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Acetylation regulates ribonucleotide reductase
activity and cancer cell growth
Guo Chen1,8, Yin Luo2, Kurt Warncke3, Youwei Sun1, David S. Yu1, Haian Fu 2, Madhusmita Behera4,

Suresh S. Ramalingam4, Paul W. Doetsch5, Duc M. Duong6, Michael Lammers7, Walter J. Curran1 &

Xingming Deng1

Ribonucleotide reductase (RNR) catalyzes the de novo synthesis of deoxyribonucleoside

diphosphates (dNDPs) to provide dNTP precursors for DNA synthesis. Here, we report that

acetylation and deacetylation of the RRM2 subunit of RNR acts as a molecular switch that

impacts RNR activity, dNTP synthesis, and DNA replication fork progression. Acetylation of

RRM2 at K95 abrogates RNR activity by disrupting its homodimer assembly. RRM2 is directly

acetylated by KAT7, and deacetylated by Sirt2, respectively. Sirt2, which level peak in S

phase, sustains RNR activity at or above a threshold level required for dNTPs synthesis. We

also find that radiation or camptothecin-induced DNA damage promotes RRM2 deacetylation

by enhancing Sirt2–RRM2 interaction. Acetylation of RRM2 at K95 results in the reduction of

the dNTP pool, DNA replication fork stalling, and the suppression of tumor cell growth in vitro

and in vivo. This study therefore identifies acetylation as a regulatory mechanism governing

RNR activity.
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R ibonucleotide reductase (RNR), also known as ribonu-
cleotide diphosphate reductase, is an enzyme that catalyzes
the formation of deoxyribonucleotides from ribonucleo-

tides1. Deoxyribonucleotides, in turn, are used in the synthesis of
DNA. The reaction catalyzed by RNR is strictly conserved in all
living organisms2. RNR plays a critical role in regulating the total
rate of DNA synthesis, so that DNA to cell mass is maintained at
a constant ratio during cell division and DNA repair3. RNR
enzymes are divided into three classes termed class I, class II, and
class III, based on how radicals are generated during the reac-
tion4. Class I is the most extensively studied RNR and is present
in all eukaryotes and some prokaryotes3. This subclass of RNR is
a heterotetramer composed of two large and two small subunits,
RRM1 and RRM2, respectively5,6. RRM1 is the regulatory subunit
harboring two allosteric sites for its regulation5–7. RRM2 gen-
erates a stable tyrosine radical which is transferred to RRM1
cysteine residues to initiate the reduction reaction upon binding
of the substrate4,5. In addition, p53R2 is encoded by the RRM2B
gene, is induced by p53, and has been identified as a second
radical-providing small subunit in mammalian cells8. The major
role of p53R2-containing RNR complexes is in regulating the
synthesis, replication, and repair of mitochondrial DNA
(mtDNA) in non-proliferating cells9,10.

RNR is allosterically regulated at two levels influencing overall
activity and substrate specificity4,7. The overall activity is regu-
lated by binding of ATP (stimulatory) or dATP (inhibitory) to the
activity site (A site) on the RRM1 subunit7. The substrate spe-
cificity is regulated by the binding of different types of dNTPs to
the specificity site (S site), which is also located on the
RRM1 subunit. ATP and dATP increase the reduction of CDP
and UDP, whereas dTTP increases GDP reduction, and dGTP
upregulates ADP reduction7. In addition to allosteric regulation,
RNR activity is also tightly regulated during cell-cycle progression
and in response to extensive DNA damage8,11. RNR activity is
restricted in resting cells or cells in the G1 phase12, and sig-
nificantly increased as cells commit to DNA replication during
the late G1/early S phase8,11. In accord with this, RRM2 is
expressed exclusively during the late G1/early S phase and is
degraded in the late S phase13. Cdk1/2-mediated phosphorylation
of RRM2 at Thr33 promotes its degradation via cyclin F11.

A hallmark of cancer is uncontrolled proliferation, which
requires sufficient levels of dNTPs. RNR is frequently seen to be
deregulated in cancer cells14,15. Elevated expression of both
RRM1 and RRM2 subunits of RNR occurs in various human
cancers, making RNR a potential therapeutic target14. Several
therapeutic RNR inhibitors, including gemcitabine, clofarabine,
and hydroxyurea, are employed clinically to treat a number of
cancers16,17. Such small molecule RNR inhibitors fall into two
classes: nucleoside analogs and redox-active metal chelators,
which target RRM1 and RRM2, respectively14.

Reversible lysine acetylation/deacetylation plays a critical role
in regulating many essential proteins involved in diverse cellular
processes, including DNA repair, chromatin remodeling, tran-
scription, metabolism, cell survival, and proliferation18,19. Here,
we report that acetylation of RRM2 at K95 inactivates RNR
activity via disruption of RRM2 homodimerization, which in turn
acts as a molecular switch to dictate RNR function in response to
DNA replication and DNA damage. RRM2 acetylation at
K95 suppresses tumor cell growth in vitro and in vivo, and is
therefore a potentially attractive strategy for cancer therapy.

Results
Acetylation of RRM2 at K95 inactivates RNR. Protein acetyla-
tion confers novel functions on modified proteins, including
alterations in subcellular localization20, binding partners21,

protein stability22, and enzymatic activity23. To examine whether
protein acetylation is involved in the regulation of dNTP synth-
esis, human lung cancer H1299 cells were treated with two dif-
ferent deacetylase inhibitors, trichostatin A (TSA) that inhibits
histone deacetylase (HDAC) classes I, II, and IV, and nicotina-
mide (NAM) that inhibits sirtuin family members24, alone or in
combination, leading to increased global lysine acetylation in cells
(Supplementary Fig. 1a. See complete unedited blots in Source
Data file). Intriguingly, combined treatment with TSA and NAM
resulted in significantly decreased levels of all four dNTPs
(Supplementary Fig. 1b, c), indicating that the dNTP synthesis
pathway may be disturbed by protein acetylation. Because RNR is
the rate-limiting enzyme required for de novo synthesis of
dNTPs25, RNR enzyme activity was measured following treat-
ment of various cell lines with TSA and NAM as we described
previously25. Treatment with TSA and NAM significantly
reduced RNR activity in normal lung epithelial (i.e., BEAS-2B and
HBEC3) and human lung cancer cell lines (i.e., H1299 and H460)
(Fig. 1a, b). To test whether the reduction in RNR activity and
dNTP pool size following TSA/NAM treatment affects DNA
replication fork progression, H1299 cells were treated with TSA
and NAM, followed by measurement of replication dynamics
employing single-molecule DNA fiber analysis. TSA and NAM
significantly slowed DNA replication fork progression (Supple-
mentary Fig. 1d), which may occur through inhibition of RNR
activity and reduction of dNTPs synthesis. In addition, time
course experiments indicate that a reduction in the S-phase
population was observed starting from the 18-h time point after
NAM+ TSA treatment (i.e. 26.3% at 0 h vs. 16.8% at 18 h). The
S-phase population was continuously reduced to 4.6% at the 48 -h
time point (Supplementary Fig. 1e, f). These results indicate that
treatment with NAM and TSA can reduce the S-phase population
in a time-dependent manner. Thus, TSA/NAM-induced inhibi-
tion of RNR activity may also reduce the cell population in the S
phase.

RRM2 is critical for RNR enzymatic activity5,7. To assess
whether RRM2 is regulated by acetylation, BEAS-2B, HBEC3,
H1299, and H460 cells were treated with a combination of two
deacetylase inhibitors (TSA and NAM), followed by IP with
RRM2 antibody. Acetylation of RRM2 was analyzed by western
blot using an acetylated-lysine-specific antibody. Treatment with
TSA and NAM significantly enhanced RRM2 acetylation, but did
not affect RRM2 protein levels (Fig. 1c; Supplementary Fig. 1g).
To further measure the percentage of acetylated RRM2 (Ac-K
RRM2) before and after TSA/NAM treatment in cells, we used
Ac-K immunoaffinity beads to deplete Ac-K proteins, including
Ac-K RRM2, from cell lysates isolated from H460 and BEAS-2B
cells before and after TSA/NAM treatment as previously
described26, followed by western blot analysis of unacetylated
RRM2 using anti-RRM2 antibody and quantifying the unacety-
lated RRM2 on western blot bands using ImageJ software. The
percentage of Ac-K RRM2 was calculated using the formula: %
Ac-K RRM2= (total RRM2−unacetylated RRM2)/total RRM2 ×
100 as indicated in Supplementary Fig. 2a. To test whether the
Ac-K RRM2 can be depleted from lysates by Ac-K immunoaffi-
nity beads, we measured Ac-K RRM2 by IP using Ac-K-specific
antibody in the lysates before versus after Ac-K depletion,
followed by western blot analysis of Ac-K RRM2 using anti-
RRM2 antibody. Before Ac-K depletion, certain levels of Ac-K
RRM2 were observed in H460 and BEAS-2B cells, and NAM/TSA
enhanced Ac-K RRM2 (Supplementary Fig. 2b). However, no
detectable levels of Ac-K RRM2 were observed in the lysates after
Ac-K depletion (Supplementary Fig. 2b), indicating a highly
efficient depletion of Ac-K RRM2 from lysates by Ac-K
immunoaffinity beads. To obtain the percentages of Ac-K
RRM2, we measured the total RRM2 and unacetylated RRM2
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in the lysates before and after Ac-K depletion in H460 and BEAS-
2B cells with and without NAM/TSA treatment. We found that
30 and 26% of RRM2 was acetylated in H460 and BEAS-2B cells,
respectively, before NAM/TSA treatment (Supplementary Fig. 2c).
After NAM/TSA treatment, 76 and 68% of RRM2 was acetylated
in H460 and BEAS-2B cells, respectively (Supplementary Fig. 2c).

These results provide more detailed evidence, indicating that
NAM and TSA significantly enhance RRM2 acetylation.

To identify the acetylation site(s) of RRM2, liquid chromato-
graphy/mass spectrometry (LC/MS) analysis was employed. Four
acetylation sites were identified in RRM2, including K30, K61,
K95, and K283 (Fig. 1d).
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To determine the role of individual acetylation sites in
regulating RRM2 acetylation and RNR activity, we mutated
Flag-RRM2 at each of the individual acetylation sites, or at all
four sites simultaneously, from lysine (K) to arginine (R) to
eliminate acetylation as described23,27. This resulted in generation
of K30R, K61R, K95R, K283R, and the compound K30R/K61R/
K95R/K283R (RRRR) RRM2 mutants. Flag-tagged WT or
acetylation-deficient RRM2 mutant(s) were exogenously
expressed in H1299 cells. Cells were treated with a combination
of NAM and TSA. Flag-RRM2 was immunoprecipitated using a
Flag antibody, followed by analysis of acetylation. Substitution of
K95 with arginine (K95R) or compound mutations (RRRR)
greatly reduced RRM2 acetylation compared to WT (Fig. 1e).
Other mutations (K30R, K61R, and K283R) had no significant
effect on NAM/TSA-induced RRM2 acetylation compared with
WT (Fig. 1e). These findings indicate that K95 is a major
acetylation site of RRM2.

To further assess the effect of RRM2 acetylation on RNR
activity, a panel of Flag-tagged WT and RRM2 mutant proteins
was isolated from NAM/TSA-treated H1299 cells overexpressing
exogenous Flag-RRM2, and incubated with recombinant GST-
tagged RRM1 protein purified from E. coli (Supplementary Fig. 3)
and C14-CDP, followed by analysis of RNR activity. NAM/TSA
reduced RNR activity of WT, K30R, K61R, and K283R, but failed
to reduce RNR activity of K95R and RRRR mutant RRM2
proteins (Fig. 1f, g), indicating that K95R and RRRR mutants are
deacetylase inhibitor-insensitive phenotypes with sustained
enzymatic activity. Replacement of lysine (K) with glutamine
(Q) at a protein acetylation site has been reported to mimic lysine
acetylation when the function of the acetylation event neutralizes
the positive charge of the lysine side chain27–29. A series of acetyl-
mimetic mutants, including K30Q, K61Q, K95Q, K283Q, and
QQQQ, were created by substitution of K with Q. Similar
approaches using Flag-tagged acetyl-mimetic RRM2 mutant
protein(s) along with recombinant RRM1 and C14-CDP were
employed to analyze RNR activity. In contrast to the effect of the
arginine mutations, the K95Q and QQQQ mutants displayed a
marked reduction of RNR activity compared with WT (Fig. 1h, i),
indicating that acetylation of RRM2 at K95 led to suppression of
RNR activity.

RRM2 acetylation at K95 disrupts RRM2 homodimerization.
Generation of the stable tyrosyl radical cofactor in RRM2 is
essential for RNR catalytic activity30. To test whether acetylation of
RRM2 at K95 affects tyrosyl radical level, we purified recombinant
His6-tagged WT, K95Q, and QQQQ acetylation-mimetic RRM2
proteins from E. coli (Fig. 2a). Electron paramagnetic resonance
(EPR) spectroscopy reveals that the acetylation-mimetic K95Q and
QQQQ proteins have EPR line shapes and peak-to-trough deri-
vative amplitudes for the tyrosyl radical that are comparable with
WT (Fig. 2b). Double integration of the derivative-mode EPR
spectra shows that the unpaired electron spin concentration is the
same in each sample (Supplementary Fig. 4). Therefore, the native
tyrosyl radical site structure is not perturbed in the mutant

proteins, and the acetyl-mimetic RRM2 mutant protein is able to
generate the same amount of tyrosyl radical cofactor as WT pro-
tein. This suggests that RRM2 acetylation-induced suppression of
RNR activity may result from mechanism(s) other than its effect
on tyrosyl radical cofactor production.

Structural analysis shows that K95 is located at the interface
between sister molecules of a RRM2 homodimer, and is predicted
to form a salt bridge with Glu174 and Glu105 of the adjacent
sister molecule (Fig. 2c). Active RNR is composed of two
homodimeric subunits of RRM1 and RRM231, and its catalytic
center requires both RRM1 and RRM2 homodimers (Fig. 2d)6.
Thus, RRM2 homodimerization is critical for RNR function. To
assess whether K95 acetylation affects RRM2 homodimer
formation, HA-tagged WT RRM2 was co-transfected with Flag-
tagged acetyl-mimetic RRM2 mutant(s) into H1299 cells. Co-IP
experiments showed that Flag-tagged K95Q and QQQQ mutants,
but not K30Q, K61Q, or K283Q mutants, were significantly less
able to associate with HA-tagged RRM2 compared with Flag-
tagged WT (Fig. 2e), indicating that K95 acetylation inhibits
dimerization between Flag-RRM2 and HA-RRM2.

To directly evaluate the role of actual acetylation at K95 in
regulating RRM2 homodimerization in vitro, in addition to acetyl-
mimetic mutant RRM2 K95Q, we employed a genetic-code
expansion concept (GCEC) via pRSF-Duet1-MbtRNACUA/
AcKRS-3 construct to incorporate acetyl-lysine into
RRM2 specifically at the K95 site as recently described28,29,32.
The pRSF-Duet1-MbtRNACUA/AcKRS-3 construct carries the
coding regions for acetyl-lysyl-tRNA-synthetase and the cognate
amber suppressor MbtRNACUA from Methanosarcina barkeri28,29

(Supplementary Fig. 5a). First, human RRM2 cDNA was cloned
into the pRSF-Duet1-MbtRNACUA/AcKRS-3, followed by mutat-
ing the K95 gene code from AAG to the amber stop codon TAG
that can exclusively be recognized by MbtRNACUA for acetyl-
lysine incorporation. The resulting acetyl K95 RRM2 (AcK95
RRM2) constructs were transformed to E. coli BL21(DE3) to
produce recombinant AcK95 protein with supplement of
Nε-Acetyl-L-lysine (AcK) in the LB medium (Supplementary
Fig. 5b). After production of recombinant RRM2 WT, K95Q,
AcK95, and K95R proteins, the size-exclusion chromatography
(SEC) experiments were performed as described previously33,34.
Intriguingly, the majority of WT and K95R proteins displayed a
homodimeric state while most K95Q and AcK95 RRM2 molecules
were detected as monomers (Fig. 2f). Furthermore, purified WT,
K95Q, AcK95, and K95R proteins were cross-linked with
disuccinimidylsuberate (DSS). Consistent with the SEC data,
WT and K95R RRM2 proteins were mainly detected as a dimer,
while K95Q and AcK95 RRM2 proteins were mainly detected as a
monomer (Fig. 2g). These findings reveal that actual acetylation of
RRM2 at K95 (AcK95) or K95 acetyl-mimetic mutation of RRM2
(K95Q) suppresses RRM2 homodimerization.

KAT7 directly acetylates RRM2 at K95. To identify the upstream
acetyltransferase that acts on RRM2, we used a siRNA library that
targets 11 known protein acetyltransferases to screen their effects

Fig. 1 RRM2 acetylation at K95 downregulates RNR enzymatic activity. a, b Extracts from various human cells treated with the combination of NAM (10mM)
and TSA (2 μM) were incubated with 14C-CDP. The conversion from 14C-CDP to 14C-dCDP was analyzed by thin-layer chromatography (TLC). RNR activity
was calculated as 14C-dCDP/(14C-CDP+ 14C-dCDP). The error bars indicate ± s.d. of three separate experiments. ***P < 0.001, by two-tailed t test. c Various
human cell lines were treated with NAM/TSA for 18 h, followed by IP using an anti-RRM2 antibody. Acetylation of RRM2 (Ac-K RRM2) was analyzed by
western blot using acetylated-lysine-specific antibody. d H1299 cells were treated with NAM/TSA for 18 h, followed by RRM2 immunoprecipitation and analysis
of LC-MS/MS peptide spectra of RRM2 acetylation. e H1299 cells expressing Flag-tagged WT or mutant RRM2 were treated with NAM/TSA, followed by Flag
IP. RRM2 acetylation was analyzed as above. f, g Flag-RRM2 variants were immunoprecipitated from H1299 cells treated with NAM/TSA, then mixed with 1 µg
of purified GST-RRM1 protein, followed by TLC analysis for RNR activity as above. h, i The effects of various acetyl-mimetic mutant RRM2 proteins on RNR
activity were analyzed as above. The error bars indicate ± s.d. of three separate experiments. ***P < 0.001, by two-tailed t test
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on RRM2 acetylation (Fig. 3a). Each of these acetyltransferase
siRNAs was individually transfected into H1299 cells, followed by
analysis of the expression of these acetyltransferases (Supple-
mentary Fig. 6) and RRM2 acetylation (Fig. 3b). Among the
11 siRNAs, only knockdown of KAT7 significantly reduced RRM2
acetylation (Fig. 3b, panel 8), suggesting that KAT7 is an RRM2
acetyltransferase. In further support of this possibility, co-IP
experiments showed that KAT7 interacts with endogenous RRM2
(Fig. 3c) or exogenous Flag-RRM2 (Fig. 3d). To assess whether
KAT7-induced RRM2 acetylation occurs at K95, HA-KAT7 was

co-transfected with Flag-tagged WT or K95R mutant RRM2
cDNA in H1299 cells, followed by analysis of Flag-RRM2 acet-
ylation. HA-KAT7 expression enhanced acetylation of Flag-WT,
but not Flag-K95R mutant RRM2 (Fig. 3e). Importantly, purified
KAT7 directly acetylated RRM2 WT, but not K95R in vitro
(Fig. 3f). Conversely, knockdown of KAT7 using KAT7 shRNA1
or shRNA2 resulted in reduced RRM2 acetylation (Fig. 3g),
enhanced RNR activity (Fig. 3h, i), and elevated levels of dNTPs
(Fig. 3j). These findings suggest that KAT7 functions as a phy-
siological RRM2 acetyltransferase.
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Sirt2 directly deacetylates RRM2 leading to RNR activation. To
identify the physiological deacetylase of RRM2, we used a siRNA
library that targets 18 known protein deacetylases (Fig. 4a).
Knockdown of these 18 protein deacetylases from H1299 cells was

confirmed by western blot (Supplementary Fig. 7). A increase in
RRM2 acetylation was observed only in cells in which Sirt2 was
depleted by Sirt2 siRNA (Fig. 4b), suggesting that Sirt2 may be a
potential RRM2 deacetylase. To further assess whether Sirt2
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interacts with RRM2, exogenous co-transfection of HA-tagged
RRM2 with a series of Flag-tagged sirtuin family members in H1299
cells was performed (Supplementary Fig. 8), followed by co-IP with
Flag antibody. Although different sirtuins were overexpressed to
different levels, only Sirt2 among seven sirtuin family members was
observed to interact with RRM2 (Fig. 4c). Moreover, endogenous

Sirt2 not only co-localized with but also interacted with endogenous
RRM2 in H1299 cells (Fig. 4d, e). Intriguingly, significantly
increased co-localization of Sirt2 and RRM2 was observed in the S-
phase cells compared with the G1-phase cells (Supplementary
Fig. 9). The specificity of the Sirt2 antibody used in this experiment
was further confirmed as shown in Supplementary Fig. 10.
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To test a role of Sirt2 in the deacetylation of RRM2, Flag-
tagged Sirt2 WT or inactive H187Y Sirt2 mutant35 was co-
transfected with HA-RRM2 into H1299 cells. Intriguingly,
overexpression of WT, but not H187Y mutant Sirt2, resulted in
a significant reduction in RRM2 acetylation (Fig. 4f). Conversely,
depletion of Sirt2 using Sirt2 shRNA1 or shRNA2 led to a marked
increase in RRM2 acetylation (Fig. 4g). Furthermore, treatment of
cells with a Sirt2-selective inhibitor AGK236 also enhanced RRM2
acetylation (Fig. 4h). To determine if Sirt2 directly deacetylates
RRM2 in vitro, acetylated HA-RRM2 was immunoprecipitated
from 293T cells overexpressing HA-RRM2 and incubated with
purified WT or H187Y mutant Sirt2 in the presence or absence of
NAD+ (nicotinamide adenine dinucleotide), a cofactor required
for sirtuin deacetylase activity35. Purified WT but not H187Y
mutant Sirt2 directly deacetylated RRM2 in vitro (Fig. 4i).
Functionally, depletion of endogenous Sirt2 from cells led to a
significant decrease in RNR activity (Fig. 4j).

The majority of our experiments employed H1299 cells
derived from non-small cell lung cancer (NSCLC), therefore, it
was of interest to test whether Sirt2 is upregulated in tumor
tissues from patients with NSCLC. We analyzed Sirt2
expression in samples from 208 NSCLC patients by IHC
staining employing Sirt2 antibody. NSCLC human tissue
samples were obtained from the tissue bank at Emory
University Winship Cancer Institute. Tissue microarrays
(TMA) were generated with replicate cores of tumor and
adjacent normal lung. Semiquantitative evaluation of IHC
staining of Sirt2 was carried out using immunoscores based on
both percentage of stained cells and staining intensity, as
previously described37–39. Sirt2 protein expression was
significantly higher in tumor tissues compared with adjacent
normal lung tissues (Supplementary Fig. 11a, b). The observed
higher levels of Sirt2 could potentially deacetylate RRM2 to
increase RNR activity in tumor tissues. Elevated levels of Sirt2
in tumor tissues were correlated with poor outcomes for
NSCLC patients (Supplementary Fig. 11c), suggesting that
Sirt2, as the RRM2 deacetylase, could be a potential prognostic
biomarker for NSCLC. Our findings support and extend those
of a previous report that high levels of Sirt2 expression are
associated with poor prognosis in NSCLC patients40.

Sirt2 regulates a cell-cycle-dependent RRM2 deacetylation.
RNR activity and dNTP pool size are restricted in the G1 phase and
expanded in the S phase to ensure sufficient dNTP levels for DNA
replication11,12,41. To examine the physiological role of RRM2
acetylation/deacetylation in regulating RNR activity during DNA
replication, H1299 cells were synchronized at the G1/S boundary
using double-thymidine block as previously described42. Cells re-
entered the cell cycle following release into fresh medium. Most
cells entered the S phase at 0–6 h, reached the G2/M phase at 8–10
h, and returned to the G1 phase at 14 h (Supplementary Fig. 12).
Notably, RRM2 and its deacetylase Sirt2 but not RRM1 or KAT7
were significantly increased upon entry to the S phase (0–6 h) and

returned to baseline levels in the G1 phase (14 and 16 h), mirroring
the expression profiles of the S/G2 marker cyclin A (Fig. 5a). This
suggests that elevated Sirt2 in the S phase may deacetylate RRM2 to
activate RNR. Correspondingly, RRM2 acetylation was very low in
the S-phase cells (0–6 h) and increased in the G1 phase (14 and 16
h) (Fig. 5b, c, left sides), indicating Sirt2-mediated RRM2 deacety-
lation occurs in the S phase, which would result in increasing RNR
activity for the synthesis of dNTPs. In addition, we also used serum
starvation as an alternative approach to assess cell-cycle regulation
of RRM2 acetylation. H1299 cells were synchronized at the G0/
G1 stage by serum starvation, followed by re-addition of serum
(10% FBS) to allow cells to re-enter the cell cycle. Cells entered the S
phase at 6 h after serum re-addition. Similarly, significant increased
levels of Sirt2 in association with decreased levels of RRM2 acet-
ylation were observed in the S/G2 phase (Supplementary Fig. 13).
These results demonstrated that Sirt2 regulation of RRM2 deace-
tylation occurs in a cell-cycle-dependent manner.

To further test the effect of Sirt2 on RRM2 deacetylation during
the cell cycle, Sirt2 was inhibited by Sirt2 siRNA or Sirt2-specific
inhibitor AGK2. Inhibition of Sirt2 significantly enhanced RRM2
acetylation in the S phase (0–6 h) (Fig. 5b, c, right vs. left sides).
These results suggest that Sirt2 is required for the deacetylation of
RRM2 in the S phase. To test whether Sirt2 regulates RRM2
deacetylation via K95 during the cell cycle, similar experiments
were performed in H1299 cells expressing Flag-tagged WT or the
acetyl-deficient K95R RRM2 mutant. The results show that the
K95R mutation abrogated cell-cycle-dependent regulation of
RRM2 acetylation (Supplementary Fig. 14). Intriguingly, inhibition
of Sirt2 using Sirt2 siRNA or Sirt2 inhibitor AGK2 significantly
reduced RNR activity (Fig. 5d, e). To assess the effect of Sirt2 on
the level of dNTPs, we harvested Sirt2 siRNA- or AGK2-treated
H1299 cells and carried out HPLC quantification of dNTPs.
Inhibition of Sirt2 by siRNA or AGK2 significantly resulted in a
decrease in dNTP pool size (Fig. 5f).

An adequate dNTP pool size is critical to ensure normal cell-
cycle progression and cell growth41. Employing the BrdU/7-AAD
cell-cycle assay, we found that 28.0% of control cells were in the S
phase, whereas, silencing of Sirt2 resulted in a reduction of the S-
phase cells to 11.3% (Fig. 5g). Similar results were observed
following treatment of cells with the Sirt2 inhibitor AGK2
(Fig. 5g). Importantly, disruption of Sirt2 by siRNA or Sirt2
inhibitor significantly suppressed cancer cell growth (Fig. 5h).

To test whether the effects of Sirt2 inhibition can be reversed
by the addition of exogenous nucleosides to cells, H1299 cells
were transfected with Sirt2 siRNA, followed by treatment with
20 µM dNTPs for 24 h43,44. Cell proliferation was analyzed by
BrdU incorporation as previously described45. The results show
that treatment of cells with dNTPs reverses the inhibitory effect of
Sirt2 siRNA on DNA synthesis and/or cell proliferation
(Supplementary Fig. 15).

RRM2 is deacetylated following DNA damage. DNA damage is
reported to induce RNR activation to ensure adequate dNTP

Fig. 4 Sirt2 acts as a physiological RRM2 deacetylase. a siRNA screening strategy to identify RRM2 deacetylase. b H1299 cells were transfected with a
library of siRNAs targeting 11 HDAC family members or a library of siRNAs targeting seven sirtuin family members, followed by IP using RRM2 antibody,
and western blot with Ac-K antibody. c H1299 cells were co-transfected with HA-RRM2 along with Flag-tagged Sirt1-7, followed by co-IP with agarose-
conjugated Flag antibody and western blot to detect the Flag-tagged Sirt(s)-associated HA-RRM2. d Immunostaining using RRM2 and Sirt2 antibodies in
H1299 cells. Scale bar: 25 μm. e Co-IP was carried out using RRM2 antibody to detect RRM2/Sirt2 interaction in H1299 cells. f H1299 cells were co-
transfected with HA-RRM2 along with Flag-tagged WT or deacetylase-inactive (H187Y) Sirt2, followed by analysis of HA-RRM2 acetylation. g Sirt2 was
depleted from H1299 cells using Sirt2 shRNA1 or 2, followed by analysis of RRM2 acetylation. h RRM2 acetylation was analyzed following treatment of
H1299 cells with Sirt2 inhibitor AGK2. i HA-RRM2 was isolated from H1299 cells treated with TSA/NAM and then incubated with Flag-WT or H187Y
inactive mutant Sirt2 protein purified from 293T cells, followed by analysis of HA-RRM2 acetylation. j Sirt2 was depleted from H1299 cells using Sirt2
shRNA1 or 2, followed by analysis of RNR activity. The error bars indicate ± s.d. of three separate experiments. **P <0.01, by two-tailed t test

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11214-9

8 NATURE COMMUNICATIONS |         (2019) 10:3213 | https://doi.org/10.1038/s41467-019-11214-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


levels for DNA repair8,46,47. To test whether DNA damage reg-
ulates RRM2 acetylation/deacetylation, H1299 cells were treated
with ionizing radiation (IR) or camptothecin (CPT), followed by
analysis of RRM2 acetylation. A significant decrease in RRM2
acetylation was observed following DNA damage by either agent

(Fig. 6a, upper panel). Intriguingly, IR and CPT exposure also
slightly enhanced RRM2 protein expression, but had no effect on
KAT7 and Sirt2 protein levels (Fig. 6a, lower panel). Mechan-
istically, IR and CPT promoted an interaction between Sirt2 and
RRM2 (Fig. 6b), but did not influence RRM2/KAT7 association
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Fig. 5 Sirt2 deacetylates RRM2 in a cell-cycle-dependent manner. a H1299 cells were synchronized at the G1/S boundary by double-thymidine block and
then released into normal culture medium. RRM1, RRM2, Sirt2, KAT7, and cyclin A were analyzed by western blot at various time points. As asynchronous.
b, c H1299 cells were transfected with Ctrl or Sirt2 siRNA or treated with Sirt2 inhibitor AGK2, followed by synchronization, cell cycling, and analysis of
RRM2 acetylation as above. d, e H1299 cells were treated with Sirt2 siRNA or Sirt2 inhibitor (AGK2), followed by analysis of RNA activity. The error bars
indicate ± s.d. of three separate experiments. *P <0.05, by two-tailed t test. f H1299 cells were transfected with Ctrl or Sirt2 siRNA or treated with Sirt2
inhibitor AGK2, followed by measurement of dNTP levels. The error bars indicate ± s.d. of three separate experiments. *P<0.05, by two-tailed t test.
g, h H1299 cells were transfected with Sirt2 siRNA or treated with Sirt2 inhibitor AGK2, followed by analysis of cell proliferation and cell-cycle distribution
using BrdU/7-AAD staining or colony-formation assay. The error bars indicate ± s.d. of three separate experiments. ***P <0.001, by two-tailed t test
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(Supplementary Fig. 16), suggesting that DNA damage-reduced
RRM2 acetylation mainly results from an increase in Sirt2-
mediated deacetylation.

ATM, ATR, and DNA-PKcs play critical roles in DNA damage
response signaling pathways48. To test whether these kinases
affect RRM2 deacetylation in response to DNA damage, siRNA(s)
or specific kinase inhibitor(s) for individual kinases were
employed. Inhibition of ATR by ATR siRNA or the ATR
inhibitor VE821 blocked IR-induced deacetylation (Fig. 6c, d).
However, suppression of ATM or DNA-PKcs by ATM siRNA,
ATM inhibitor (KU55933), DNA-PKcs siRNA, or DNA-PKcs
inhibitor (NU7441) had no significant effect on IR-induced
RRM2 deacetylation (Fig. 6c, d). These findings indicate that
DNA damage-induced deacetylation of RRM2 is mainly regulated
via the ATR signaling pathway.

RRM2 directly interacted with ATR in H1299 cells (Fig. 7a),
suggesting that ATR may phosphorylate RRM2 to regulate its
deacetylation. It is known that ATR preferentially phosphorylates
substrates on SQ/TQ motifs in response to DNA damage49–51. To
test whether IR or CPT induces RRM2 phosphorylation via ATR,
an ATR substrate antibody that specifically recognizes phospho-
S/TQ motifs (pS/TQ) was employed. Both IR and CPT stimulated
ATR-specific phosphorylation of RRM2 (Fig. 7b). Human RRM2
protein contains only one S/Q motif on serine (S)150 (Fig. 7c).
An in vitro ATR kinase assay revealed that purified, active ATR
directly phosphorylated WT but not the nonphosphorylatable
S150A mutant RRM2 (Fig. 7d), indicating that ATR functions as
the physiological kinase that directly phosphorylates RRM2 at the
S150 site. Compared with WT or the nonphosphorylatable S150A
mutant, the phosphomimetic S150E RRM2 mutant displayed a
greater capacity to interact with Sirt2 (Fig. 7e) leading to its

deacetylation (Fig. 7f), indicating that ATR-mediated S150
phosphorylation facilitates Sirt2 deacetylation of RRM2, which
results in elevated RNR activity (Fig. 7g, h). IR or CPT stimulated
phosphorylation of WT but not S150A or S150E mutant RRM2
(Fig. 7i, j), suggesting that IR- or CPT-induced RRM2
phosphorylation requires the S150 site. Functionally, RRM2-
silenced H1299 cells expressing exogenous nonphosphorylatable
S150A RRM2 mutant exhibit a higher sensitivity to IR or CPT
compared with cells expressing WT or S150E (Fig. 7k, l). These
findings suggest that either IR or CPT-induced WT RRM2
phosphorylation or the phosphomimetic S150E RRM2 can
increase RRM2 deacetylation leading to RNR activation, which
subsequently contributes to decreased sensitivity to IR or CPT.

Acetylation of RRM2 at K95 stalls DNA replication fork.
Uncontrolled proliferation of cancer cells must be supported by a
sufficient dNTP supply, and is reflected by RRM2 overexpression
in various types of cancers14. Kaplan–Meier survival analysis of
1928 NSCLC patients from an online database (www.kmplot.
com) reveals that elevated RRM2 expression is correlated with
poor prognosis (Supplementary Fig. 17). To further investigate
the functional role of RRM2 acetylation, endogenous RRM2 was
depleted from H1299 cells employing RRM2 shRNA. The effect of
shRNAs directed to the 3′-UTR or 5′-UTR of the gene can
reportedly be rescued by ectopically expressing the protein using
wild-type or mutant cDNA52,53. Because the RRM2 shRNA we
employed targets the 3′-UTR of endogenous RRM2, the silencing
effect of shRNA on RRM2 expression could be rescued by
transfection of exogenous WT or various acetyl-mimetic RRM2
mutants, as shown in Fig. 8a. Intracellular dNTP levels, DNA
replication fork progression, and cell growth were measured in
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RRM2-deficient H1299 cells expressing empty vector, exogenous
WT, or individual acetyl-mimetic RRM2 mutants as we described
previously25,54. Silencing of endogenous RRM2 resulted in a
significant reduction in dNTP pool size, stalling of DNA repli-
cation fork progression, and suppression of cell proliferation and
cell growth. Expression of exogenous WT or K30Q, K61Q, or
K283Q but not K95Q or QQQQ RRM2 mutants in RRM2-
deficient H1299 cells restored intracellular dNTP pool size, DNA
replication fork progression, cell proliferation, and cell growth
(Fig. 8a–h).

Acetylation of RRM2 at K95 suppresses tumor growth. To
further assess whether RRM2 acetylation affects tumor growth,
RRM2-deficient H1299 cells expressing exogenous WT or indi-
vidual acetyl-mimetic RRM2 mutants were employed to establish
lung cancer xenografts. Silencing of RRM2 using RRM2 shRNA
significantly inhibited growth of xenografted tumors (Fig. 9a, b,
panel 1 vs. panel 2), suggesting that RRM2 is essential for tumor
growth. Importantly, expression of exogenous WT, K30Q, K61Q,
or K283Q restored tumor growth in the RRM2-deficient xeno-
grafts. However, expression of the acetyl-mimetic K95Q or
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QQQQ mutant RRM2 failed to rescue tumor growth compared
with WT (Fig. 9a, b, panels 6 and 8 vs. panel 3), indicating that
RRM2 acetylation at K95 suppresses tumor growth in vivo. In
further support of these findings, a significant decrease in Ki67-
positive cells was also observed in tumor tissues from K95Q or
QQQQ xenografts compared with tumor tissues from WT
xenografts (Fig. 9c, d).

Discussion
Ribonucleotide reductase (RNR) is a unique enzyme that cata-
lyzes the de novo synthesis of dNDPs to provide dNTP precursors
required for DNA synthesis5,6. Catalysis of NDPs involves a free
radical-initiated reduction at the 2′-carbon of ribose 5-phosphate
to form 2′-deoxy derivative-reduced 2′-deoxyribonucleoside 5′-
diphosphates (dNDPs). An association occurs between the

C-terminus of RRM2 and the C-terminus of RRM1, which is
required for RNR enzymatic activity6. The active site is composed
of the active dithiol groups from RRM1, the diferric center and
the tyrosyl radical from the RRM2 subunit. Regulation of RNR
is designed to maintain balanced levels of dNTPs. In addition
to allosteric regulation7, RNR function is also regulated by
SCFcyclin F E3 ubiquitin ligase-mediated degradation11 and small
proteins, such as IRBIT55.

Lysine acetylation is an important post-translational mod-
ification known to alter the protein structure and function56. The
interplay between acetylation and deacetylation is crucial for
many important cellular processes57. Here, we found that RNR
activity is regulated by reversible acetylation/deacetylation of
RRM2. Although RRM2 could be acetylated at K30, K61, K95,
and K283, K95 was identified as a major acetylation site in the
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RRM2 protein since substitution of K95 with arginine abolished
the majority of RRM2 acetylation following NAM/TSA treatment
(Fig. 1). Employing acetyl-deficient (K→R) and acetyl-mimetic
(K→Q) mutants, we demonstrated that acetylation or deacety-
lation of RRM2 at K95 inactivated or activated RNR activity,
respectively. K95 in RRM2 forms a strong salt bridge with E105
and K95 through its positive charge side chain (Fig. 2c). Thus, the
K95Q mutation is able to mimic RRM2 acetylation. It is well
known that functionally active RNR enzyme requires formation
of an active heterodimeric tetramer which comprises two
homodimeric subunits of RRM1 and RRM231. Co-IP and size-
exclusion chromatography experiments revealed that K95 acet-
ylation suppressed the ability of RRM2 to form homodimers
(Fig. 2), which provides a mechanism by which acetylation
inactivates RNR activity.

Reversible acetylation/deacetylation is functionally driven by
acetyltransferase and deacetylase enzymes18,57. Using siRNA
screening strategies, we identified KAT7 as the RRM2 acetyl-
transferase and Sirt2 as its deacetylase. Depletion of KAT7 by
KAT7 shRNA resulted in a decreased RRM2 acetylation in
association with increased RNR activity (Fig. 3). Conversely,
knockdown of Sirt2 upregulates RRM2 acetylation leading to
decreased RNR activity (Fig. 4). These findings indicate that
KAT7/Sirt2-mediated acetylation/deacetylation of RRM2 mod-
ulates RNR activity and uncovers a novel regulatory mechanism

of RNR function. Intriguingly, Sirt2 protein levels peak in the S
phase, which is associated with RRM2 deacetylation (Fig. 5),
indicating that Sirt2-driven RRM2 deacetylation occurs in a cell-
cycle-dependent fashion. Since disruption of Sirt2 by siRNA or
Sirt2 inhibitor AGK2 suppressed dNTP synthesis leading to
cancer cell growth inhibition, pharmacological control of RRM2
acetylation by targeting its upstream deacetylase may represent a
novel and effective approach for cancer therapy.

Interestingly, Sirt2 has been reported to have both tumor
suppressor58,59 and oncogenic functions40,59,60. On one hand,
Sirt2-deficient animals exhibit genomic instability and chromo-
somal aberrations, and are prone to tumorigenesis59. Sirt2-
knockout mice develop gender-specific tumorigenesis, with
females primarily developing mammary tumors, and males more
often developing hepatocellular carcinoma (HCC)58. Sirt2 func-
tions as a tumor suppressor through its role in regulating mitosis
and genome integrity58. On the other hand, Sirt2 has also been
reported to have tumor-promoting activity40,59,60. Sirt2 not only
stabilizes Myc oncoproteins to enhance the proliferation of var-
ious cancer cell types61 but also promotes motility and inva-
siveness of HCC cells by regulating the PKB/GSK-3β/β-catenin
signaling pathway62. Our and others’ findings demonstrated that
higher levels of Sirt2 in NSCLC patients are associated with poor
prognosis40 (Supplementary Fig. 11). Moreover, inhibition of
Sirt2 by selective Sirt2 inhibitor (thiomyristoyl lysine compound)
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exhibits broad anticancer activity63. In support of Sirt2’s tumor-
promoting function, here we discovered that Sirt2 deacetylates
RRM2 to enhance RNR activity leading to increased dNTPs pool
size and proliferation of cancer cells.

DNA damage is known to stimulate RNR activity to increase
levels of dNTPs for DNA repair8,46,47, but the mechanism(s)
involved remain unclear. It has recently been reported that the
ATR/Chk1 pathway plays a key role in promoting RRM2 accu-
mulation by stabilizing E2F1 in the S-phase cells, which may be
important for countering the replication stress in cancer cells64.
Here, we discovered that IR- or CPT-induced DNA damage
promoted RRM2/Sirt2 interaction leading to RRM2 deacetylation
(Fig. 6), suggesting that DNA damage-enhanced RNR activity
may also occur through deacetylation of RRM2. ATM, ATR, and
DNA-PKcs are major DNA damage response kinases48. However,
specific inhibition of ATR, but not ATM or DNA-PKcs, blocked
IR or CPT-induced RRM2 deacetylation. ATR is mainly located
in the nucleus where it executes its DNA damage response
function65. However, ATR has also been reported to be located in
the cytoplasm66,67. In contrast, RRM2 is largely cytoplasmic5, but
has also been reported to enter the nucleus during cell-cycle
progression or following CPT treatment11,68. Based on these
reports, ATR and RRM2 could co-localize in the cytoplasm and
nucleus. Intriguingly, ATR not only interacts with but also
directly phosphorylates RRM2 at S150 (Fig. 7). Thus, ATR-
induced RRM2 phosphorylation may occur in both the cytoplasm
and nucleus. Functionally, ATR-mediated RRM2 phosphoryla-
tion at S150 promotes RRM2/Sirt2 interaction leading to deace-
tylation of RRM2 and subsequent RNR activation (Fig. 7). These
findings reveal a novel mechanism by which IR or CPT-induced
DNA damage activates RNR to promote the synthesis of dNTPs
for DNA repair. Expression of nonphosphorylatable S150A
RRM2 conferred greater cellular sensitivity to IR or CPT, while
the phosphomimetic S150E led to resistance compared with cells
expressing WT RRM2. This suggests that targeting ATR-
mediated RRM2 phosphorylation may represent a potential new
therapeutic strategy for cancer therapy.

Cancer cells rely on a sufficient dNTP supply more heavily
than normal cells, for their malignant cell growth15. Thus, cancer
cells have a larger dNTP pool than normal cells14. RRM2 is highly
overexpressed in various cancers, and this has led to recognition
of RRM2 as an effective cancer therapeutic target14. Our studies
using acetyl-mimetic RRM2 mutants reveal that acetylation of
RRM2 at K95 reduces the intracellular dNTPs pool and decreases
DNA replication fork progression, leading to suppression of
cancer cell growth in vitro and in vivo (Figs 8, 9). These results
suggest that K95 acetylation-mediated RNR inactivation can
cause DNA replication stress, leading to repression of tumor
growth.

In conclusion, our studies demonstrate that acetylation and
deacetylation of RRM2 at K95 negatively and positively regulates
RNR activity, respectively. RRM2 is acetylated by KAT7 and
deacetylated by Sirt2. ATR-mediated RRM2 phosphorylation at
S150 enhances its association with Sirt2 and facilitates RRM2
deacetylation. Pharmacological manipulation of K95 acetylation
may represent a viable strategy for cancer therapy.

Methods
Cell lines and plasmid transfection. H460, H1299, BEAS-2B, and HBEC3 cell
lines were obtained from the American Type Culture Collection. H460 and H1299
cells were grown in the RPMI 1640 medium supplemented with 10% FBS. BEAS-
2B cells were cultured in the DMEM/F-12 medium with 10% FBS. HBEC3 cells
were cultured in keratinocyte serum-free media from Invitrogen™ (Carlsbad, CA)
supplemented with pituitary extract and EGF. These cell lines were tested for
mycoplasma and had no mycoplasma contamination. No further authentication
for these cell lines was carried out by authors. H1299 cells Flag-tagged WT or

mutant RRM2 mutant(s) in pcDNA3.1 were transfected into H1299 cells using
NanoJuice (EMD Millipore) according to the manufacturer’s instructions.

Liquid chromatography coupled to tandem mass spectrometry. To identify
acetylation site(s) on RRM2, Flag-tagged human RRM2 was overexpressed in HeLa
cells. Cells were then treated with TSA and NAM for 16 h. Overnight in-gel trypsin
digestion was performed on the immunoprecipated Flag-RRM2 resolved on SDS-
PAGE gel, and peptides were extracted with a solution of 5% formic acid and 50%
acetonitrile and speed vacuumed to dryness. Each peptide sample was resuspended
in loading buffer (0.1% formic acid, 0.03% trifluoroacetic acid, 1% acetonitrile), and
peptide eluents were separated on a 15 cm 1.9 µm C18 (Dr. Maisch, Germany) self-
packed column (New Objective, Woburn, MA) by a Dionex Ultimate 3000
RSLCnano UPLC and monitored on an Orbitrap Fusion Mass Spectrometer
(Thermo Fisher Scientific, San Jose, CA). Elution was performed over 80 min
gradient at a rate of 300 nl/min with buffer B ranging from 1 to 35% (buffer A:
0.1% formic acid in water, buffer B: 0.08% formic acid in acetonitrile). The mass
spectrometer cycle was programmed to collect at the “top speed” mode with a cycle
time of 3 s. The MS scans were collected at a resolution of 120,000 (100–1000 m/z
range, 400,000 AGC, 50 ms maximum ion time), and the MS/MS spectra were
acquired by the ion trap after HCD (high-energy collision dissociation) fragmen-
tation with an isolation width of 2 m/z, 30% collision energy, 10,000 AGC target,
and 50 ms maximum ion time. Dynamic exclusion was set to exclude previous
sequenced peaks for 20 s within a 10 ppm window. The Proteome Discoverer 2.0
(Thermo Fisher Scientific, San Jose, CA) with the Sequest HT algorithm was used
to search and match MS/MS spectra to a complete human uniprotdatabase
(downloaded April 2015 with 90270 entries). Search parameters included mass
tolerance of precursor ions ( ± 10 ppm), 0.6 Da for the product ions, fully tryptic
restriction, dynamic modifications for deamidated Gln and Asn (+ 0.9840 Da),
oxidized Met (+ 15.9949 Da), acetylated lysine (+ 42.0367 Da), static modifica-
tions for five maximal modification sites and a maximum of four missed cleavages.
The embedded Percolator program was used to filter peptide spectral match (PSM)
false discovery rate (FDR) to 1%.

Site-specific incorporation of Nε-acetyl-L-lysine into RRM2. We employed a
genetic-code expansion concept (GCEC) via pRSF-Duet1-MbtRNACUA/AcKRS-3
construct to incorporate acetyl-lysine into RRM2 specifically at the K95 site as
described28,29,32. The construct contains the coding regions for acetyl-lysyl-tRNA-
synthetase (AcKRS-3) and the cognate amber suppressor MbtRNACUA from
Methanosarcina barkeri. First, human RRM2 cDNA was cloned into the pRSF-
Duet1-MbtRNACUA/AcKRS-3 between the BamH I and Not I sites. Then, the
QuikChange site-directed mutagenesis kit (Agilent Technologies, Santa Clara, CA)
was used to mutate RRM2 K95 from AAG to TAG, which is exclusively recognized
by MbtRNACUA for acetyl-lysine incorporation. Primers for mutagenesis: forward,
5′-CAT GAT ATC TGG CAG ATG TAT TAG AAG GCA GAG GCT TCC TTT
TGG-3′; reverse, 5′-CCA AAA GGA AGC CTC TGC CTT CTA ATA CAT CTG
CCA GAT ATC ATG-3′. After 26 PCR cycles, the amplification product was
digested with Dpn I to remove the non-mutated template and transformed into
DH5α for amplification. The correct mutation was confirmed by sequencing. The
resulting acetyl K95-RRM2 (AcK95-RRM2) construct was transformed into E. coli
BL21 (DE3) to produce recombinant AcK95 protein. E. coli BL21 (DE3) were
cultured in the terrific broth medium at 37 °C with shaking at 220 rpm. 10 mM Nε-
acetyl-L-lysine and 20 mM nicotinamide were added when OD600 reached 0.6. The
E. coli were grown for another 0.5 h. After addition of 200 µM IPTG, E. coli
BL21 cells were grown for 16 h at 20 °C. After expression, E. coli were then har-
vested and resuspended in buffer A (20 mM Tris, pH 8.0, 120 mM NaCl, 10%
glycerol and 0.5 mM PMSF), followed by sonication. The lysate was centrifuged at
14,000 rpm for 30 min. The resulting supernatant was applied to a Ni-affinity
column. After extensively washing with buffer A, bound proteins were eluted with
buffer B (20 mM Tris, pH 8.0, 120 mM NaCl, 300 mM imidazole, and 10% gly-
cerol). The eluted proteins were dialyzed with buffer A and stored at −80 °C.

In vitro deacetylation assay. 293T cells were transiently transfected with HA-
tagged RRM2 and treated with 0.5 μM TSA and 25mM nicotinamide for 8 h. The
acetylated HA-RRM2 protein was immunoprecipitated using agarose-conjugated
anti-HA antibody as a substrate. To purify WT or mutant Sirt2 protein, Flag-tagged
WT or H187Y mutant Sirt2 was transfected into 293T cells, followed by IP using
anti-Flag M2 affinity beads. Flag-Sirt2 protein was eluted with TBS (50mM Tris-
HCL pH 7.6, 150mM NaCl) supplemented with 2 μg/μl 3 × Flag peptide for dea-
cetylation assay. The acetylated HA-RRM2 protein (300 ng) on agarose beads was
incubated with purified Sirt2 WT or H187Y mutant protein (2 μg) in deacetylation
buffer (50mM Tris-HCL pH 8.0, 150mM NaCl, 1 mM MgCl2, 5 mM NAD+) at
30 °C for 3 h. The reaction was stopped with SDS sample buffer, subjected to SDS-
PAGE, and analyzed by western blot with acetylated-lysine antibody.

Measurement of intracellular dNTPs. Cellular dNTP levels were analyzed as we
described previously25,69. Briefly, cells were harvested, and cellular nucleotides were
extracted with 6% trichloroacetic acid followed by neutralization with the addition
of 5M K2CO3 just prior to HPLC analysis. The dNTPs were separated from NTPs
using a boronic acid resin column (Thermo Fisher Scientific, Waltham, MA). Then,
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chromatographic separations of dNTPs were performed using a Symmetry C (18)
3.5 μM (150 × 4.6 mm) column equipped with fluorescence detector (Waters
Corporation, Milford, MA).

Patient samples and immunohistochemical (IHC) staining. Informed consent
was obtained from all human subjects, and use of human samples for IHC was
approved by the Institutional Review Board of Emory University. Paraffin-
embedded human lung tissue samples from 208 NSCLC patients were obtained
from the tissue bank at Emory University Winship Cancer Institute. Tissue
microarray (TMA) was constructed with replicate cores of tumor and adjacent
normal lung. After deparaffinization, rehydration, inactivation of endogenous
peroxidase, and antigen retrieval, IHC staining was performed using R.T.U. Vec-
tastain Kit (Vector Laboratories) according to the manufacturer’s instructions. A
1:100 dilution of Sirt2 primary antibody was employed. The semiquantitative
evaluation of IHC staining was carried out using immunoscore based on both
percentage of stained cells and staining intensity as described37. The intensity was
defined as follows: 0, no appreciable staining; 1, weak intensity; 2, moderate
intensity; 3, strong intensity; 4, very strong intensity. The immunoscore was cal-
culated by multiplying the intensity by percentage of positive staining, producing a
total range of 0 to 400. For IHC analysis of Ki67 in tumor tissues from xenografts,
Ki67-positive cells in tumor tissues were scored at ×400 magnification. The average
number of positive cells per 0.0625 mm2 area was determined from three separate
fields in each of three independent tumor samples.

Size-exclusion chromatography. Size-exclusion chromatography (SEC) is a gel
filtration chromatography, in which proteins in solution are separated by molecule
size or weight33,34. Gel filtration chromatography was performed using AKTA
protein purification system equipped with superdex 75 10/300 column (GE
Healthcare, UK). Recombinant RRM2 WT or K95Q protein (1 µg/µl) was loaded
on a superdex 75 10/300 column. WT or K95Q protein was eluted from the column
with Tris buffer (50 mM Tris-HCl, pH= 8.0, 150 mM NaCl) at 4℃ with a flow
rate of 1 ml/min. The presence of RRM2 protein in the eluate was detected by
monitoring its UV absorbance at 280 nm. The molecular weight and dimer state of
RRM2 were determined based on migration of molecular weight standards
(ribonuclease A→12 kDa, ovalbumin →44 kDa, conalbumin →75 kDa, r-globu-
lin→158 kDa, thyroglobulin →670 kDa) using a gel filtration marker kit
(MWGF200, Sigma, MO).

Statistical analysis. All data are presented as mean ± standard deviation (s.d.)
from at least three independent experiments. The statistical significance of differ-
ences between groups was analyzed with two-tailed t test. We chose the sample size
to detect a minimum effect size of 1.5 with at least 80% power and a type I error of
0.05 for each comparison. The log rank test was used to test differences in the
Kaplan–Meier survival assay. A value of P < 0.05 was considered to be statistically
significant. The investigator was not blinded during experiment or assessing the
outcome.

Additional methods. A list of antibody used and additional methods can be found
in the Supplementary Methods section.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study, its supplementary information, and
source data file are included in the paper, and are available from the corresponding
author (X. Deng) upon reasonable request. The data underlying each figure are provided
as a source data file. The mass spectrometry proteomics source data are available via
ProteomeXchange with identifier PXD014105.
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