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Characterizing the semantic and
form-based similarity spaces of
the mental lexicon by means of
the multi-arrangement method
Lukas Ansteeg*, Frank Leoné and Ton Dijkstra

Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen,
Netherlands

Collecting human similarity judgments is instrumental to measuring and

modeling neurocognitive representations (e.g., through representational

similarity analysis) and has been made more efficient by the multi-

arrangement task. While this task has been tested for collecting semantic

similarity judgments, it is unclear whether it also lends itself to phonological

and orthographic similarity judgments of words. We have extended the task to

include these lexical modalities and compared the results between modalities

and against computational models. We find that similarity judgments can be

collected for all three modalities, although word forms were considered more

difficult to sort and resulted in less consistent inter- and intra-rater agreement

than semantics. For all three modalities we can construct stable group-level

representational similarity matrices. However, these do not capture significant

idiosyncratic similarity information unique to each participant. We discuss

the potential underlying causes for differences between modalities and their

effect on the application of the multi-arrangement task.

KEYWORDS

similarity, representational similarity analysis, multi-arrangement, multimodal,
semantics, phonology, orthography, mental lexicon

Introduction

When language users process or learn a target word, other lexical representations
that are similar are temporarily activated in the mental lexicon, competing with
the target for recognition (Morton, 1969; Marslen-Wilson and Welsh, 1978; Davis,
2010). For instance, a Dutch auditory input like/kapi/leads to the coactivation
of the phonological and semantic representations of both/kapitein/(“captain”)
and/kapitaal/(“capital”) (Zwitserlood, 1989). As a consequence, the similarity structure
of the mental lexicon in terms of form and meaning plays an important role
in understanding language usage and word learning. Such lexical similarity is
multidimensional, as it can be assessed with respect to phonological, orthographic, and
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semantic dimensions (e.g., Seidenberg and McClelland, 1989).
This raises the question whether similarity is similarly processed
in each modality and can be measured in the same way for each.

In this study, we investigate the role of similarity in
each of the three modalities of vocabulary, examining aspects
that overlap or are disjoint between modalities. Can all or
any modalities be considered as similar, well-defined metric
spaces, or are they, in fact, structurally different? For our
analysis, we adapt the multi-arrangement method (Kriegeskorte
and Mur, 2012) and apply it as a multimodal approach for
collecting human similarity judgments. This will allow us to
consider the usefulness of this method for vocabulary similarity
characterization.

To set the stage for our research, we first consider how earlier
studies have conceived of similarity spaces in general and those
of lexical form and meaning more specifically. Next, we describe
the multi-arrangement method and evaluate its application to
different modalities. We analyze both the shape of distributions
of similarity judgments within modalities and the relationship
between modalities.

To understand how representations of words and concepts
are acquired, the theoretical notion of psychological space has
been coined. In one of its first formal descriptions, Shepard
(1987) proposed that stimuli are represented in a metric space
as points or regions, while the spatial dimensions represent
perceptual features. Perceptual input stimuli are generalized to
the region or the closest concept (i.e., the coordinates of their
perceptual features in psychological space). Confusion may arise
in overlapping regions or when multiple concepts are positioned
close together in space. When perceiving a furry animal with
four legs in a residential neighborhood, it is easy to confuse a
fox for a cat until a feature is recognized that places the animal
in a region of this space uniquely assigned to the concept “fox.”
“Closeness” in such spaces appears to follow an exponential
function: Items that are very close in this space are perceived as
similar, while slightly less close items are already perceived to be
dissimilar. Although foxes and raspberries share some features
(both are alive, red, and usually found in forests) a human rater
will likely classify them as entirely dissimilar.

Analyzing the shape and structure of psychological spaces
is difficult, because in experiments we can at best interact
with them in indirect ways. The report of a participant on the
perceived similarity of two items is subject to task strategies,
context aspects, and noise. Additionally, reported similarity may
differ across participants, because it concerns both a “common
space” and unique individual tendencies (Carroll and Chang,
1970). Thus, although an underlying metric psychological
space can be modeled, human-reported similarities might,
according to Shepard, reflect a warped perception of those
representational distances. Different methods to assess this
space, such as pairwise human judgments, priming effects,
or neuroimaging measures may be subject to different biases
toward the psychological space. This may produce different

results when two different tasks are designed to assess the same
underlying space characteristics.

Similarity plays an important role not only with respect
to representational aspects of language, but also its processing.
It has long been known that competitor sets of similar words
are initially activated when people are learning and using a
particular target word (Andrews, 1989; Grainger, 1990). Put
differently, exposure to a word results in the co-activation of
similar and related words. These competitor sets are called
neighborhoods in the visual modality (Grainger, 1990) and
cohorts in the auditory modality (Marslen-Wilson, 1987), but
the similarity set may also be semantic in nature (Hantsch
et al., 2005; Zhuang et al., 2011). Coactivation and subsequent
competition of items can result in facilitatory or inhibitory
effects in tasks like translation production, (primed) lexical
decision, and word naming (Dijkstra et al., 2010). Effects are
found across both meaning and form modalities. For instance,
semantically similar words can exert facilitatory effects even
in tasks where meaning is not critical to task performance
(Rommers et al., 2013). Items that are similar in form interact
both in visual (Schwartz et al., 2007) and auditory (Marian and
Spivey, 2003) tasks based on their written and spoken forms.

These effects are not only relevant for the understanding
of underlying mental processes, but have direct practical
implications for vocabulary acquisition. The ease of learning a
new word is strongly affected by its similarity to known words
both in a learner’s native language (L1) and other languages (L2,
L3, and so on) (Schepens et al., 2016). Contrasting similar words
may help learners to distinguish and internalize them (Baxter
et al., 2021), while confusing them results in errors.

In sum, understanding similarity is important for assessing
processing and learning. Being able to model similarity in
detail is crucial for computational models designed for language
learning applications. For example, the Multilink model for
printed word retrieval by monolinguals and bilinguals (Dijkstra
et al., 2019), based on the earlier BIA + (Dijkstra and van
Heuven, 2002) and IA models (McClelland and Rumelhart,
1981), implements words as network nodes that are activated
on the basis of similarity to the input item. Because activated
items compete for selection in recognition, the implementation
of a similarity metric, in this model Levenshtein distance,
is crucial to the model’s predictions about word retrieval.
A computational metric of similarity is also important for
learning methods such as contrasting in intelligent tutoring
systems (Baxter et al., 2021).

Semantic similarity measures have been widely gathered
(e.g., Hill et al., 2015) and are often modeled by using one
of two foundations: semantic feature dimensions, or word
co-occurrence. Semantic features define concepts in terms of
constellations of important characteristics (Collins and Quillian,
1969). The features that are deemed relevant are often hand-
picked and labeled by researchers. Multidimensional similarity
spaces based on word co-occurrence are generated through
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natural language processing algorithms such as Latent Semantic
Analysis (Deerwester et al., 1990) or Word2Vec (Mikolov
et al., 2013). These approaches are able to capture semantic
dimensions that are not predefined and can also avoid manual
labeling of all items for each feature. They also capture feature-
based models seem to outperform co-occurrence-based models
in relation to word processing behavior in human participants
(Crutch et al., 2013). However, a semantic space structured by
predefined features seems to work less well for abstract concepts;
it might be restricted to concrete words that can be related to
motor-sensory experience (Wang et al., 2018).

Relatively little research has been done on human similarity
judgments of written and spoken words, although some pairwise
judgments have been collected. Examples are the work by
Tokowicz et al. (2002) and Dijkstra et al. (2010) for translation
equivalents. The first study reports a very high agreement
between orthographic and phonological similarity ratings for
English (0.96). Tokowicz et al. even collapse the two rating
types into a general form similarity index. In these studies, a
strong divide between item pairs judged as similar vs. dissimilar
has been found between cognate (translation equivalents with
form overlap) and non-cognate item pairs (with the latter
accounting for the majority of items). This is in line with
Shepard’s observations about exponentially decaying perceived
similarity and has also been reported in studies with more
fine-grained levels of dissimilarity in their stimulus selection.

Whereas semantic similarity is often assessed on the basis
of meaning features or co-occurrence statistics, the similarity
of orthographic and phonological word forms is more often
derived algorithmically in terms of overlap in graphemes
and phonemes (abstract representations of letters and speech
sounds, respectively). A common measure for dissimilarity
between written words is the “normalized Levenshtein distance”
(Levenshtein, 1966) that measures the number of additions,
deletions, and/or substitutions to derive one string from
another, divided by the string length (e.g., Dijkstra et al.,
2019). This measure can also be applied to lexical-phonological
representations (Gooskens et al., 2008). The characteristics of
orthographic similarity differ across scripts, where alphabet-
based languages can use letters (or graphemes) as units of
comparison, while scripts such as Japanese kanji might be better
modeled by counting radicals (e.g., Yencken and Baldwin, 2006).

The performance of models is usually assessed in
comparison to human similarity judgments. Judgments
for model evaluation can be collected with this goal in mind
or taken from datasets such as SimLex-999 (Hill et al., 2015).
Although human judgments are considered as a “golden
standard” for evaluation, some models now outperform
humans in terms of inter-rater reliability when it comes to
similarity assessment (Richie et al., 2019). This outcome is in
part due to imperfect task performance by human participants,
as well as different ways to interpret similarity as hierarchical,
categorical, related, or alike. Less than perfect inter-rater

agreement might also point to personal differences in internal
representations. What seems similar to one person might seem
different to another based on personal experience, no matter
how good the test. To illustrate, most European participants are
unlikely to group jellyfish with food items, whereas some Asian
participants might readily associate them.

In most studies mentioned above, human similarity
judgments were collected by asking participants to rate the
similarity of word pairs on a Likert scale. While this is the
most straightforward procedure, it is time consuming, and the
resulting datasets often consist of relatively few pairs sampled
from a limited number of participants. More time efficient
methods include categorizing items or sorting them on a 2D
surface (Richie et al., 2020). The latter method allows judging
similarities of multiple pairs at once, albeit at a loss of accuracy
for each given pair.

To reduce the loss of specificity, Kriegeskorte and Mur
(2012) introduced a multi-arrangement task that efficiently
collects similarity judgments from participants, and the inverse
multidimensional scaling (IMDS) algorithm that combines
these trials into a single representational dissimilarity matrix
(RDM). This method has been demonstrated to collect
judgments more efficiently than pairwise or free sorting tasks,
and, crucially, to be able to account for high-dimensional
similarity spaces. This is because different trials may reveal
different item relationships due to the specific context of
the trial set. For instance, in the context of various winged
or aquatic animals, chickens and salmon might be judged
to be very dissimilar, whereas a set with many edible items
might result in a closer proximity of salmon to chicken than
to sea creatures the participant does not consider edible.
Even though participants arrange each stimulus set on only
two dimensions, the combination of multiple subsets allows
for extrapolation to multiple dimensions through the inverse
dimensional scaling method. By contrast, multiple trials of
pairwise judgments would result in multiple measures of the
same one-dimensional similarity.

The efficiency of the multi-arrangement task in terms of
pairs judged per participant in a given time also allows the
creation of individualized models, which have been used, for
example, to predict neuroimaging results (Charest et al., 2014).
Slower methods such as pairwise judgments would take a long
time to generate a complete RDM for an individual participant.
The multi-arrangement task can therefore also be considered
useful in investigating the degree to which there might be a
shared common space of similarity that participants universally
agree upon, and to which degree individual ratings are based on
idiosyncratic representations (Charest and Kriegeskorte, 2015).

The multi-arrangement task has been successfully applied to
the study of general semantic similarity effects (Charest et al.,
2014; Fang et al., 2018; Majewska et al., 2020). It has not
been tested on the orthographic and phonological modalities
of vocabulary, which might rely on different underlying
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psychological spaces. As the multi-arrangement task would be
a useful tool to compare similarity data across the modalities of
vocabulary, we examine whether it can be applied to word form
similarity as well as it can to semantic information.

In this study, we will apply the multi-arrangement task to
compare similarity spaces across the modalities of semantics,
phonology, and orthography. By collecting similarity judgments
for all three modalities on one and the same set of words, we
intend to chart structural differences between the organization
of their psychological spaces. This may then pave the
way for finding more appropriate metrics to simulate and
measure these spaces.

We will evaluate the application of the multi-arrangement
task across the three dimensions to establish whether the task
can be extended to word form similarities. We will confirm
our operationalization of the three modalities by comparing
the resulting data to existing models: Word2Vec for semantic
similarity, and Levenshtein distance of letters and phonemes for
orthography and phonology, respectively.

We have three hypotheses. First, we expect the multi-
arrangement method to allow for consistent measurement
of all three modality-specific similarity spaces, within and
over participants. Second, we expect the two form-oriented
conditions to be more distinct from semantics than from each
other, because Dutch, as used here, has a relatively shallow
script in which orthographic and phonological forms of words
are inherently strongly correlated (Dijkstra et al., 2010). Third,
we expect more consistent measures of group-level similarity
than between subjects, as similarity measures are expected to be
highly idiosyncratic for all modalities.

Materials and methods

Participants

Seventy-three participants completed three online sorting
sessions. All participants were native speakers of Dutch
recruited through the Radboud University SONA participant
system and compensated with study credits or 30 euros for
participation. Participants gave informed consent in accordance
with guidelines of the Radboud University Social Sciences Ethics
Committee (ECSW-2018-115).

The data of 18 participants were excluded from
further analysis for the following reasons. Ten participants
misunderstood instructions or sorted on the wrong modality
in at least one session (not uncommon in online experimental
context), as confirmed by visual inspection of their trials and
their self-described task strategies in the post-survey. Eight
participants provided fewer than six trials for at least one of the
sessions, thus providing too little data to construct a reliable
IMDS estimate. Therefore, in total 55 native Dutch speakers (44
female, mean age: 22.6 years) were included in the analysis.

Stimulus materials

Participants took part in the online experiments on laptops
or PCs with a screen of at least 13” diagonally, using trackpad
or mouse to interact with the experiment. In all three sessions,
they sorted items that each corresponded to one word. The items
showed a line drawing and written word, and played the spoken
word when clicked or dragged (Figure 1). The stimulus always
consisted of all three modalities (image, written word, and
spoken word) regardless of the target modality of the session, as
participants were unable to sort purely auditory stimuli during
the pilot. To avoid disparity between modalities by adding a
visual clue to the auditory condition but no auditory clue to
the visual conditions, we instead kept the stimuli invariant and
only distinguished modality via task instructions. As stimuli,
70 Dutch nouns, including their picture, were selected from
the international picture naming project (Székely et al., 2003).
Auditory versions of the stimulus names were recorded by a
female Dutch native speaker.

Stimulus selection

The nouns were selected on the basis of imageability and
lack of polysemy in Dutch, and provided a varied spectrum
of semantic, orthographic, and phonological sets. The set as
a whole was selected to maximize differences in similarity

FIGURE 1

Four example stimuli, showing both the drawn image and typed
word (semantics and orthography, respectively). Auditory
versions of the spoken word are played when the stimulus is
clicked or dragged, to activate phonology. The thickness of the
arrows indicates semantic, orthographic, and phonological
similarity between items (thicker arrows refer to more similar
items).
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across modalities, i.e., it included semantically similar but
orthographically dissimilar words (and vice versa), semantically
similar but phonologically dissimilar words (and vice versa),
and, as far as possible in Dutch, orthographically similar but
phonologically dissimilar words (and vice versa). For example,
in Figure 1, trompet and trommel are similar in meaning and
form, trompet and viool are similar in meaning but not form,
trommel and schommel are similar in form but not meaning,
and viool and schommel are dissimilar in both meaning and
form. Although orthography and phonology are closely linked
in the shallow Dutch script, trompet and trommel are somewhat
closer than trOmpEt and trOm@l, whereas trOm@l and sxOm@l
are closer than trommel and schommel in terms of Levenshtein
distance. This selection was guided by the computational models
described in section “Computational models.”

To confirm the representative nature of the word selection,
we checked the overall distribution of similarities between item
pairs according to models (see model section below). This
turns out to be comparable to that of the overall lexicon,
while the selection includes slightly more similar pairs than
a random sample would (see Figure 2). More information
on word selection and stimulus creation can be found in
Supplementary Materials.

Procedure

Participants took part in three online sessions in randomized
and counterbalanced order, one for each of the three modalities:
semantics, phonology, and orthography. In each session
participants completed as many trials as possible in 50 min.
Each session began and ended with a short questionnaire. In this
paper, “session,” “condition,” and “modality” are used depending
on context, but can be treated as interchangeable.

Participants performed an online implementation of the
multi-arrangement task (Kriegeskorte and Mur, 2012). In this
task, for each trial (arrangement), a varying number of stimuli
is sorted within a circle in terms of item similarity, as shown
in Figure 3. The first trial asks participants to sort the entire
stimulus set. Based on how much evidence has been collected
for each pair of stimuli, the program selects the subset that is
most likely to provide the most additional evidence for each
subsequent trial. For a detailed breakdown of the method,
see Kriegeskorte and Mur (2012).

After the initial trial, the method “zooms in” on increasingly
smaller sets to collect more information about subsets of the
stimuli. The algorithm considers evidence collected for each pair
of stimuli to be a function of distance on screen: Items that are
close together are considered noisy, whereas large distances are
considered as more evidence from a single trial. Although this
algorithm possesses no prior information about the nature of
the stimuli, a trial subset often roughly represents a category
of items, such as all animals or all words ending in “er.” This

is a consequence from the participant sorting these items in a
cluster on an earlier trial: The algorithm picks up on this cluster
and now tries to collect more information about the relative
similarities of its constituent items.

The multi-arrangement task differs between the three
sessions only in its instructions. The stimuli are always the
same combination of image, written word, and spoken word.
Participants are instructed to focus on only one modality in
each session and to sort based only on that modality. We
chose not to present single-modality stimuli for each condition,
because participants were unable to effectively sort auditory
stimuli without visual clues for each item in pilot trials.
We hence presented the stimuli consistently multi-modally
throughout all conditions of the experiment. After each session,
the participants were asked to rate how hard they found the task
on a 5-point scale, with 5 being most difficult.

Preprocessing of the representational
dissimilarity matrices

For each participant and modality, we calculated a
Representational Dissimilarity Matrix (RDM) by combining the
data from all trials using the IMDS algorithm. For a detailed
description of this process, see Kriegeskorte and Mur (2012)
or the code repository (see data availability statement). At the
end of this process, we obtained a number of stimuli ∗ number
of stimuli (70∗70) RDM, where each value between 0 and 1
corresponds to the dissimilarity between the column item and
row item. The matrix is mirrored over its diagonal and the
diagonal values are 0, as each item has no distance to itself.

We also calculated a group average for each modality (see
Figure 4 in results), taking the mean dissimilarity for each word
pair. In analyses where individual participants were compared
to the group average, the data of the participant in question were
excluded from the average.

Computational models

To validate whether we successfully operationalize the
modalities, we compared our results to existing models. We
used precomputed distances for English translation equivalents
from a Word2Vec model of the Google News dataset
(Google News Corpus, 2013) as comparison for semantic
dissimilarity. For phonology and orthography, we compared
measured dissimilarities to normalized Levenshtein distance on
phonemes and letters, with phonemes of the PhonCLX format
collected from the CELEX database (Max Planck Institute for
Psycholinguistics, 2001). The model dissimilarities can also be
found on the code repository.

Although we use these models to evaluate the data collected
in this study, they do not represent the “ground truth.” We
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FIGURE 2

Comparison of the distributions of distances in our sample of items within the larger corpus to our stimulus selection, showing high
congruence. The corpus distributions were calculated using 78.120 pairs (between 280 unique words) from our sources for semantic,
phonological and orthographic model representations (see under “Computational models”). The y axis scale differs between modality as the
integral of a probability density function equals 1, and the “peaks” in the form modalities are narrower due to a discrete amount of possible
Levenshtein values for the word lengths in our set. The shape of the distribution is more informative than the absolute y values. The word
selection favors slightly more close pairs than the corpus as seen by the larger area under the left part of each modality’s selection curve.

FIGURE 3

The experimental setup: Participants are presented with a set of stimuli around a circle as seen on the left and then sort these items by similarity
to create an arrangement as seen on the right.

primarily use the models to test our operationalization, that is,
to confirm that participants indeed sort on the modality we want
them to. Particularly in the case of semantics, there is ongoing
debate on how co-occurrence based models relate to human
cognition (Günther et al., 2019). For a more robust test of our
data, we also compared them against alternative models; the
results of these comparisons can be found in the Supplementary
Materials. This includes a Word2Vec model trained on Dutch
corpus, semantic feature norms, image classification, bigram
models, and spatial coding models, all of which were run as
post hoc analyses.

Results

To assess the application of the multi-arrangement, using
the IMDS algorithm, task to semantic, orthographic, and

phonological item similarity, we will now characterize the
collected data patterns, subject them to analyses evaluating
the consistency of similarity spaces, and, finally, compare the
obtained similarity structures for different modalities.

Task performance within and across
modalities

Because participant performance was limited by time, rather
than by a fixed number of trials, we first determine the
number of trials that participants completed across modalities.
Participants created on average 20.8 [SD = 8.6] trials in
the semantic condition, 16.5 [SD = 8.4] in the phonological
condition, and 14.7 [SD = 7.7] in the orthographic condition.
The higher number of completed trials in the semantic
condition is reflected in the reported difficulty of the task after
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FIGURE 4

The group-level RDMs for each modality. Color indicates the degree of similarity (more saturated means more similar). The rows and columns
have the same order and are sorted by hierarchical clustering, causing similar items to be adjacent, revealing the similarity clusters (saturated
squares in the figure).

each session: 2.84 [SD = 0.93] for semantics, 3.40 [SD = 0.98]
for phonology, and 3.64 [SD = 0.92] for orthography. The
semantic task was rated as significantly easier by participants
than sorting on phonology [t(55) = -3.06, p = 0.0028] and
orthography [t(55) = -4.49, p < 0.0001], with no significant
difference between orthography and phonology.

Participants employed different strategies while completing
the task, as indicated by self-reported task strategies and
confirmed by visual inspection of individual arrangements. One
example strategy is initially grouping items into categories and

stacking items within a category on top of each other. However,
a cluster analysis of individual participants found no clusters
within which inter-participant agreement was significantly
better than over the whole group, suggesting that task strategies
did not strongly affect the resulting RDMs.

Visual inspection of the group-level RDMs (Figure 4)
per modality shows that clusters (squares along the diagonal)
emerged from participants’ trials. In the semantic RDM, fruits
form a strong cluster with other edible items nearby, and all
animals are part of a large cluster that contains sub-clusters for
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FIGURE 5

Four measures for comparison of the modalities: correlation
between participants, within participants, between participants
and group level, and split-half reliability of the group-level
RDMs.

flying and sea-based animals. For phonology and orthography,
the data are clearly less clustered. The clusters that do appear
are mainly based on word ending, and position rhyming words
closest to each other. Only a few word pairs, such as “eenhoorn”
and “eekhoorn,” and “pinda” and “panda,” displayed similarity
values comparable to semantic items within a categorical cluster.

Consistency of similarity spaces

Next, we evaluated whether the multi-arrangement task
provides consistent data for all three modalities (Figure 5),
given that our method applies the task to novel similarity
dimensions. Inter-rater agreement was measured by computing
the Pearson correlation of the RDM estimate between any
two participants, noted here with 95% confidence intervals,
all significant at p < 0.001: r = 0.235 [0.232,0.238] for
semantics, r = 0.080 [0.078,0.082] for phonology and r = 0.077
[0.075,0.079] for orthography. Similar results were obtained
when only participants were compared who created many
trials (>20) during their session. This finding suggests that the
effects represent high variability between individual similarity
measures, with semantic being most consistent, and are not
due to an insufficient number of trials. Note that we are using
Pearson correlation for this and many of the following analyses,
primarily for comparability of our results to similar studies in
the field. For any reported correlation value, we also included the
Spearman’s rho in the Supplementary Materials. Results differ
nominally, but display all the same trends as reported in this
results section.

To test whether subjects were internally consistent in their
responses, we calculated an alternative intra-rater agreement.
Note that a regular intra-rater agreement cannot be calculated,
as participants never arrange the same set of items twice, even

though the same pairs of words appear in multiple trials. Instead,
we calculated the predictability of a left-out trial based on
all other trials of the participant for every trial other than
the first trial for each participant and each modality. This is
necessarily calculated by correlating the subset of the stimuli on
each trial, which tends to consist of 15–25 of the 70 stimuli,
rather than the full 70 stimuli used in the other measures.
This calculation resulted in “intra-participant” agreement of
r = 0.530 [0.518,0.543] for semantics, r = 0.332 [0.317, 0.346]
for phonology and r = 0.309 [0.293, 0.326] for orthography.
This shows, as expected, that variability is higher between than
within subjects.

We compared the individual RDMs to group averages
to further assess to what extent a shared similarity space is
present. Each participant’s RDM estimate correlated with the
group-level average RDM: semantics (r = 0.471 [0.448,0.495]),
phonology (r = 0.258 [0.230,0.285]), and orthography (r = 0.252
[0.223,0.281]), comparable to the intra-rater reliability. In fact,
the group level estimates were fairly stable, as shown by the split-
half reliability correlation: semantics (r = 0.898 [0.895,0.901]),
phonology (r = 0.709 [0.704,0.715]), and orthography (r = 0.700
[0.693,0.706]). In short, it appears that, although the task does
not result in highly stable individual models, it gives a consistent
group estimate of similarity space, with consistently superior
performance for semantics across all measures.

Determining modality uniqueness

Stimuli were presented multimodally across conditions;
only the instructions differed, to focus the participant’s
attention on one modality. This allowed us to test whether
the multi-arrangement method can capture distinct similarity
spaces for the three modalities. To verify that we were
indeed describing three different and separate modalities, we
compared RDMs between modalities with the same split-sample
strategy used above to assess within-modality reliability. The
semantic modality was found to correlate with phonology and
orthography at r = 0.121 and r = 0.115, respectively. This
indicates some overlap between the modalities; either semantic
information was used when sorting on word form, or word
form information was used when sorting by semantics, or
both. Nevertheless, the result falls well short of the semantic
condition’s split-half reliability to itself (r = 0.896), so we can say
with certainty that the semantic modality was treated distinctly
from the word form modalities.

Between the RDMs for phonology and orthography,
however, a correlation of r = 0.675 is observed. This value
is only slightly, though significantly, below those for each
condition’s split-half reliability as noted above. This implies that
participants sorted on partially unique underlying information
in each condition. Although the relatively shallow Dutch
spelling system would have led us to expect a high correlation
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between these two spaces, the participants seem to have
made little distinction between phonological dissimilarity and
orthographic dissimilarity.

We further evaluated if the RDMs operationalize the correct
modalities by comparing them to proven computational models:
Word2Vec for semantics, and Levenshtein distance of letters
and phonemes for orthography and phonology, respectively.
Correlating the semantic group-level RDM to dissimilarity-
information taken from Word2Vec gave a correlation r = 0.619,
whereas there were negligible correlations of the word form
conditions to Word2Vec (r = 0.04, r = 0.07) and the semantic
condition and Levenshtein-based models (r = 0.03, r = 0.02).

On the other hand, both form-based conditions numerically
correlated more strongly with a phoneme-based model
(r = 0.686 for phonology, r = 0.685 for orthography) than they
did with a letter-based model (r = 0.628 for phonology, r = 0.643
for orthography). Although these values seem similarly high, it is
worth mentioning that, for the stimuli used, the phoneme-based
model inherently correlates with the letter-based model with a
correlation of r = 0.818, so that any RDM correlating with one
will inherently correlate strongly with the other. In sum, these
varying correlational model patterns for semantics and word
forms confirm that multi-arrangement can successfully capture
the distinct similarity spaces.

Understanding modality differences

Next, we examined the nature of the similarity spaces that
the RDMs describe (Figure 6). As seen in analyses above, the
semantic condition clearly stands out from the two form-based
conditions in consistency both within and between participants.
A key question is whether the similarity measure is uniformly
less reliable for phonology and orthography, or whether there
are structural differences. To find out, we analyzed the variance
in judgments over individual pairs in comparison to the average
group level distance.

Across all three modalities, the group average distances of
the vast majority of item pairs is distributed at the high end of
dissimilarity for semantics (M = 0.78, SD = 0.14), phonology
(M = 0.82, SD = 0.08), and orthography (M = 0.81, SD = 0.08).
Participant agreement on these distances as measured by
variance shows a slight trend for more agreement at high
distances and less agreement (higher variance) at medium
distances. Here, however, a clear difference can be seen in the
semantic modality. For low dissimilarities (< 0.5; lower left
corner of the plot), it shows relatively many word pairs that
participants consistently judge to be very similar. This is not the
case in the form-based modalities. The semantic RDM includes
167 pairs under 0.5, compared to 12 for the phonological and 20
for the orthographic RDMs. Even more distinct is the difference
in agreement for such close pairs, where there is very high
inter-rater agreement for items which are generally considered

similar. Highly similar word pairs are clearly better captured,
or more universal, for semantics than they are for phonology
and orthography.

To verify that these effects are not a consequence of stimulus
selection or inherent differences between the modalities
according to our selected models, we related the behavioral
results for each item pair to the model predictions (Figure
7). According to the models underlying item selection, all
three modalities should contain a range of pairs from low
to high dissimilarity (see distribution plots on top). However,
for semantics, the multi-arrangement results display higher
similarity between pairs than was predicted by the Word2Vec
model, as indicated by the bulk of items below the diagonal. This
pattern is reversed for the form-based conditions, where multi-
arrangement resulted in overall lower similarity between pairs
than predicted by our Levenshtein models.

In sum, multi-arrangement using the IMDS algorithm can
capture high similarity better for semantics than for word form.
Overall, multi-arrangement seems to result in higher similarity
compared to model predictions, while for word form the
reported similarity is structurally lower than model predictions.

Discussion

The goal of this study was to assess whether the multi-
arrangement task can be applied to the mapping of similarity
spaces for word semantics and word form (phonology
and orthography). This turned out to indeed be the case,
with a few qualifications. First, semantics was found to be
consistently better captured than word form, especially for
high similarities between items. Second, phonological and
orthographic similarity spaces were not distinguishable. Third,
we observed high individual variability in a similarity space
largely shared at the group level. We will now discuss these
findings in more detail and then evaluate the multi-arrangement
method for use with form-based modalities.

Semantic similarity captured better
than form similarity

Semantic similarity was consistently better captured in
the multi-arrangement task than word form similarity. This
resonates with task difficulties that participants reported for
the form-based conditions. The task effectively asks participants
to mentally perform multidimensional scaling to create 2-
dimensional arrangements. This appears to be very demanding
for word form similarity even when assessing pairwise similarity
would be easy. In contrast, semantic arrangements were
more easily created.

One explanation is that participants have different
experiences with judging similarity in the three spaces.
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FIGURE 6

Variance in similarity judgments between participants for word pairs as a function of the word pairs’ average group dissimilarity. On the y-axis is
the participants’ agreement on a word pair, with 0 indicating perfect agreement and 1 total disagreement. On the x-axis, the average
dissimilarity judgment is given for each pair at the group level, with 0 indicating perfect similarity, and 1 total dissimilarity.

FIGURE 7

The dissimilarity of all item pairs according to each modality’s model compared to behavioral group-level multi-arrangement results. The
diagonal and a simple curve fit are added to show the skew of each modality. If the multi-arrangement data and the models agreed perfectly
the data should lie on the diagonal; however, multi-arrangement tends toward lower dissimilarity compared to Word2Vec, but results in higher
dissimilarity compared to Levenshtein models.

In the semantic modality, items apparently fit in natural
categories: Participants could relatively easily choose tangible
dimensions on which to sort the stimuli, such as size and
animacy. Participants also managed to create meaningful
relationships between many items. For example, they could
place “squirrel” close to other animals and “hazelnut” close to
food items, while also placing “hazelnut” closer to “squirrel”
than to other animals that are less likely to consume them.
For the form based-modalities participants also managed
to group items, for instance closely putting items together
that rhyme or start with the same sequence of letters;
however, grouping was less consistent between and within
subjects than for semantics. Moreover, relating each item to
all other items on screen seemed a more difficult task for
orthographic and phonological word forms. Semantically
comparing items is relatively common in daily life, both

explicitly and implicitly, because it is based on taxonomies
commonly agreed upon. In contrast, judging item similarities
in terms of spelling is rarely done, let alone over multiple
items. In sum, semantic grouping might feel more natural
to participants.

Aside from the reported task difficulty, a distinct structural
difference arose between sorting on semantics and on form-
based modalities: For semantics, there was high agreement
on highly similar items, while for word form there was little
agreement on what is highly similar. This could be caused
by these differences in task difficulty or lack of consensus.
For example, given that there is no clear consensus on what
constitutes similarity in word form, participants are free to
choose and focus on particular parts of the words, resulting
in different groups. Alternatively, there might be a structural
difference in underlying representations: Interconnections in
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semantic networks could be based more on similarity than word
form networks, as semantic similarity relations are critical for
understanding the world, not only for selection but also for
semantic generalization. Given the practical use of being able
to generalize from one concept to another, or relate concepts to
similar ones, judging semantic concepts on similarity might be
something deeply ingrained in semantic processing. In contrast,
word form interactions might be primarily competitive, to
help the selection of the right word, and not wired to
also generalize.

Semantic processing might be less unidirectional than word
form processing, where sub-lexical units activate competing
words, but once the word has been found there is no strong
direct connection between competitors. Though priming effects
exhibit clear similarity effects, these might be due to reactivation
of primed early lexical or phonological representations, rather
than direct connections between similar words. This would
make it more difficult for participants to explicitly sort by the
similarity we expect to see from priming studies.

Another explanation for the less consistent similarity
measures for phonology and orthography, especially for
expectedly similar items, could be a higher threshold for words
being considered similar in the word form modalities, i.e., a
higher exponential decay in the underlying similarity function
as described by Shepard (1987). This could be caused by the
high fidelity of orthographic representations and similarity (i.e.,
letters as clearly distinct units), leading to sharp representations
with only very similar words being commonly perceived as
similar and random idiosyncratic similarity judgments driving
the other similarity judgments. Word form representations
being densely clustered might be advantageous for word
learning, introducing different functional constraints than for
semantic representations (Dautriche et al., 2017). Semantic
representations by contrast are more fuzzy: Unlike words which
either contain a letter or not, semantic features like size or
animacy are gradual, leading to a wider range of concepts to be
generally regarded as similar, and thus to more consistent values
across the similarity range (Nguyen et al., 2021).

Finally, an intriguing option at the crossroad of task
demands and underlying representations is a difference
in relationships between space and similarity structure for
meaning and word form. Closely related semantic stimuli might
be perceived as more similar, but closely related perceptual
stimuli as more dissimilar (Casasanto, 2008).

To what extent differences in word form and word meaning
spaces can be accounted for by any of these explanations,
however, is difficult to decide in the multi-arrangement
task, because here task strategies and item representations
are hard to disentangle. Closer sampling across the entire
spectrum of similarity, including very similar items, to map
the entire similarity function, and measuring the underlying
representations using neuroimaging techniques, might help
discern and test the proposed explanations.

Distinction between phonology and
orthography

In our study, we observed relatively different RDMs for the
semantic and form-based conditions, whereas orthographic and
phonological spaces were very similar. In the latter case, both
conditions correlated somewhat higher with phoneme-based
Levenshtein distances than with letter-based distances. This
finding by itself may suggest that participants performed the
orthographic sorting task on the basis of phonology rather than
orthography itself. However, we found the resulting RDMs to be
slightly different, suggesting that participants did apply different
criteria to each condition. These criteria, however, do not seem
to be pure phoneme edit distance or letter edit distance.

The prominence of phoneme distance in sorting, even for
orthographic word form similarity, might be due to the presence
of diphthongs in the stimulus words that participants treated
as separate units, such as ‘ui’ in Dutch. In addition, neither
of our Levenshtein models assigned weights to substitutions,
but participants might consider some sub-lexical items to be
more similar than others (Gilmore et al., 1979). Alternative
orthographic models that take these factors into account might
better match participants’ subjective similarity judgments.

Similarly, our model of phoneme edit distance is the
simplest that could be applied, but more sophisticated models
might better capture the representational similarity of items
as participants sorted them. As with orthography, there is
evidence to suggest that word onset and coda disproportionately
affect similarity (Hahn and Bailey, 2005), as well as evidence
for not all substitutions or insertions being weighted equally
(Bailey and Hahn, 2005).

Reliable group level similarity, high
individual differences

Across all modalities, similar trends arose between group-
level and individual intra-rater and inter-rater agreement. The
multi-arrangement task was found to provide low reliability
between participants (i.e., inter-rater reliability), medium
reliability within participants (i.e., intra-rater reliability), but
high consistency at the group level (i.e., split-half reliability)
in all three modalities. This finding is in line with previous
semantic studies (e.g., Richie et al., 2020). One initial
interpretation is that the data are rather noisy at the individual
level and do not provide proper estimates based on the limited
number of trials available.

Alternatively, and more in line with the higher intra- than
inter-rater reliability, major individual differences may exist in
the underlying psychological space of the participants, which
nevertheless are all weakly related to a shared universal space.

Intra-rater reliability measures provide some insight into the
role of individual differences, as they are higher than inter-rater
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reliability measures. In all, the group average RDMs appear to
represent some universally agreed similarity information, but
cannot account for a significant portion of each individual’s
unique judgments. Observed individual differences may be a
consequence of both underlying representational differences
and differing task strategies.

As attempts to cluster participants statistically or though
visual inspection of their employed strategies have failed, we
conclude that different approaches to the task do not seem
to result in different similarity outcomes. Although we could
not statistically discern participant groups with different task
strategies, participants might nonetheless begin to associate
items on different dimensions early in the session. Their specific
initial choices might give strong weight to certain relationships
between items, even though their underlying representations
may be similar to those of other participants. Differences in
task strategy also do not appear to significantly affect intra-
participant reliability.

The finding of high split-half reliability proves that group
level RDMs provide stable representations. For the semantic
condition, split-half reliability was higher than the correlation
to the Word2Vec. As such, the multi-arrangement task
accounts for some similarity information that the corpus-based
Word2Vec model does not.

In sum, the multi-arrangement task generated useful group-
level data for our multimodal stimulus set across all three item
dimensions, but showed high individual differences. The role of
individual differences in underlying similarity representations
is difficult to disentangle from differences in task strategy and
noise. Fewer stimuli or more time per participant might be
needed to arrive at stable individual RDMs, while modeling
efforts could help make concrete predictions about the three
sources of variation.

Limitations and further directions

In addition to the recommendations mentioned before,
we see a number of limitations and directions for further
study. A general concern, even for unimodal semantic
application, is the assumption that large distances on screen
are most informative. This assumption leads to the desirable
zoom-in effect, which lets participants further specify item
relationships within clusters. However, we also noticed that
participants are more careful about the relative placement
of items within clusters than between clusters. That is,
highly similar words were sorted close together with more
care for relative distances, than the place of that group
compared to other groups. Consistently, the relatively high
agreement on similarity for highly similar item pairs also
suggests that small on-screen distances might be the most
informative, with more noisy information being contained in
large screen distances.

Unfortunately, we cannot analyze whether a different metric
would be more suited, as the algorithm is applied during the
experiment to select the next trial stimulus set on the fly
and is based on currently completed trials. The algorithm is
therefore a baked-in co-determiner of the resulting data. Further
investigation could assess if a different similarity metric can
produce more informative trials or lead to better trial weighting
for the final RDM construction. To evaluate this issue, data be
collected with fully randomized trials, accepting a loss of the
efficiency gained through on-the-fly evidence estimation.

The choice to present multimodal stimuli in matched
sessions that only differed in task instructions was validated
by the finding that participants sorted based on unique
criteria across conditions. The negligible correlation between
semantic and form based RDMs confirms that there was little
influence of one modality on the sorting of another, despite
all being presented at once. While this could have occurred
in case of unclear task instruction, it is also important to
note that this means participants were not subconsciously
affected by, for example, semantic similarities when trying
to sort by phonology. The low observed correlation between
semantic and form-based RDMs might be the result of
negligible task confusion, but could also be representing true
correlations between the underlying representations where
form-meaning consistency exists (Marelli et al., 2015; Cassani
and Limacher, 2022). This is crucial to enable extension
of the task to the phonological modality, as spatial sorting
of solely auditory stimuli is not possible. Participants need
a visual cue for each item they sort, and apparently can
avoid confounding their sorting by semantic similarity when
instructed to do so.

Naturally our stimulus selection is limited by investigating
all three modalities in one experiment. Monomodal applications
of the multi-arrangement tasks could use more a naturalistic
word selection including more varying word lengths, word
forms other than nouns, and more abstract (less imageable)
words. The effect of polysemous or more ambiguous
words is also left open by this study. It may be possible
to account for polysemy by introducing a preliminary
task in which participants roughly categorize each item
(Majewska et al., 2020).

As discussed, the data revealed large individual differences
in perceived similarities. We cannot definitively conclude
whether this finding represents idiosyncratic task performance
or idiosyncratic underlying representations, because we did not
collect similarity information from the same participants by
alternative methods. For representational similarity analysis,
this implies that behavioral sorting data may need to be collected
from the same participant as the neuroimaging data to which
it is to be compared to take into account these idiosyncrasies.
In fact, a combination of group level RDM and personal RDM
might result in the least-noisy, most individual similarity space
to be used for comparison to any one participant.
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Our evidence is in line with current research on lexical
representation and processing and shows that the multi-
arrangement method can be used to measure representations
across multiple modalities. We can conclude that semantic and
form representations are largely orthogonal, with some overlap
either due to coactivation or due to limited form-meaning
correlation in the underlying representations. Although we
know that representations across all modalities are coactivated
in language use, subjects were able to inhibit other modalities
while sorting.

Conclusion

The multi-arrangement method for collecting similarity
data was successfully used to collect similarity data on semantics
and word form. Importantly, the method generated stable
group-level similarity models, yet revealed large idiosyncratic
differences in similarity judgments for all modalities. Over all
measures, semantic similarity estimates were more consistent
than measures of word form similarity, especially for highly
similar items. This suggests potential differences between
modalities in the applicability of the method, subject strategy
and/or underlying representations, important to keep in mind
when applying the multi-arrangement method and studying
multimodal lexical representations.

Glossary

IMDS, Inverse Multidimensional Scaling, a process by
which multiple trials from one participant are aggregated
into a single RDM.

RDM, Representational Dissimilarity Matrix, a matrix
containing the dissimilarity estimate between any pair of stimuli.
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