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Abstract

While pathogenic variants significantly increase disease risk in many genes, it is still challenging to estimate
the clinical impact of rare missense variants more generally. Even in genes such as BRCA2 or PALB2, large
cohort studies find no significant association between breast cancer and rare germline missense variants
collectively. Here we introduce REGatta, a method to improve the estimation of clinical risk in gene segments.
We define gene regions using the density of pathogenic diagnostic reports, and then calculate the relative risk
in each of these regions using 109,581 exome sequences from women in the UK Biobank. We apply this
method in seven established breast cancer genes, and identify regions in each gene with statistically
significant differences in breast cancer incidence for rare missense carriers. Even in genes with no significant
difference at the gene level, this approach significantly separates rare missense variant carriers at higher or
lower risk (BRCA2 regional model OR=1.46 [1.12, 1.79], p=0.0036 vs. BRCA2 gene model OR=0.96
[0.85,1.07] p=0.4171). We find high concordance between these regional risk estimates and high-throughput
functional assays of variant impact. We compare with existing methods and the use of protein domains (Pfam)
as regions, and find REGatta better identifies individuals at elevated or reduced risk. These regions provide
useful priors which can potentially be used to improve risk assessment and clinical management.

Introduction

Large cohort studies have identified numerous genes in which carriers of germline variation have an increased
predispositional risk of developing breast cancer.1 In particular, pathogenic coding variants in these genes are
associated with significantly increased risk, and are routinely screened in diagnostic testing panels.2 However,
translating this risk to carriers of rare missense Variants of Uncertain Significance (VUSs) continues to pose a
challenge in the diagnostic setting.
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Collectively, many individuals harbor rare VUSs in predispositional cancer genes, potentially increasing their
risk of disease. However, on the basis of the collective frequency of these variants, some are unlikely to be
highly penetrant or functionally impactful.3,4 Given their low frequencies, it is challenging to assess their clinical
significance using epidemiological evidence at the variant level.

One approach to improve risk assessment has been to define groups of missense variants, or to identify genic
regions which may confer higher or lower risk. These methods include modeling the depletion of variation
using population sequencing data (selective constraint) using sets of exons,5 protein domains and regulatory
sequences,6 three dimensional protein structures,7 sequence contact sets,8 specific disease phenotypes,9 and
evolutionary conservation data.10 These methods have excellent resolution in genes or regions under strong
selection, even in genes whose function is not well established, but can otherwise be challenged by the effects
of drift, population structure, or sampling variance at low allele counts.

Other approaches have identified regions which are enriched for pathogenic variation and depleted of
putatively neutral variation, including at protein interfaces,11 within protein structures,12 across genes and gene
families,13 in pathways,14 and homologous regions.15 These methods make use of known biological structures
and abundant clinical diagnostic data, but may also be challenged by the biases of prior diagnostic
observations (whether from case ascertainment or assessment process) and consequently may not reflect the
relative risk in population screening.

The interpretation of germline variants in clinically actionable disease genes is becoming commonplace in
biobanks and large population health studies. The American College of Medical Genetics and Genomics
recommends a set of 78 genes (ACMG SF v3.1) be reviewed, regardless of the indication for sequencing.16

Many of these genes are associated with predispositional cancer risk, and are commonly screened in the
diagnostic setting. The ACMG/Association for Molecular Pathology (AMP) guidelines for sequence variant
interpretation consider several related forms of evidence, including mutational ‘hot spots’ or well-studied
functional domains without benign variation (PM1) and high rates of known pathogenic and low rates of benign
missense variants (PP2). Here, we develop a framework to improve the estimation of risk within gene regions
for rare missense VUSs derived from clinical diagnostic and population health data. This approach may be
useful toward identifying protein segments which confer higher or lower risk, as well as providing an
informative prior probability of pathogenicity for variation within a region.

Material and Methods
Defining genic regions with significant differences in germline cancer risk
To define genic regions with potentially distinct clinical risk of breast cancer, we identify segments which are
enriched or depleted in pathogenic variant reports in ClinVar.17 We restrict our analyses to missense variants,
removing all stop-gain, frameshift, and canonical splice site variants. We then use Jenks natural breaks
optimization to partition the transcript based on the coding positions of pathogenic or likely pathogenic (P/LP)
breast cancer reports.18 We break each transcript into 15 regions, or the maximum number of regions possible
while maintaining sufficient numbers of missense carriers in each region to make risk estimates
(Supplementary Methods, Supplementary Table 1).
We then make use of clinical data from the UK Biobank (UKB) to estimate the risk attributable to carrying a
rare missense variant in each region.19 First, we establish a baseline risk for individuals who carry any rare
missense variant in each gene. We perform a univariate Cox regression, comparing the risk for carriers of any
rare missense variant to non-carriers.20 The resulting partial hazard for missense carriers in each gene, , is
used in further comparisons. We next calculate the risk of carrying a rare missense variant in each predefined
protein region. The resulting partial hazard for each region, , is compared to , to identify an elevated or

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 9, 2023. ; https://doi.org/10.1101/2023.01.06.23284281doi: medRxiv preprint 

https://www.codecogs.com/eqnedit.php?latex=G_%7BM%7D#0
https://www.codecogs.com/eqnedit.php?latex=G_%7Bi%7D#0
https://www.codecogs.com/eqnedit.php?latex=G_%7BM%7D#0
https://doi.org/10.1101/2023.01.06.23284281
http://creativecommons.org/licenses/by-nc-nd/4.0/


reduced clinical risk in each region (Figure 1). The risk ratio is thresholded, defining a relative risk of 1.15 or
above as a higher risk region (HRR) or 0.85 or below as a lower risk region (LRR).

This threshold provides the highest effect size such that all seven genes evaluated have at least one high risk
and one low risk region using this set of partitions (Figure 2A, Supplementary Table 1-2).
Exome sequencing and variant annotation

Exome sequencing was performed for UKB participants as previously described.19 Variant allele frequencies
were estimated from the Genome Aggregation Database (gnomAD v2.1 exomes N=125,748). Variants were
included with population maximum allele frequencies of ≤ 0.005 (Ensembl gnomAD plugin)21 or if not present in
gnomAD. The canonical functional consequence of each variant was calculated using Variant Effect Predictor
(v99) and we restrict our relative risk calculations to missense variants.22 For effect size comparison analyses,
we specify predicted loss of function (pLOF) variants to include frameshift, stop gain, canonical splice-site, start
lost, and stop lost annotation, and separately analyze synonymous variants. Non-coding variants outside of
essential splice sites were not considered in the analysis. Variants which are non-PASS filter quality in
gnomAD were excluded, as well as any variants in low complexity regions, segmental duplications, or other
regions known to be challenging for next generation sequencing alignment or calling.23

Selecting genes for analyses

Drawing from 34 putative cancer predisposition genes evaluated by the Breast Cancer Association
Consortium,1 we retained genes with either statistically significant differences in breast cancer for carriers of
rare non-synonymous variants, or genes with large effect sizes (odds ratio ≥ 2), resulting in 11 genes. We
removed 4 of these genes (BARD1, PTEN, RAD51D, RAD51C) either due to a lack of P/LP missense reports
in ClinVar, which prevented derivation of regional boundaries, or a lack of variant carriers with breast cancer in
the UKB, which prevented reliable risk estimates in each region. For the remaining 7 genes in this study, we
restrict to P/LP ClinVar reports annotated for breast or ovarian cancer with the exception of MSH6 where we do
not restrict to breast or ovarian cancer reports.

Selecting parameters for regional boundary definitions

We selected a relative risk threshold for missense carriers of ± 0.15, as it was the largest tested value such
that all seven genes had at least one high and low risk region. The optimization approach to define regional
boundaries from pathogenic reports requires setting a number of regions a priori, which was initially set to 15
for all genes. When a gene could not be broken into 15 regions reliably and with sufficient power (carriers and
cases) to perform Cox regressions without convergence errors, we selected the maximum number of regions
which allowed such regressions to converge.

Participant exclusion criteria

Males were excluded from all analyses, as well as individuals with missing information regarding patient age,
or age of incident or prevalent cancer diagnosis. Analyses were performed separately for each gene.
Individuals with multiple missense variants in the same gene were excluded from analysis. Individuals with an
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LOF variant were grouped in the LOF category for each gene. For each gene analysis, we removed individuals
who carry LOF variants in any of the other six genes if LOF variants in that gene are known to have a
significant difference in breast cancer risk as measured by logrank p-value (p ≤ 0.05).

Results
Regional partitions identify gene segments which confer varying levels of risk
Using this approach, we define regional boundaries and calculate relative risks for carriers of rare missense
variants, and identify regions which confer higher (HRR) and lower risk (LRR). We find that carriers of variants
in HRRs have a significantly different risk of breast cancer from carriers of variants in LRRs in all 7 genes
analyzed (Figure 2A). We find that regions of elevated risk cluster closely in three dimensional space in
several genes, despite substantial distance in the one-dimensional transcript sequence. Using AlphaFold
structural predictions available for five genes,24 we find multiple HRRs within BRCA1 (Regions 1-3 vs. 15),
MSH6 (Region 8 vs. 14 and 15), PALB2 (Regions 1-3 vs. 5), and TP53 (Region 3 vs. 11 and 13) in close three
dimensional proximity but far apart in the nucleotide sequence (Figure 2B-D). HRRs in CHEK2 were adjacent
in the protein core and were also adjacent in one dimensional space (Supplementary Figure 1).
Regional information improves clinical risk prediction
Consistent with findings from a large meta-analysis examining breast cancer incidence,1 we find that rare
missense variants do not always confer a significantly increased risk of breast cancer. Only 2 of the 7 genes
confer an increased risk at the gene level for rare missense variant carriers: ATM (O.R. = 1.17 [1.06, 1.28],
logrank p = 0.011) and CHEK2 (O.R = 1.37 [1.19, 1.56], logrank p = 4.93x10-5), and other well-known genes
such as BRCA2 have no significant difference in risk (O.R = 0.95 [0.79, 1.12], logrank p = 0.33).
In contrast, REGatta can distinguish higher and lower risk for carriers of rare missense variation. We find
significant differences in breast cancer incidence among missense carriers in HRRs vs LRRs in all seven
genes analyzed (logrank p < 0.05) (Supplementary Figure 2). Observed effect sizes for HRR carriers vs. LRR
carriers exceed those observed when comparing missense carriers vs. non-carriers in all seven genes (Figure
3A, Supplementary Table 3).
This extends to genes which confer a significant risk at the gene level for rare missense carriers (ATM,
CHEK2): REGatta distinguishes regions with higher and lower relative risk. Regions which are predicted as
LRR have no significant difference in breast cancer incidence when compared with non-carriers in ATM (O.R. =
0.89 [0.63, 1.15], logrank p = 0.30) or CHEK2 (O.R. = 0.99 [0.22, 1.75], logrank p =0.43). Importantly this
distinguishes regions where rare missense variants are unlikely to substantially increase clinical risk in genes
where they generally confer significantly increased risk (Figure 3B). Further, in CHEK2, we find no significant
difference in breast cancer incidence among HRR missense carriers and predicted loss-of-function variant
carriers (O.R. = 0.95 [0.56, 1.34], logrank p = 0.71) (Figure 3B), emphasizing the utility of this approach in
identifying missense variation with large estimated functional impacts.
Validation of regional risk assessments using functional assay data
Measurements from well-established functional assays may be considered strong evidence of pathogenicity in
the clinical variant assessment process (PS3).25 We make use of experimental evidence from high-throughput
variant installation assays as an orthogonal source of validation for our regional risk assessments.26–31 For the
four genes where functional impact is reported on a continuous scale, we find significant differences in assay
measurements between variants in HRRs vs LRRs (Kolmogorov–Smirnov p < 0.05, Figure 4A). In two genes
where functional impact is reported dichotomously (either damaging or neutral), we find a statistically
significant difference in CHEK2 HRR vs. LRR reports (Enrichment = 2.61,  ꭓ2 p = 0.003) and an increased but
non-significant effect size in MSH6 HRR vs. LRR reports (Enrichment = 1.24,  ꭓ2 p = 0.06, Figure 4B).
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Comparison to protein domains and other methods to differentiate risk in regions
We compare alternative approaches to stratify risk in genic regions, starting with annotated protein domains
(Pfam).32 In most genes, variants collectively within the protein domains confer no significant difference in
breast cancer risk when compared to variants outside of protein domains (Supplementary Table 5). Notably in
MSH6, variants within any domain confer elevated, but non-significant risk (O.R = 1.36 [1.01, 1.72], logrank p =
0.236). In this case, MSH6 Pfam domains substantially overlap with REGatta HRRs, comprising 75.5% of the
HRR coding positions and 87.8% of HRR carriers (Supplementary Figure 3). In comparison, our regional
approach identifies a significant difference between carriers in HRR vs. LRR segments with a larger mean
effect size (O.R. = 1.61 [1.23, 1.99], logrank p = 0.008).
Among the 21 domains across these genes, only three confer significantly increased risk, and all three overlap
considerably with our defined HRRs. Two of these domains are in MSH6 (MutS domain I 62.75% overlap,
MutS Domain V 54.3% overlap), and the third is the BRCA1 RING domain. The 40 amino acid RING domain
confers the highest O.R. of any domain (O.R. = 5.86 [5.87, 6.86], logrank p = 9.32x10-7), and is located entirely
in BRCA1 Regions 1 and 2, the two highest risk regions in BRCA1. We find that this elevated clinical risk
appears to extend beyond the RING domain: carriers of missense variants in BRCA1 regions 1 and 2 outside
of the RING domain have an increased effect size when compared to non-carriers (n=33 individuals, O.R. =
2.51 [1.64, 3.37], logrank p = 0.09). The ATM FAT domain is the next most significant domain by logrank
p-value (p = 0.056), which has complete overlap with HRRs in ATM. HRR carriers outside this domain also
have significantly elevated breast cancer incidence vs. non-carriers (O.R. = 1.39, [1.15, 1.63], logrank p =
0.0039) (Supplementary Figure 3, Supplementary Tables 2, 5).
Prior work has made use of the clustering of ClinVar reports to inform risk predictions for missense variants.33

We compare to one such method which can effectively discriminate between known pathogenic and benign
variation using this information (MutScore), and has identified non-random distributions of such variation in
regions in a broad set of 559 genes with clinical associations. We apply this score to population cohort data in
the 7 genes analyzed, where our method can identify regions with significantly higher and lower risk, and we
find no significant difference in breast cancer incidence among those in the top third vs bottom third of
MutScore values (Supplementary Table 6), the thresholds used in that study.
Sensitivity analysis for optimization of parameters by gene
Finally, we assess whether the parameter space for numbers of genic regions and effect size thresholds may
be optimized per gene, rather than using a fixed value of ± 0.15 for HRR/LRR and a fixed (or maximum)
number of regions. Different parameter values yield models with more significant associations in certain genes,
as measured by logrank p-value (Supplementary Figure 4). We also find that all seven genes have at least
one significant result by Benjamini-Hochberg correction (⍺ = 0.01) controlling for combinations of parameters
(Supplementary Table 2), demonstrating the robustness of this approach to choice of model parameters. We
also identify significant differences in variant functional scores under a variety of region and risk threshold
parameter configurations (Supplementary Table 4).

Discussion
Germline risk assessment for cancer syndromes is a major application area of precision medicine.34 Population
sequencing cohorts have sufficiently expanded to identify pathogenic variants associated with clinical
outcomes.35 However, it is still challenging to estimate the clinical risk rare missense variants generally confer,
given limited numbers of observations of each variant and many with smaller effect sizes. We approach this
problem by measuring the clinical impact of missense variation within predefined regions from a large national
biobank, which provides a uniform assessment of clinical risk.
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This provides an attractive alternative to estimating the strength of purifying selection in regions from patterns
of variation present in the general population. While methods to assess selective constraint can be a powerful
predictor of pathogenicity and can be sensitive in regions under strong selection, they can be limited in
resolution for missense variation for genes under weaker selection, due to stochastic effects of drift. Alternative
regional boundaries, such as protein domains, may be limited in their applicability due to small size or low
numbers of variant carriers, potentially leading to overdispersed estimates of effect, and may also miss
putatively damaging variation outside of known protein domains. Finally, methods which provide estimates of
functional effects using the relative abundance of pathogenic and/or neutral variation may provide biased
estimates of functional effect, as they are not derived from neutrally ascertained populations. For example, the
lack of known pathogenic variant reports has been used to argue that variants within certain genic regions are
unlikely to be pathogenic, including a large ‘cold spot’ within exon 11 of BRCA2.36 This conflicts with high risk
regions identified by REGatta in BRCA2, where regions 4 and 6 fall within a “cold spot” encompassing exon 11,
and confer significantly increased risk.
The estimates of effect size that we have produced for carriers of variants in HRRs may serve as a useful prior
for population-level risk, which may be useful in diagnostic variant assessment. The ACMG/AMP sequence
variant interpretation guidelines consider many sources of evidence in favor of pathogenicity, including
computational predictions of variant impact (PP3), presence in a known protein domain (PM1), experimental
assays of functional impact (PS3), or absence in population databases (PS4), which may overlap with the
evidence defined by REGatta. This approach makes use of newly abundant population data linked with clinical
outcomes to infer which regions may be associated with elevated clinical risk.
Limitations of this work include population ascertainment of the UKB, which may bias estimates of effect size,
due to demographics and genetic architecture. Though we are currently limited by a small set of genes, these
are some of the most commonly screened genes in the diagnostic setting associated with predispositional
cancer risk.37 Given that we are making estimates from germline variation, it is worth noting that germline
sequencing may uncover somatic variants associated with clonal hematopoiesis (CH), a process that occurs
more frequently in older individuals. These putatively somatic variants arising from this process have been
shown to be pathogenic.38 These variants may be filtered by variant allelic fraction, but it may be imperfect to
effectively differentiate between somatic and germline variants in older individuals.

Future work includes integrating these regional risk ratios with computational or experimental predictions of
functional effect at the variant level, potentially in concert with individual-level risk factors (e.g., family history,
lifestyle and behavioral risk factors, and polygenic risk scores).39 Additional studies may also assess the
actionability of these risk assessments as they may help optimize choice of therapy (e.g., PARP inhibitors) in
BRCA1 or BRCA2 carriers. Additional work should include expansion to additional genes and phenotypes with
strong associations for rare coding variation.

Supplementary Methods
Study design, setting and participants

The UKB is a prospective cohort of over 500,000 individuals recruited between 2006 and 2010 of ages 40-69.19

Drawing from 200,625 participants with exome sequencing data were included in this analysis, we analyze
109,581 female participants. Analysis of the UKB data was approved by the Mass General Brigham
Institutional Review Board (Protocol 2020P002093). Work was performed under UKB application #41250.

Clinical endpoints
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The primary clinical endpoint is breast cancer, and case definitions were defined in the UKB using a
combination of self-reported data confirmed by healthcare professionals, hospitalization records, and national
procedural, cancer, and death registries, previously described at the disorder level.40

Filtering variants used in regional boundary generation

For generating variants used in regional partitioning lists, we limit single nucleotide variants that are not
expected to affect splicing, protein length, or that are reported to confer any consequence beyond missense
variation. We limit to reports specified as pathogenic or likely pathogenic. We count multiple submissions of the
same variant as multiple points in the final list to generate the regional boundaries.

Statistical tests and software

Statistical tests are two-sided unless otherwise reported. Statistical tests were performed using scipy v1.4.1 for
KS and ꭓ2 tests.41 Logrank tests, KM curve figures, and Cox proportional hazard regressions were performed
using lifelines v0.25.2.42 Additional analyses were performed using Numpy v1.17.3, Pandas v.1.1.5, and
scikit-learn v.0.24.2.43–45 Protein structure images created with PyMol v2.5.2.46 Additional images were created
using matplotlib v3.1.1 and seaborn v0.9.0.47,48

Functional Analyses
In the included high throughput variant installation assays, some studies reported cellular phenotypic values on
a continuous scale while others reported these results in some form of binary classification. When multiple
amino acid changes are reported for the same reference amino acid we use the average of all available
measurements to represent each position. We then take the average of each regions’ positional scores to
represent the regional value. No processing on the data was done outside of that originally reported by the
authors’ data.
Mutscore comparison
We limited our analyses to missense variants reported in the dataset. We defined high risk variants as those
reported with a score ≥ 0.66 and low risk variants as those with a score ≤ 0.33. We select variant carriers in the
same fashion we did for the remaining analyses. Data was obtained from the online repository
https://mutscore-wgt7hvakhq-ew.a.run.app/.
Data and code availability
Code used for all analyses and all figure creation is available at https://github.com/cassalab/regatta. The
publically available data underlying these analyses (Pfam domains, ClinVar, MutScore, functional data, and
AlphaFold Structural Predictions) are available in annotated files in the repository as well.
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Figure 1

Assessing regional risk using clinical diagnostic and population sequencing data.
We analyze data from 34 genes from a well-powered breast cancer meta-analysis (Breast Cancer 
Association Consortium) for their potential to have protein regions which confer higher or lower 
clinical risk for carriers of rare missense variants.1 We restrict to 7 genes with sufficient clinical 
diagnostic data in ClinVar, and use the distribution of pathogenic variant reports to partition each 
gene into distinct regions (Methods). Using those regional boundaries, we then use breast cancer 
status and population sequencing data from over 100,000 women in the UK Biobank to calculate 
the missense risk ratio in each region. Risk ratio values are thresholded to label sets of regions as 
high risk regions (HRR) or low risk regions (LRR), and we find that these ratios can significantly 
distinguish patients at elevated or reduced clinical risk. Such risk values may be aligned with 
clinical diagnostic guidelines (ACMG/AMP PM1, PP2), or added to integrative prediction methods.
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Figure 2

a.

b. c. d.

BRCA1
Region 1   Region 2 
Region 3   Region 15

MSH6
Region 5   Region 6 
Region 8   Region 14
Region 15

 TP53
Region 3     Region 11 
Region 13   Region 15

e.

PALB2
Region 1   Region 2 
Region 3   Region 5

Regional partitions of breast cancer genes and structural distribution of high risk regions. 
[a] Regional boundary definitions are calculated using the distribution of pathogenic variant reports in 
ClinVar and Jenks Natural Breaks optimization, spanning the entire length of each transcript 
(Methods). For each gene, high risk regions (HRR) are assigned for regions with risk ratios greater 
than or equal to 1.15, and low risk regions (LRR) for those less than or equal to 0.85. A relative risk 
ratio is computed as the Cox proportional hazard ratio of rare missense carriers in each region divided 
by the Cox proportional hazard ratio for rare missense carriers across all regions of each gene. Using 
breast cancer outcome data, we compare risk among rare missense carriers for variants in HRRs and 
LRRs (logrank p-values, right). [b - e] BRCA1, MSH6, PALB2, and TP53 high risk regions highlighted 
on AlphaFold predicted protein structures. Despite the distance in one dimensional nucleotide 
sequence, HRRs are often aligned in three dimensional space. 
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Figure 3

a. b.

Regional stratification improves specificity in elevated risk predictions.  
[a] Age 65 Odds Ratio (OR) for the seven genes partitioned into high risk regions (HRR) and low 
risk regions (LRR) for rare missense variants. At the gene level, only two genes have an increased 
risk at the gene level for missense variant carriers when compared to non-carriers (green bars: 
CHEK2, ATM). Partitioning each gene transcript into HRR and LRR regions results in significant 
differences in breast cancer incidence among rare missense variant carriers in all 7 genes 
examined (blue bars). [b] Kaplan-Meier curves of patient breast cancer outcomes. While missense 
variants in aggregate in ATM and CHEK2 are significantly associated with breast cancer at the 
gene level, patients who carry variants in LRRs have no significant difference in risk when 
compared with non-carriers in both genes. Additionally, carriers of rare missense variants in HRRs 
within CHEK2 have no significant difference in breast cancer incidence from those who carry a 
predicted loss of function (canonical splice site, stop gain, or frameshift) variant.
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Figure 4

Validation of regional assignments using variant functional assays.
[a] When comparing functional estimates of variant impact from high-throughput experimental 
assays with assigned high risk regions (HRRs) and low risk regions (LRRs), we find significant 
differences between functional assay values in each region type. Scatter plots are shown for 
datasets where functional values are reported on a continuous scale. [b] Tables shown for datasets 
where functional impact is assessed on a binary Damaging/Benign scale. 

a.

Regions Damaging Benign
Proportion 

Damaging

5,8,6,14,15 24 9 0.73

2,3,7,11 20 21 0.59

MSH6

Frederiksen et al., Int J Mol Sci. (2021)

Enrichment = 1.24
𝝌2     p = 0.06

Regions Damaging Benign
Proportion 

Damaging

5,8,6,14,15 22 25 0.47

2,3,7,11 10 46 0.18

CHEK2✝

Delimitsou et al., Hum. Mutat. (2019)

Enrichment = 2.61    
𝝌2     p = 0.0032

✝ Gene parameters reported differently than those reported in Figure 1. CHEK2 reported at 11 breaks, 0.05 difference. PALB2 reported at 5 breaks, 
0.15 difference. 

b.
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CHEK2
Region 5   Region 7 
Region 8   Region 9

Spatial assessment of HRRs
AlphaFold predicted protein structures with predicted high risk regions, including CHEK2 which was not 
included in Figure 2. 
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Supplementary Figure 2

Kaplan-Meier curves comparing risk for carriers of missense variants in HRRs vs. LRRs. Regional 
assignments are defined in Figure 2. 
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Supplementary Figure 3

Pfam domains among regions of high and low risk. Among the genes analyzed, MSH6 was the only 
gene where missense variants within annotated Pfam domains conferred additional risk over missense 
variants outside of Pfam domains. Here, Pfam domains overlap considerably with the two MSH6 HRRs 
(domains cover 56% of HRR positions in the gene). Individual O.R. for each domain can be found in 
Supplementary Table 5.
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Gene
HRR/LRR Regional 

Difference
Breakpoints

Age 65 Odds Ratio 

(95%CI)
Logrank p-value

ATM 0.1 15 1.5 [1.23, 1.78] 0.0002

BRCA1 0.15 14 3.48 [2.67, 4.28] 6.41x10-5

BRCA2 0.35 15 2.94 [2.35, 3.54] 2.13x10-7

CHEK2 0.05 9 1.96 [1.56, 2.36] 0.0002

MSH6 0.1 15 1.67 [1.31, 2.03] 0.0065

PALB2 0.15 7 2.0 [1.44, 2.56] 0.0042

TP53 0.35 15 2.62 [1.63, 3.6] 0.0043

Maximizing differences in breast cancer outcomes through regional partitions
a) Diagram of differential risk by gene when selecting the optimal configuration of regional difference and 
number of breaks.  Optimal configuration is determined based on the minimum logrank p-value. b) 
Further information regarding the optimum configurations of parameters, and their associated breast 
cancer outcome data. 

a.

b.

Supplementary Figure 4
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Explanation of Supplementary Tables: 

Supplementary Table 1 - Regional regression results from each individual region tested when making 
regional assignments. Output of the Cox proportional hazard model is shown for each region in each 
configuration of parameters tested. 

Supplementary Table 2 : Logrank p-values and regional assignments from all configurations of parameters 
test. 

Supplementary Table 3 - Data underlying the odds ratios shown in Figure 3A for all groups considered in the 
odds ratio comparisons. 

Supplementary Table 4 : Functional results of all tested configurations of partitions. 

Supplementary Table 5 : Comparisons were done between non-carriers of coding variants and individuals 
with missense variants in each domain. Domains where RR or logrank p-value calculation could not be done 
are not shown. This is due to lack of carriers and/or breast cancer cases among carriers in those domains. 
Coverage calculations come from breakpoint configurations reported in Figure 2A. 

Supplementary Table 6 : Data comparing BCAC study genes breast cancer outcomes in utilizing a 
previously described method which also relies on ClinVar reports of pathogenicity. (Quinodoz, M. et al. The 
American Journal of Human Genetics (2022))
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