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Abstract: Seminal oxidative stress and sperm DNA damage are potential etiologies of male factor
infertility. The present study aims to evaluate the relationship between oxidation-reduction potential
(ORP), a measure of oxidative stress, and sperm DNA fragmentation (SDF) by conducting a systematic
review and meta-analysis of relevant clinical data. A literature search was performed according
to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.
The COVIDENCE tool was used to screen and identify studies evaluating seminal ORP and SDF.
Studies (n = 7) that measured seminal ORP and SDF of 3491 semen samples were included in
the analysis. The fixed-effects model revealed a significant pooled correlation coefficient (r = 0.24;
p < 0.001) between seminal ORP and SDF. Furthermore, subgroup analyses indicated that the pooled
correlation coefficient between ORP and sperm chromatin dispersion (SCD) assay was less than
other SDF assays (0.23 vs. 0.29). There was a moderate level of heterogeneity (I2 = 42.27%) among
the studies, indicating a lack of publication bias. This is the first meta-analysis to reveal a positive
correlation between seminal ORP and SDF. Furthermore, this study indicates the role of oxidative
stress in the development of sperm DNA damage and thus warrants prospectively exploring the
clinical value of these sperm function tests.

Keywords: oxidative stress; male infertility; oxidation-reduction potential; sperm DNA fragmentation;
meta-analysis

1. Introduction

Infertility affects 8–12% of couples of reproductive age, with the male component being
implicated as the causative factor in up to 50% of cases [1]. Evidence implicates the role of
oxidative stress in the pathophysiology of male infertility [2,3]. About 30–80% of infertile
men have elevated levels of seminal reactive oxygen species (ROS) [4]. At physiological
levels, ROS act as regulatory molecules and play a pivotal role in sperm functions such as
capacitation, acrosome reaction, hyperactivation, and fertilization [5,6]. However, when
concentrations of ROS exceed the scavenging capacity of seminal antioxidants referred
to, oxidative stress status (OSS) can cause damage to cellular components, which leads
to poor sperm quality [5,7]. Therefore, maintaining a subtle balance between the seminal
oxidants and reductants is crucial for redox homeostasis. Recently, a novel method for
measuring oxidation-reduction potential (ORP) in semen has been introduced to evaluate
seminal oxidative stress based on the redox balance [8]. Scientometric analysis of oxidative
stress in male reproductive research reveals a number of publications on studies using
ORP over a short period of time, suggesting the emergence of ORP as a future direct assay
to measure oxidative stress in semen samples [9]. In addition, ORP efficiently assesses
oxidative stress by utilizing small amounts of fresh or frozen semen samples with readily
available results [10], thereby making this test attractive for wider application in the clinical
and research setting [11].
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Sperm DNA integrity is vital for fertilization and embryo development [12]. One of
the detrimental effects of oxidative stress on sperm is the induction of SDF [5,13,14]. Studies
have substantiated the strong association between high seminal levels of ROS and sperm
DNA damage [13,15]. Although oxidative stress is one of the key mechanisms underlying
sperm DNA damage, the exact association between ORP, a direct indicator of oxidative
stress, and sperm DNA damage in infertile men has not been investigated systematically.
Therefore, the main objective of this study is to evaluate the relationship between ORP
and sperm DNA damage by conducting a systematic review and meta-analysis of relevant
scientific literature.

2. Materials and Methods
2.1. Search Strategy

Suitable keywords were used to retrieve articles reporting both seminal oxidative
stress and sperm DNA damage from databases such as PubMed, Web of Science, and
Embase (Table S1). In August 2021, a systematic review of literature (Figure 1) search
was conducted according to the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines [16]. The COVIDENCE online tool (Veritas Health
Innovation, Melbourne, Australia) was used to screen and identify studies evaluating
both seminal ORP and SDF. Duplicate articles retrieved from different databases were
removed, and the remaining articles were independently screened for title, abstract, and
keywords by two authors (MKPS and SB) to exclude irrelevant studies based on inclusion
and exclusion criteria (Table S2). Full-text articles were screened for eligibility based on
the Population, Intervention, Comparison, Outcome, and Study design (PICOS) tool that
excludes irrelevant articles and increases the reproducibility of the results. Data extraction
from selected articles was performed independently by two investigators (MKPS and SB),
and any discrepancies were settled by a senior author. If results of a study are published
more than once, only those with the most complete and up-to-date information were
included in the analysis.
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Figure 1. Flowchart of study identification and selection. ORP: oxidation-reduction potential, PICOS:
population, intervention, comparison, outcome, and study design, SDF: sperm DNA fragmentation.

2.2. Quality Assessment of Individual Studies

A modified Newcastle-Ottawa Scale was used to assess the quality of studies included
in this analysis (Table S3). Two investigators (MKPS and SB) independently evaluated all
eligible articles. Each study was assigned a score ranging from 0 to 10, and its quality was
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indicated by scores: 0–3 indicates poor quality, 4–7 indicates fair quality, and 8–10 indicates
good quality.

2.3. Meta-Analysis

Statistical analysis was conducted by using STATA statistical software version 12.0
(Stata Corp LP, College Station, TX, USA). The Pearson correlation coefficient between
seminal ORP and sperm DNA damage served as the effect size for synthesis. The correlation
for each study was weighted by the inverse of its variance. Correlation coefficients and
their standard errors were transformed to the Fisher’s z scale for meta-analysis. All results
were converted back to correlations for reporting. Fisher’s z-transformed correlations
were pooled by using the fixed-effects model, due to insignificant heterogeneity among
effect sizes. Q and I2 statistics were used to assess heterogeneity of effect sizes. A forest
plot was produced to visually assess the correlation and corresponding 95% confidence
intervals across studies. A subgroup analysis was conducted according to the SDF method
to test whether the SDF method impacted the correlation between seminal ORP and sperm
DNA damage. The SDF method was separated into two groups (a) sperm chromatin
dispersion (SCD) and (b) other SDF methods that included terminal deoxynucleotidyl
transferase (dUTP) nick end labelling (TUNEL) and sperm chromatin structure assay
(SCSA). Possible publication bias was assessed by visual inspection of the funnel plot and
the trim-and-fill method [17].

3. Results

The search strategy identified a total of 921 articles after removing duplicates (n = 119)
(Figure 1). Based on inclusion and exclusion criteria, title, abstract and keywords, screening
revealed 183 articles eligible for full-text retrieval. From these articles, seven studies were
included in this meta-analysis based on the PICOS framework.

3.1. Characteristics of Eligible Studies and Methodological Quality

Seven studies that measured both seminal ORP and SDF of 3491 semen samples from
men attending fertility clinics were included in the meta-analysis. The characteristics of the
seven studies are presented in Table 1. Of these, the majority of the studies (n = 5) were of
good quality according to the modified Newcastle-Ottawa Scale, although others (n = 2)
showed some concerns and were of fair quality (Tables 1 and S4).

Table 1. Details of the original studies evaluated both ORP and SDF in semen samples.

Studies (Author, Year) Study Type Sample Size SDF Methods ORP vs. SDF
(Correlation Coefficient) p-Value * Study Quality

(Maximum Score = 10 Stars)

Arafa et al., 2019 [18] Retrospective 659 SCD 0.264 <0.0001 9

Arafa et al., 2020 [19] Retrospective 1068 SCD 0.218 <0.0001 9

Garcia-Segura et al.,
2020 [20]

Cross-sectional 42
TUNEL 0.160 NS

6
Alkaline comet 0.125 NS

Gill et al., 2021 [21] Cross-sectional 167 SCD 0.364 <0.000001 8

Homa et al., 2019 [22] Cross-sectional 47 SCSA 0.23992 0.1043 7

Majzoub et al.,
2018–1 [23]

Prospective
case-control 1168 SCD 0.222 0.001

10
Majzoub et al.,

2018–2 [23]
Prospective
case-control 100 SCD 0.004 NS

Tanaka et al.,
2020 [24] Cross-sectional 240 SCSA 0.320075 <0.001 8

NR: not reported, NS: non-significant, ORP: oxidation-reduction potential, SDF: sperm DNA fragmentation, SCD:
sperm chromatin dispersion, SCSA: sperm chromatin structure assay, TUNEL: terminal deoxynucleotidyl trans-
ferase (dUTP) nick end labeling. * A modified Newcastle-Ottawa Scale was used for assessment of study quality.
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3.2. Correlation between ORP and SDF
3.2.1. Pooled Correlation

The fixed-effects model revealed that the pooled correlation coefficient between seminal
ORP and SDF was 0.24 (95% CI: 0.20, 0.27), as presented in Figure 2. The Q and I2 statistics
indicated insignificant heterogeneity (I2 = 42.27%, p = 0.10). The z value of the test ES = 0 was
14.18, p < 0.001. Therefore, the pooled effect size estimation was significant (p < 0.05).
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3.2.2. Subgroup Analysis

Results of the subgroup analysis are presented in Figure 3. Five studies were in-
cluded in the SDF method subgroup, and three studies were included in the other methods
subgroup. For studies using the SCD method, the pooled correlation coefficient was
0.23 (95% CI: 0.2, 0.26), whereas the pooled correlation coefficient for other SDF methods
was 0.29 (95% CI: 0.19, 0.39). The test of group differences indicated no significant differ-
ences between groups (Qb (1) = 1.19, p = 0.27). There was a moderate level of heterogeneity
(I2 = 42.27%) among the studies; however, this was not significant (p = 0.10).

3.3. Publication Bias

Visual inspection of the Funnel plot indicated a lack of publication bias, as there was
symmetry (Figure 4). The distribution of correlation values for each study was approx-
imately symmetrical around the pooled correlation estimate between seminal ORP and
SDF. The trim-and-fill method revealed no imputed studies, further indicating a lack of
publication bias.
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4. Discussion

The evaluation of male factor fertility potential is primarily based on physical examina-
tion and conventional semen analysis, as recommended by the World Health Organization
(WHO) [25]. However, a major drawback of semen analysis is that conventional sperm
parameters are crude indicators of male fertility potential, and the reference ranges for
these parameters were set based on a population of fertile couples who had succeeded in
achieving a natural conception. Therefore, there is a need to explore specialized biomarkers
that accurately assess both male infertility and fertility potential. The recent WHO manual
highlights the significance of advanced examinations, such as seminal oxidative stress
and sperm chromatin assessment in understanding the enigmatic mechanisms underlying
human sperm dysfunction [25]. A few recent studies have proposed that the imbalance in
oxidation-reduction reactions associated with oxidative stress and subsequent sperm DNA
damage could hamper male fertility [12–14]. However, the association between ORP and
sperm DNA damage has not been examined systematically. Our meta-analysis explicitly
revealed a significant relationship between ORP and sperm DNA damage, indicating the
role of oxidative stress in sperm DNA damage and therefore suggesting potential clinical
value of these advanced parameters in evaluating male fertility status.

Oxidative stress plays a major role in the pathophysiology of male infertility caused by
various clinical, environmental, and lifestyle factors [4,26,27]. An imbalance between gener-
ation of ROS and the antioxidant scavenging system results in seminal oxidative stress moni-
tored by OSS, and the associated oxidative damage to proteins, lipids, and DNA can, in turn,
compromise the structural and functional integrity of spermatozoa [26,28]. Standard direct
assays to evaluate seminal oxidative stress involve measurement of ROS levels in semen,
and indirect assays involve assessment of individual/total antioxidants or oxidized prod-
ucts (i.e., malondialdehyde) and modified base (i.e., 8-hydroxy-2′-deoxyguanosine) [29].
On the other hand, the ORP test measures the oxidative stress in semen samples based
on dynamic redox balance [11]. The application of ORP in clinical research as a tool to
evaluate seminal oxidative stress is increasing due to it being a simple and rapid test [11].
A cut-off value of 1.34 mV/106 sperm/ ml has been established based on a multicenter
study to differentiate men with normal and abnormal semen parameters [4,30]. Men with
higher ORP levels than the reference value indicates a state of seminal oxidative stress that
may increase sperm DNA damage.

ORP and sperm DNA damage were correlated with poor sperm parameters in men
with infertility [30–35]. Sperm DNA is assessed for both its integrity as well as degree
of fragmentation. Among many different methods for assessing sperm DNA damage,
SDF assays are the most commonly used in andrology laboratories. Several guidelines
highlight the clinical utility of SDF tests in evaluating male infertility [36–38]. Moreover,
recent studies have also evaluated the association between ORP and SDF [19,39]. The
current meta-analysis revealed a positive correlation between ORP and SDF with a lack of
publication bias. However, some discrepancies exist among the published studies, with
results reporting either association or no association between ORP and SDF values in a
clinical setup [20,23,24]. This discrepancy may be attributed to differences of SDF protocols,
different enzymes and slide kit suppliers, and different methods of DNA damage detection
among those studies. Our meta-analysis results indicate that TUNEL and SCSA values
correlate well with ORP results, as compared to SCD test values. However, it is also im-
portant to highlight that most studies included in our meta-analysis were retrospective or
cross-sectional. Furthermore, there is also a need to clarify whether the type of infertility
(primary, secondary, or idiopathic) influences the ORP and SDF test results. Hence, prospec-
tive studies with proper patient selection are needed to provide better insight regarding
the association between SDF and ORP test results.

The current meta-analysis has certain limitations. Some studies had low sample size
(or) reported variation among the subjects (or) weak correlation between ORP and SDF (or)
lack of uniformity among assays used for DNA damage detection. In addition, there is a
lack of information in regard to infertility duration, treatment, hormonal levels, history of
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genitourinary inflammation (GUI), lifestyle factors, etc. All these are likely to affect the SDF
and ORP values. Despite these limitations, our findings are conclusive due to the inclusion
of >3000 patients with male factor infertility issues. Furthermore, a majority of the studies
included are of good quality according to the modified Newcastle-Ottawa Scale. A major
strength of our meta-analysis is that there is a moderate degree of heterogeneity among the
studies with no publication bias.

5. Conclusions

This study is the first meta-analysis to evaluate the relationship between the newer
seminal oxidative stress markers, mainly ORP and sperm DNA damage. The analysis
revealed a positive correlation between seminal ORP and SDF. Furthermore, this study
indicates the role of oxidative stress in the development of sperm DNA damage and thus
warrants prospectively exploring the clinical application of these tests as related to male
infertility diagnosis and better treatment modalities.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox11081563/s1, Table S1: Search terms or keywords used to
search different databases to identify relevant articles; Table S2: Inclusion and exclusion criteria used
to identify the relevant articles for meta-analysis; Table S3: A modified Newcastle-Ottawa Scale for
assessment of study quality; Table S4: Grading of studies included for meta-analysis using a modified
Newcastle-Ottawa Scale for assessment of study quality.
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