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Abstract: Two new cyclohexadepsipeptides japonamides A (1) and B (2) were isolated from the
ethyl acetate extract of a marine-sponge-derived fungus Aspergillus japonicus based on molecular
networking. Their structures were elucidated by comprehensive spectral analysis and their absolute
configurations were confirmed by Marfey’s method. Compounds 1 and 2 showed no antifungal
activities against Candida albicans SC5314 measured by the broth microdilution method but exhib-
ited prominent synergistic antifungal activities in combination with fluconazole, ketoconazole, or
rapamycin. The Minimum inhibitory concentrations (MICs) of rapamycin, fluconazole, and keto-
conazole were significantly decreased from 0.5 to 0.002 µM, from 0.25 to 0.063 µM, and from 0.016
to 0.002 µM, in the presence of compounds 1 or 2 at 3.125 µM, 12.5 µM, and 6.25 µM, respectively.
Surprisingly, the combination of compounds 1 or 2 with rapamycin showed a strong synergistic effect,
with fractional inhibitory concentration index (FICI) values of 0.03.

Keywords: cyclohexadepsipeptides; synergistic antifungal activities; Aspergillus japonicus; marine-
sponge-derived fungus; japonamides

1. Introduction

The destruction of the immune system makes immunocompromised people vulnerable
to fungal infections, such as those suffering from AIDS, cancer after chemotherapy, etc. [1–3].
Fungal infection is one of the main causes of death in these patients [4]. In recent years,
fungi, such as Candida albicans and Aspergillus fumigatus, led by invasive fungi, have
gradually become important pathogens leading to nosocomial infection [5]. The clinical
infection and mortality rates have increased year by year due to fungal infection [6]. Candida
albicans, one of the most common opportunistic pathogens in the genus Candida, has the
highest infection rate and mortality [7]. At present, although there are many antifungal
drugs with certain effects, an increasing number of cases of clinical treatment failure
have occurred, mainly due to the emergence of drug-resistant strains and new strains of
Candida albicans [8]. Drug combination is an effective strategy to overcome drug resistance.
The combination of antifungal drugs and non-antifungal drugs can achieve synergy by
overcoming drug resistance or enhancing antifungal drug activity [9,10]. The strategy of
drug combination is widely adopted in clinical practice. Therefore, the discovery of efficient
natural products with synergistic effects with antimicrobial agents has become a hot spot
to solve the problem of antibiotic resistance.

Cyclic peptides (depsipeptides) are a kind of cyclic compound mainly formed by
amino acids linked by peptide bonds. They are widely distributed, ranging from bac-
teria and fungi to higher plants and mammals. Great success has been achieved in the
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development of cyclic peptide drugs [11–13]. The classical cyclic peptide drugs include cy-
closporine, vasopressin, vancomycin, and oxytocin. Compared with other small-molecule
drugs, the structural properties of cyclic peptides contribute to form orderly secondary
structures, prevent potential targeting side effects, and produce harmless metabolites.
Many cyclic peptides or depsipeptides were reported to have antifungal or synergistic
antifungal activities, and are potential antifungal drugs or lead compounds; for example,
tunicyclin D extracted from Psammosilene tunicoides, showed a broad spectrum of antifungal
activity against Candida genus [14]. Westertides A and B from Aspergillus westerdijkiae
showed synergistic antifungal activity against Candida albicans SC5314 with the presence of
rapamycin [15]. Cyclopentapeptides from an Endolichenic Xylaria sp. showed synergistic
antifungal activity against Candida albicans SC5314 with ketoconazole [16]. Therefore, new
cyclic peptides are urgently needed to enrich the library of antifungal lead compounds.

Traditional strategies for mining novel cyclic peptides were not attractive for the
repetitive and redundancy discovery of known compounds. Cyclic peptides and depsipep-
tides often produce characteristic mass fragments for the amide and/or ester bonds in
the structure that are susceptible to cleavage during collisions in mass spectrometers [17].
Molecular networking can automatically group compounds with similar fragmentation
patterns according to the tandem mass data and make them visualizable [18]. As a result,
MS/MS-based molecular networking is a highly efficient strategy for the discovery of pep-
tide natural products. In our long-term study on marine fungi, a marine-sponge-derived
fungus Aspergillus japonicus was selected to explore cyclic peptides based on molecular
networking, and a small number of metabolites such as insecticidal activity compounds
paraherquamide A [19] and asperparaline A [20] were reported in this fungus. This explo-
ration led to the discovery of two new cyclohexadepsipeptides with synergistic anti-Candida
albicans effect, namely japonamides A (1) and B (2). The details of isolation, structural
identification, and biological activities are described herein.

2. Materials and Methods
2.1. General Experimental Procedures

Optical rotations were determined on MCP200 with a 1 dm length cell at 25 ◦C. UV
spectra were recorded by Shimadzu UV-1700 UV spectrometer (Shimadzu, Tokyo, Japan).
NMR spectral data were measured with a Bruker AVANCE-500 spectrometer (Bruker,
Karlsruhe, Germany) (DMSO-d6, δH 2.50/δC 39.52). IR spectra were taken on a Bruker IFS-
55 infrared spectrophotometer (Bruker, Karlsruhe, Germany). CD spectra were recorded
with a BioLogic MOS-450 spectrometer (BioLogic Science, Grenoble, France). LC-MS/MS
data were collected from Agilent Accurate-Mass-Q-TOF LC/MS 6520. Semipreparative
HPLC was performed on an Agilent 1200 HPLC system equipped with an Agilent DAD
UV−vis spectrometric detector, using a reversed-phase Eclipse XDB-C18 column (5 µm,
9.4 mm × 250 mm, Agilent) with a flow rate of 2.0 mL/min. Silica gel (Qingdao Haiyang
Chemical Co., Ltd., 200–300 mesh), Sephadex LH-20 (Pharmacia, Uppsala, Sweden), and
ODS (50 µm, YMC CO., LTD) were used for column chromatography. Fractions were
monitored by TLC (silica gel GF254, Qingdao Marine Chemical Co. Ltd.), and the spots
were visualized by UV at 254 nm and spraying with 10% H2SO4-EtOH assisted with
heating. All reagents or solvents were HPLC or analytical grade and were purchased from
Tianjin Damao Chemical Company (Tianjin, China) unless otherwise stated.

2.2. Fungal Material, Fermentation, and Extraction

The fungus Aspergillus japonicus was purchased from the Marine Culture Collection of
China (MCCC 3A00261) which was isolated from the marine sponge collected from the
Arctic 6700-4 sea area and identified according to the morphological analysis and ITS gene
sequencing (Genbank Accession number HM573340). The Aspergillus japonicus strain was
cultured on slants of Potato Dextrose Agar (PDA) medium at 28 ◦C for 7 days as seed
medium. For large-scale fermentation, agar plugs were inoculated in 309 bottles of 500 mL
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Erlenmeyer flasks with 200 mL of PDA medium and then incubated at 25 ◦C for 35 days
under static cultivation.

After fermentation, the mycelium and fermentation broth were separated by suction
filtration. The 60 L fermentation broth was concentrated to 5 L, and the same amount of
ethyl acetate was added, after extracting 3 times to obtain 10 g ethyl acetate extract under
reduced pressure.

2.3. Molecular Networking Analyses and Compound Isolation

An amount of 10 mg ethyl acetate extract was dissolved in 2 mL of methanol and
analyzed by LC-MS/MS. The resulting raw data were converted to mzML format and
analyzed using the Molecular Networking tool on the Global Natural Product Social (GNPS)
Web site (https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp, accessed on 22 April
2022). A mass tolerance of 0.02 Da was set for both the precursor ion and the MS/MS
fragment ion. The minimum pairs’ cosine, matched fragment ions, network topk, maximum
connected component size, and cluster size were set to 0.7, 6, 10, 100, and 2, respectively.
The results were downloaded and visualized with Cytoscape 3.9.1 [17,21].

The 10 g EtOAc extract was fractionated by vacuum liquid chromatography on silica
gel (200–300 mesh) using CH2Cl2/CH3OH gradient elution (100:1–0:100, v/v) to give five
fractions, Fr.1–Fr.5. Guided by molecular networking, peptides were found in Fr.3. Fr.3
(4.14 g) was subjected to reversed-phased ODS column chromatography (CH3OH−H2O,
10−80%, v/v) and obtained 9 subfractions (Fr.3-1 to Fr.3-9). Fr.3-5 (50 mg) was purified by
semipreparative reversed-phase HPLC with 2.0 mL/min 60% CH3OH−H2O to provide
japonamide A (1, 8.8 mg, tR = 22.8 min) and japonamide B (2, 6.5 mg, tR = 34.2 min).

Japonamide A (1): white powder, [α]25D = −68.0 (c 0.1, MeOH); UV (MeOH) λmax
(log ε) = 210 (4.55), 220 (sh) nm; CD (c = 0.5 mg/mL, MeOH) λmax (∆ε) = 233 (−38) nm; IR
(neat) νmax = 3415, 3295, 2972, 2968, 2936, 1670, 1623, 1522, 1454, 1246, 1067, 1027, 828, 806,
737 cm−1; 1H and 13C NMR data, see Table 1. Positive HRESIMS m/z [M + Na]+ 827.3951
(calcd. for C42H56N6O10Na, 827.3956).

Table 1. The 1H (600 MHz) and 13C (150 MHz) NMR data for compounds 1 and 2 in DMSO-d6.

1 2

Position Units δC δH (mult, J in Hz) δC δH (mult, J in Hz)

L-Pro-1
1 CO 169.3 169.3
2 α-CH 57.3 4.62 (dd, 8.8, 3.5) 57.2 4.62 (dd, 8.8, 3.4)
3 β-CH2 27.4 1.71 (m) 27.5 1.72 (m)

2.16 (m) 2.15 (m)
4 γ-CH2 23.9 1.85 (m) 23.9 1.84 (m)

1.89 (m) 1.90 (m)
5 δ-CH2 47.1 3.57 (dt, 14.0, 8.0) 47.2 3.61 (m)

3.82 (dt, 14.0, 8.0) 3.85(ddd,10.0,8.1,5.2)
L-Pro-2

6 CO 172.2 172.2
7 α-CH 54.5 4.31 (dd, 8.0, 5.4) 54.5 4.31 (dd, 8.0, 5.4)
8 β-CH2 28.0 0.73 (m) 28.0 0.72 (m)

1.01 (m) 1.01 (m)
9 γ-CH2 25.0 1.63 (m) 25.0 1.62 (m)

1.88 (m) 1.89 (m)
10 δ-CH2 46.8 3.44 (dt, 14.0, 7.0) 46.8 3.44 (dt, 10.0, 7.1)

3.64 (dt, 14.0, 7.0) 3.63 (m)

https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp
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Table 1. Cont.

1 2

Position Units δC δH (mult, J in Hz) δC δH (mult, J in Hz)

N-Me-O-Me-L-Tyr
11 CO 169.6 169.7
12 α-CH 61.8 4.79 (dd, 11.6, 3.5) 61.8 4.80 (dd, 11.5, 3.5)
13 β-CH2 32.2 2.73 (dd, 14.5, 11.6) 32.2 2.73 (dd, 14.5, 11.5)

2.99 (dd, 14.5, 3.5) 2.99 (dd, 14.5, 3.5)
14 γ-C 129.8 129.8

15 or 19 δ-CH 130.4 7.10 (d, 8.9) 130.4 7.10 (d, 8.5)
16 or 18 ε-CH 113.9 6.85 (d, 8.9) 113.9 6.84 (d, 8.5)

17 ζ-C 158.1 158.1
20 N-CH3 28.2 2.23 (s) 28.2 2.23 (s)
21 OCH3 55.1 3.70 (s) 55.1 3.70 (s)

L-Tyr
22 CO 170.7 170.7
23 α-CH 55.7 4.25 (td, 8.7, 6.0) 55.7 4.26(ddd,10.0,8.5,5.0)
24 β-CH2 36.3 2.84 (m) 36.3 2.86 (m)
25 γ-C 127.8 127.9

26 or 30 δ-CH 130.1 6.95 (d, 8.5) 130.1 6.95 (d, 8.5)
27 or 29 ε-CH 115.0 6.65 (d, 8.5) 115.1 6.61 (d, 8.5)

28 ζ-C 155.9 155.9
NH 8.66 (d, 8.7) 8.67 (d, 8.5)
OH 9.22 (s) 9.23 (s)

N-Ac-L-Thr
31 CO 167.7 167.6
32 α-CH 54.5 4.71 (dd, 9.1, 4.5) 54.4 4.72 (dd, 9.1, 4.5)
33 β-CH 69.9 4.96 (qd, 6.6, 4.5) 69.9 4.94 (dd, 6.6, 4.5)
34 γ-CH3 15.2 1.21 (d, 6.6) 15.2 1.21 (d, 6.6)
35 CO 170.0 169.9
36 CH3 22.7 1.98 (s) 22.7 1.98 (s)

NH 7.78 (d, 9.1) 7.78 (d, 9.1)
D-Ile or Val

37 CO 169.8 169.8
38 α-CH 54.5 4.42 (t, 8.9) 55.8 4.32 (d, 8.8)
39 β-CH 36.3 1.70 (m) 29.8 1.90 (m)
40 γ1-CH2 or γ1-CH3 25.2 1.07 (m) 18.7 0.85 (d, 5.2)

1.31 (m)
41 γ2-CH3 14.7 0.82 (d, 6.7) 18.6 0.86 (d, 5.2)
42 δ-CH3 11.6 0.85 (t, 7.4)

NH 7.35 (d, 8.9) 7.40 (d, 8.8)

Japonamide B (2): white powder, [α]25D = −120.98 (c 0.1, MeOH); UV (MeOH) λmax
(log ε) = 210 (4.53), 220 (sh) nm; CD (c = 0.5 mg/mL, MeOH) λmax (∆ε) = 233 (−32) nm; IR
(neat) νmax = 3415, 3289, 2963, 2968, 2936, 1628, 1514, 1454, 1246, 1067, 1027, 828, 806, 737,
701 cm−1; 1H and 13C NMR data, see Table 1. Positive HRESIMS m/z [M + Na]+ 813.3800
(calcd. for C41H54N6O10Na, 813.3799).

2.4. Absolute Configurations of Amino Acids by the Advanced Marfey’s Analysis

The advanced Marfey’s analyses were carried out as previous reported with some
modifications [16,21]. Compounds 1 and 2 (2.0 mg) were dissolved in 6 N HCl (2.0 mL) and
heated at 100 ◦C for 24 h. The solutions were then evaporated to dryness and transferred to
a 4 mL reaction vial and treated with a 10 mg/mL solution of 1-fluoro-2-4-dinitrophenyl-
5-L-alanine amide (FDAA, 200 µL) in acetone, followed by 1.0 M NaHCO3 (40 µL). The
reaction mixtures were heated at 45 ◦C for 90 min, and the reactions were quenched by the
addition of HCl (1 N, 40 µL). Similarly, standard L- and D-amino acids (Thr, Val, Pro, Tyr and
N-Me-Tyr-OMe) were derivatized separately. The derivatives of the acid hydrolysate and
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the standard amino acids were subjected to HPLC analysis (Kromasil C18 column; 5 µm,
4.6 × 250 mm; 1.0 mL/min; UV detection at 340 nm) with a linear gradient of acetonitrile
(30–45%) in water (TFA, 0.01%) over 50 min. Retention times for the authentic standards
were as follows: L-Thr (5.9 min), D-Thr (6.9 min), L-Pro (8.8 min), D-Pro (9.6 min), FDAA
(11.0 min), L-Val (14.2 min), N-Me-O-Me-L-Tyr (19.3 min), L-Ile (19.9 min), D-Val (20.5 min),
N-Me-O-Me-D-Tyr (21.2 min), D-Ile (28.1 min), L-Tyr (36.3 min), and D-Tyr (43.7 min). The
absolute configurations of the chiral amino acids in compounds 1 and 2 were determined
by comparing the retention times.

2.5. In Vitro Activities of Compounds 1 and 2 in Combination with Antibiotics against Candida
albicans SC5314

The strain used for antifungal and synergistic antifungal bioassay was Candida albicans
SC5314. Antifungal susceptibility testing was carried out as described previously [16,22]
in 96-well microtiter plates (Greiner, Germany), using a broth microdilution protocol
modified from the Clinical and Laboratory Standards Institute M-27A3 methods. The
concentrations were 2-fold diluted from 100 to 1.56 µM (test compounds) or from 1 to
0.0156 µM (positive drugs). Minimum inhibitory concentration (MIC) was determined as
the drug concentration that inhibits fungal growth by >80% relative to the corresponding
drug-free growth control. For the synergistic antifungal testing, 1/4 MIC of one compound
was preadded into the medium, with the procedures being otherwise carried out in the
same fashion. Basic procedures were the same as the method for antifungal susceptibility
testing. Antifungal agents (rapamycin, fluconazole, and ketoconazole) were 2-fold diluted
from the concentrations 2 to 0.002 µM in column, while peptide-like compounds were 2-fold
diluted from 25 to 0.39 µM in row of the 96-well microtiter plate. The fractional inhibitory
concentration index (FICI) is defined as the sum of the MIC of each drug when used in
combination divided by the MIC of the drug used alone. Synergism and antagonism were
defined by FICI indices of ≤0.5 and >4, respectively.

3. Results and Discussion

After extraction and concentration, 10 g ethyl acetate extract was gained from 60 L
PDA fermentation broth of Aspergillus japonicus. The EtOAc extract was analyzed by
high-resolution tandem mass spectrometry (HR-MS/MS). A molecular network (MN)
was constructed using the GNPS Molecular Networking platform (Figure 1A). More than
15 prominent clusters were observed. Upon inspection, the annotated network revealed the
presence of a particularly interesting “molecular family” constituted of nodes reminiscent
of peptides (Figure 1B), as the tandem mass spectra of these protonated molecules featured
typical fragments corresponding to amino acid imine ions (Figure 1C). Guided by the MN,
compounds in this cluster were emphatically isolated, and two new cyclohexadepsipeptides
japonamides A (1) and B (2) were obtained (Figure 2). These structures were determined by
extensive spectroscopic analysis and Marfey’s reaction.

Japonamide A (1) was isolated as white powder. The molecular formula C42H56N6O10
of compound 1 was deduced from a positive HR-ESI-MS ion at m/z 827.3951 (calcd. for
C42H56N6O10Na, 827.3956), with 18 degrees of unsaturation. In the IR spectrum, the
stretching vibration of N-H (vN-H3415 cm−1), O-H (vO-H 3295 cm−1), C-H (vC-H 2972, 2968,
2936 cm−1), C=O (vC=O 1623 cm−1), C=C of aromatic group (vAr-C=C 1670, 1522 cm−1),
and C-N (vC=C 1454 cm−1) indicated the existence of NH, OH, C=O, and a benzene ring.
Analysis of its 1H, 13C, and HSQC NMR data (Table 1, Figure S3–S5) indicated the presence
of three amide N-proton signals (δH 8.66 (d, J = 8.7 Hz), 7.78 (d, J = 9.1 Hz), and 7.35 (d,
J = 8.9 Hz)) and eight methine groups, seven of which oxygenated or nitrogenated at δC/H
69.9/4.96, 61.8/4.79, 57.3/4.62, 55.7/4.25, 54.5/4.71, 54.5/4.31, and 54.5/4.42, seven car-
bonyl carbons at δC 172.2, 170.7, 170.0, 169.8, 169.6, 169.3, and 167.7, two 1,4-substituted ben-
zene rings at δC/H 130.4/7.10 (2H, d, J = 8.9 Hz), 113.9/6.85 (2H, d, J = 8.9 Hz), 130.1/6.95
(2H, d, J = 8.5 Hz), 115.0/6.65 (2H, d, J = 8.5 Hz), and δC 127.8, 129.8, 155.9, and 158.1,
five methyl groups including one methoxy at δC/H 55.1/3.70, one doublet methyl at δC/H
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14.7/0.82 (d, J = 6.7 Hz), one triplet methyl at δC/H 11.6/0.85 (t, J = 7.4 Hz), another two
singlet methyl groups at δC/H 28.2/2.23 and 22.7/1.98, and nine methylene groups. All of
the above information implies the existence of peptide or depsipeptide.
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The 1H-1H COSY correlations (Figure 3, Figure S6) H2-3 with H2-4 and H-2, and H2-4
with H-5, and HMBC correlations (Figure 3, Figure S7) from H2-3 and H-2 to C-1 elucidated
the structure of proline residue. Another proline residue was constructed with the same
structural analysis method. The 1H-1H COSY correlations of H-12 with H2-13, and H-15/19
with H-16/18, combined with HMBC correlations from OCH3 protons (δH 3.70) to C-17,
from H-16/18 to C-17 and C-14, from H-15/19 to C-13, C-14 and C-17, from H-12 and
H2-13 to C-11, and from NCH3 protons (δH 2.23) to C-12, identified the N-methyl-O-methyl
tyrosine (diMeTyr) residue. Similarly, the tyrosine residue was confirmed. The isoleucine
residue was illustrated by the 1H-1H COSY correlations of H-39 with H-38, H2-40 and
H3-41, and H2-40 and H3-43, together by the HMBC correlation from H-39 and H-38 to C-37.
The 1H-1H COSY correlations of H-33 with H-32 and H3-34, the HMBC correlations from
H-33 and H-32 to C-31, and the chemical shift of oxygenated methine-33 (δC/H 69.9/4.96)
together confirmed the threonine residue. Ulteriorly, the HMBC correlations from H3-36
and H-32 to C-35 (δC 170.0) verified threonine residue was substituted by acetyl and it was
an N-acetylthreonine residue (AcThr).
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The AcThr-Ile-Pro-Pro-diMeTyr-Tyr sequential connection of amino acid residues
was joined by the HMBC correlations from NH proton (δH 7.35) and H-40 to C-31, the
ROESY correlations (Figure 3, Figure S8) of H2-5 with H-38, and H2-10 with H-2, the HMBC
correlations from NCH3 protons (δH 2.23) and H-12 to C-6, and from NH proton (δH 8.66)
and H-23 to C-11. The peptide chain was closed by the HMBC correlations from H-33 to
C-22. Geometry was present in the proline amide bond, and the ∆δCβ-Cγ values of the
Pro residues (3.5 and 3.0 ppm for Pro1 and Pro2, respectively) were indicative of trans
geometries for all proline amide bonds in 1 [23,24].

Furthermore, to elucidate the structure of the cyclohexadepsipeptide undoubtedly,
HR-MS/MS was also used to determine the amino acid sequence. According to the
mechanism of amide bond cleavage, protonated peptides in the low collision energy regime
will generate sequence-diagnostic ion series containing the N-terminus (bn fragments),
C-terminus (yn fragments), and a fragment (bn losing CO) [25–27]. As shown in Scheme 1
and Figure 4, the first dissociation step of compound 1 involves the opening of the cyclo-
peptide ring by cleavage of the lactone group and results in a linear form fragment. One
possible fragment (b6) ion losing Tyr residue, H2O, diMeTyr residue, Pro residue, Pro
residue, and Ile residue, successively, generated the fragments b5 (642), b5 (624), b4 (433),
b3 (336), b2 (239), and b1 (126). Another possible fragment ion losing AcThr, Ile, Pro, and
Pro residues generated the fragments y5 (680), y4 (567), y3 (470), and y2 (373), successively.
In addition, other abundance ions were deduced in Scheme 1. The analysis of HR-MS/MS
matched with the NMR, and the amino acid sequence of cyclohexadepsipeptide was
confirmed undoubtedly.

The absolute configurations of the amino acid moieties in compound 1 were de-
ciphered using the advanced Marfey’s analysis, following HPLC comparison against
available L and D commercial standards [17]. Acid hydrolysis (HCl) of 1 and chemical
derivatization with FDAA yielded a mixture of FDAA derivative of Thr (derived from N-
Ac-L-Thr), Ile, Pro, N-Me-O-Me-Tyr, and Tyr. HPLC analyses of the mixture of hydrolysates
and appropriate amino acid standards confirmed the presence of N-Ac-L-Thr, D-Ile, L-Pro
(×2), N-Me-O-Me-L-Tyr, and L-Tyr in 1 (Figure 5, Figure S1). Thus, compound 1 was
identified and named as japonamide A.
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Figure 5. Advanced Marfey’s analysis of compounds 1 and 2. The FDAA derivatives of standard
compounds a-m were L-Thr (5.9 min), D-Thr (6.9 min), L-Pro (8.8 min), D-Pro (9.6 min), FDAA
(11.0 min), L-Val (14.2 min), N-Me-O-Me-L-Tyr (19.3 min), L-Ile (19.9 min), D-Val (20.5 min), N-Me-
O-Me-D-Tyr (21.2 min), D-Ile (28.1 min), L-Tyr (36.3 min), and D-Tyr (43.7 min), respectively. The
derivatives of the acid hydrolysate and the standard amino acids were subjected to HPLC analysis
(Kromasil C18 column; 5 µm, 4.6 mm × 250 mm; 1.0 mL/min; UV detection at 340 nm) with a linear
gradient of acetonitrile (30–50%) in water (TFA, 0.01%) over 50 min.

Japonamide B (2) was isolated as white powder (methanol). The molecular formula
C41H54N6O10 was deduced from a positive HR-ESI-MS ion at m/z [M+Na]+ 813.3800 (calcd.
for 813.3799) with 18 degrees of unsaturation. The 1H NMR spectroscopic data showed that
compound 2 was similar to compound 1. One triplet methyl (CH3-42) and one methylene
(CH2-40) in 1 replaced by one doublet methyl (δH 0.86, CH3-41) in 2 indicated that isoleucine
residue in compound 1 was replaced by valine residue in 2. HMBC correlations from δH
7.40 (NH) to δC 55.8 (C-38) and δC 29.8 (C-39), from δH 4.32 (H-38) to C-39, δC 18.6 (C-41),
and δC 18.7 (C-40), from δH 0.85 (H3-40) and δH 0.86 (H3-41) to C-39 and C-38, proved to
existence of valine in 2. Comprehensive analysis of NMR (Figure 3, Figure S9–S14), HR-
MS/MS (Figure 4), and Marfey’s reaction (Figure 5, Figure S2) resulted in the structure of
compound 2 being assigned as cyclo-[(N-Me-O-Me-L-Tyr)-L-Pro-L-Pro-D-Val-(N-Ac-L-Thr)-
L-Tyr] and named as japonamide B.

Many cyclic peptides or depsipeptides were reported to have antifungal or synergistic
antifungal activities against the azole-resistant strain Candida albicans SC5314 in the presence
of rapamycin or ketoconazole [14–16]. In this work, the antifungal or synergistic antifungal
activities against Candida albicans SC5314 were evaluated. Compounds 1 and 2 showed
no antifungal activities at all by themselves (MICs > 100 µg/mL). Checkerboard assays
were used to obtain the minimum synergistic concentrations with rapamycin, fluconazole,
and ketoconazole (Table 2). The MICs of rapamycin, fluconazole, and ketoconazole were
significantly decreased from 0.5 to 0.002 µM, from 0.25 to 0.063 µM, and from 0.016 to
0.002 µM, respectively, while in the presence of compounds 1 or 2 at 3.125 µM, 12.5 µM,
and 6.25 µM, respectively. The FICIs lower than 0.5 indicated that compounds 1 and 2 had
synergistic antifungal effects with rapamycin, fluconazole, and ketoconazole. In addition,
compounds 1 and 2 showed more efficient synergistic antifungal activity with rapamycin.
Moreover, cytotoxicity was evaluated, and neither two compounds showed cytotoxicity
within 100 µM against RAW264.7, U973, HT22, and PC12 cell lines.
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Table 2. Synergism Evaluations of Rapamycin, Fluconazole, and Ketoconazole with Compounds 1
and 2.

Drugs Antifungal MICs (µM) Synergistic Antifungal
MICs (µM) FICI a Definition b

Rapamycin 0.5 0.002 − −
1 >100 3.125 0.03 HS
2 >100 3.125 0.03 HS

Fluconazole 0.25 0.063 − −
1 >100 12.5 0.25 S
2 >100 12.5 0.25 S

Ketoconazole 0.016 0.002 − −
1 >100 6.25 0.125 S
2 >100 6.25 0.125 S

a The concentrations of rapamycin, fluconazole, and ketoconazole in synergy antifungal screening experiment are
0.002, 0.063, and 0.002 µM, at which they do not show antifungal activity. As MICs alone for compounds 1 and
2 > 100 µM, we used 100 to calculate FICI, and the start concentration was 25 µM in the checkerboard assay; the
possible minimal FICIs are shown. b HS, hyper-synergism; S, synergism; NS, no synergism.

4. Conclusions

Two new cyclohexadepsipeptides were isolated from the ethyl acetate extract of a
marine-sponge-derived fungus based on molecular networking. Their structures were
elucidated by spectroscopic analysis, and their absolute configurations were confirmed
by Marfey’s method. All compounds showed synergistic effects with antifungal drugs
(fluconazole, ketoconazole, and rapamycin). Compounds 1 and 2 combined with ra-
pamycin revealed synergistic antifungal activity against Candida albicans, with MIC values
of 3.125 µM and FICI values of 0.03. The absence of toxicity to mammalian cells indicated
the safety of the drug, which has important implications for the research and development
of drugs. The results of the present study suggest that the combination of compounds 1
or 2 with antifungal drugs may be an effective anti-Candida albicans regimen. Meanwhile,
the results opened up a new method for cyclic peptides as synergistic antifungal active
molecules in combination with fluconazole, ketoconazole, and rapamycin against resistant
Candida albicans. The underlying synergistic mechanism requires further exploration.
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