whenmoving toward application of deep learning-based
approaches. To increase the interpretability of our method we
make use of the guided back propagation method (16). Using
the classification label for a specific scan, this method allows
the visualization of the voxels in the scan that contributed
most to the decision of the model. Throughout the work we
refer to those visualizations as topographical heat maps. In the
second step of our approach, we applied the trained neural
network to undifferentiated arthritis. The interpretation of those
cases is based on a threshold of the network’s certainty for
each prediction. To remove uncertain predictions, probabilities
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TABLE 1 | Patients and controls.

Healthy controls Rheumatoid arthritis Psoriatic arthritis Undifferentiated arthritis

Number of scans 173 434 261 64

Number of patients 158 225 164 64

Age (ys; mean ± SD) 45 (±15) 55 (±11) 52 (±11) 59 (±12)

Sex (N; f/m) 88/70 155/70 86/78 31/16

Disease duration (ys; mean ± SD) 0 10 (±9) 6 (±5) 4 (±5)

ACPA positivity 0 100.00% 2.75% 0.00%

RF positivity 0 72.33% 6.66% 16.56%

Treatments (Numbers, ever) csDMARDs 0 223 160 64

bDMARDs 0 141 128 48

tsDMARDs 0 39 12 8

Treatment duration (ys; mean ± SD) csDMARDs 0 3.22 (±3.00) 2.36 (±2.22) 2.57 (±2.66)

bDMARDs 0 3.79 (±3.21) 3.11 (±2.36) 3.11 (±3.04)

tsDMARDs 0 1.10 (±0.82) 0.54 (±0.39) 1.14 (±0.79)

Ys, years; csDMARDs, conventional synthetic disease modifying anti-rheumatic drugs; bDMARDs, biologic disease modifying anti-rheumatic drugs; tsDMARDs, targeted synthetic

disease modifying anti-rheumatic drugs; ACPA, Anti–citrullinated protein antibody; RF, Rheumatoid factor; n/a, no data available.

smaller than 75% are disregarded thereafter similarly to Bressem
et al. (17).

Statistical Analysis
The measure for performance of the classification network was
the area under the receiver operator curve (AUROC) ranging
from zero to one, where one would be a perfect classifier.
As our experiments contained three classes, the AUROC was
calculated in an all-versus-rest fashion for each class. The F1
score represents the balanced mean of precision and recall (i.e.,
sensitivity and specificity) and ranges from 0 to 1, where one
is the optimal value. A threshold of 50% was used for the
sensitivity and specificity analysis. Additionally, we report the
positive likelihood ratio for RA and PsA and interpret them as
described by McGee (18).

RESULTS

Patient Cohort
In total, 932 volumetric HR-pQCT scans from 617 patients and
healthy control were available after applying the exclusion criteria
(192 scans removed due to high motion artifacts). An overview
of the characteristics of the patients and the controls is shown
in Table 1. These scans were used to train and validate the neural
networks based on the segmentation bonemasks representing the
cortical bone surface of the articular bone (Figure 2A).

Neural Network-Based Disease
Characteristic Heat Maps on 3D Joint
Shapes
Hotspots, regions that typically yielded in the greatest attention of
the neural network (Figure 1), were those with high curvatures
in the bone mask independent of the associated diagnosis
(Figure 2B). Heat maps of regions that were critical for
classifying diseases were those related to erosions in the bare area
and osteo-proliferative changes in the ligament/capsule insertion
sites (Figure 1B).

Neural Networks Differentiating the
Structure of RA, PsA, and Healthy Controls
We first applied the CSAE model based on the segmentation
bone mask to differentiate HC, RA, and PsA (Table 2). Area
under the receiver operator curve (AUROC) were 82% for
HC, 75% for RA and 68% for PsA for discriminating between
HC, RA, and PsA. A precision of 59% and recall of 58%
were achieved. When using the HR-pQCT sub-region as an
input to differentiate HC, RA, and PsA we received AUROC of
76% for HC, 75% for RA and 71% for PsA. This corresponds
to a precision of 56% and a recall of 56%. Combined input
of bone mask and HR-pQCT sub-region reached an AUROC
of 78% for HC, 74% for RA, and 67% for PsA with a
recall of 53% and a precision of 55%. The highest F1 score
(19), resembling the highest balanced mean of precision and
recall, was achieved by the HR-pQCT sub-region input with
58% followed by the segmentation bone mask with 57%, and
the combined representation with 55%. The corresponding
confusion matrices are shown in Supplementary Figure 2 for all
different inputs.

Positive likelihood ratios for the detection of RA were 2.5
(±0.25) and 1.6 (±0.26) for PsA. Thus, a positive test result would
lead to an increase of the probability of RA of about 17.4%, and
about 8.9% for PsA.

Classification of Undifferentiated Arthritis
We then applied the CSAE network to HR-pQCT data
from patients with undifferentiated arthritis to classify them
as RA or PsA (Figure 2C). The vast majority of the 64
undifferentiated arthritis patients (73%) were classified as
“RA” (N = 47). The remaining patients were classified as
“healthy” (9%, N = 6), while 17% (N = 11) were classified
as “PsA” by the CSAE network. All patients classified as
“PsA” by the neural network were receiving treatment with
NSAIDs and most of them (86%) were under treatment with
TNF inhibitors.
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FIGURE 2 | Training and validation of the neural network, visualization of the regions influencing the networks decisions and application of network to undetermined

arthritis cases. (A) Training and validation of the neural network using the three-dimesional articular bone shape (assessed by high-resolution peripheral computed

tomography) of defined conditions such as rheumatoid arthritis (RA), psoriatic arthritis (PsA), and healthy controls (HC). (B) Left: Location of the measurement region

(red) of high-resolution peripheral computed tomography (CT) scans as data source; center: Three different segmentation bone masks with the respective heat maps

from healthy controls as well as RA patients and PsA patients; each patient segmentation mask is shown in the palmar view (top row) and in the dorsal view (bottom

row); right: Preparation of anatomical specimen to correlate to heat maps detected by the neural network with anatomical regions. (C) Application of the neural

network using undifferentiated arthritis patients to classify them into either RA, PsA, and HC according to the neural network defined in (A). (D) Ultrasound image,

dorsal scan of a healthy metacarpophalangeal joint. Here, we illustrate the transfer of our findings to arthrosonography. The outline of the capsule is marked yellow.

The articular entheseal regions are marked in red. Based on the findings of the neural network, alterations of these articular entheseal regions (red) are specific for PsA

and should be paid attention in clinical routine, especially in patients who are suspected for PsA. Patients provided written consent to the depiction of their images.

DISCUSSION

In this work, we developed a new model for classifying arthritis
based on the shape of articular bone. We were able to train and
validate the CSAE neural network to identify structural patterns
in the hand joints in defined conditions such as RA, PsA, and
HC. This was based on the detection of disease specific features
visualized as heat maps by the NN. Followingly, the network

revealed promising likelihood ratios to differentiate the shape
patterns of bone between RA patients, PsA patients, and HC.
Interestingly, the dense bone mask input for the neural network
was superior to the subregion HR-pQCT scan input for the
classification task, suggesting that the outer contour of the bone
was sufficient for the network. Furthermore, we were able to
apply this network to UA allowing classifying this heterogeneous
group of patients. While most patients with UA clustered into
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TABLE 2 | Classification results of the CSAE neural network for different input representations visualized in Supplementary Figure 1.

Input representation AUROC F1 Score Precision Recall

HC RA PsA

HR-pQCT Sub-region (#1) 76.24% (±3.44) 75.18% (±4.97) 71.34% (±4.31) 58.86% (±2.21) 56.98% (±0.21%) 56.76% (±1.92)

Segmentation Bone mask (#2) 82.38% (±4.44) 75.39% (±3.41) 68.29% (±5.05) 57.86% (±4.02) 59.20% (±1.40) 58.60% (±2.20)

HR-pQCT Sub-region and Bone mask (#3) 78.69% (±6.28) 74.89% (±2.55) 67.76% (±3.76) 55.53% (±4.40) 55.80% (±2.10) 53.21% (±0.81)

CSAE, convolutional supervised auto-encoder; HR-pQCT, high-resolution peripheral quantitative computed tomography; AUROC, area under the receiver operator curve; F1 score

represents the balanced mean of precision and recall (i.e., sensitivity and specificity); RA, Rheumatoid arthritis; PsA, Psoriatic arthritis; HC, Healthy control.

seropositive RA, a smaller fraction was classified as either PsA
or HC.

Neural network-based approaches in arthritis are in its
infancy. Some recent efforts used electronic health records
to train neural network in predicting clinical disease activity
or differentiating RA from non-RA (20, 21). With respect to
imaging, machine learning was applied to MRI scans of the
hips of patients with and without osteoarthritis. The authors
could show a dependency between the radiographic score of
osteoarthritis and the shape of the femoral bone (22). Neural
networks have also been used for the detection of radiographic
sacroiliitis achieving high agreement with reference judgement
(17). More traditional machine learning approaches have also
been applied to hand radiographs to differentiate between RA
and other conditions as well as to correlate ultrasound images
with RA disease activity (23–25).

In our work, we analyzed a large set of well-annotated data,
which allowed us to validate the model thoroughly. Furthermore,
we refined neural networks as compared to the earlier works
using multiple convolutional layers (15). In addition, we were
able to project and thereby confirm the relevant regions, which
were visualized by the heat maps. Hence, the inherent black
box characteristic of neural networks could be minimized by
the visualization of regions influencing the networks prediction
that were on par with previous studies. The approach to train
networks with precise datasets from well-defined diseases, such
as RA and PsA, as well as the integration of HC in such
networks provides the opportunity to test less understood and
potentially heterogeneous conditions, such as in our case UA.
Hence, such an approach may facilitate the classification of
arthritis in the future. Besides classification of arthritides, neural
networks automatically analyzing the shape of the bone, could
also be used for predicting the course of the disease either at time
of diagnosis or at start of treatment. In addition, neural networks
could be applied to analyse data from patients at very early phases
of disease, such as people at-risk for developing RA or those
with psoriasis at risk to develop PsA to define patterns that also
found in clinical disease and thus render patients at higher risk
to progress to clinical disease (26, 27). In a follow-up study, this
hypothesis could be analyzed with a dedicated cohort of patients
in the early phase of the disease.

One limitation of this work is the fact that the network is so
far only trained on RA, PsA, and healthy controls. Therefore,
the network currently only allows clustering into these three

categories, meaning that the network is trained for finding the
best match of an unknown condition to either one of these three
conditions. Other disease categories may not share these patterns
and may require additional training of the network. The focus on
hand joints may be considered as another limitation, however,
RA, PsA and also undifferentiated arthritis most often affect
the hand and therefore this approach is pragmatic, though not
inclusive. Oligo- and polyarthritis information and LEI would
be helpful to further characterize the patient cohort but was
unfortunately not available.

On clinical relevance: Naturally, HR-pQCT is not widely
available in clinical routine, which marks a major limitation
of our technique. However, we have discovered disease-
specific characteristics via visualization of the attention of
our neural network as heat maps. For example, in PsA, the
corresponding hotspots are located in the area of the articular
entheses which have been described as articular-entheseal organs
previously (28, 29). Thus, we emphasize to pay attention
to these apparently very specific bone alterations especially
in this region using other imaging modalities, which are
broadly available such as ultrasound. Interestingly, these articular
entheseal regions have not yet been in the focus especially
in the workup of PsA. Therefore, where psoriatic arthritis
should be ruled out, we recommend examining this region
by ultrasound. Since sonography has a very high resolution,
especially at the bone surface, we assume that the changes
are also comparably visible as shown in our concept in
Figure 2D. We seek to validate our finding in a follow-up
ultrasound study.

Briefly, the combination of HR-pQCT and neural
networks allowed us to derive important disease-specific
characteristics that can be examined using sonography in
clinical practice.

In summary, these data indicate that neural networks trained
on the shape of joints can discriminate between the two main
forms of inflammatory arthritis, RA and PsA, as well as healthy
controls. Furthermore, if such networks are fed with the data
from less well-defined conditions, such as UA, they allow
assigning and clustering such conditions, which in the future
and with ongoing refinement of networks could improve disease
classification, i.e., in the absence of classical biomarkers.

The new findings discovered here should be specifically
investigated using established and widely available imaging
methods such as ultrasound.
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