
fphys-10-01402 November 12, 2019 Time: 17:3 # 1

REVIEW
published: 14 November 2019

doi: 10.3389/fphys.2019.01402

Edited by:
Joshua Scallan,

University of South Florida,
United States

Reviewed by:
Andrew Carley,

The Ohio State University Wexner
Medical Center, United States

Changting Xiao,
Toronto General Hospital Research

Institute (TGHRI), Canada

*Correspondence:
Xinguo Jiang

xinguoj@stanford.edu
Stanley G. Rockson

rockson@stanford.edu

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Lipid and Fatty Acid Research,
a section of the journal
Frontiers in Physiology

Received: 28 August 2019
Accepted: 31 October 2019

Published: 14 November 2019

Citation:
Jiang X, Tian W, Nicolls MR and

Rockson SG (2019) The Lymphatic
System in Obesity, Insulin Resistance,

and Cardiovascular Diseases.
Front. Physiol. 10:1402.

doi: 10.3389/fphys.2019.01402

The Lymphatic System in Obesity,
Insulin Resistance, and
Cardiovascular Diseases
Xinguo Jiang1,2*†, Wen Tian1,2†, Mark R. Nicolls1,2 and Stanley G. Rockson2*

1 VA Palo Alto Health Care System, Palo Alto, CA, United States, 2 Department of Medicine, Stanford University School
of Medicine, Stanford, CA, United States

Obesity, insulin resistance, dyslipidemia, and hypertension are fundamental clinical
manifestations of the metabolic syndrome. Studies over the last few decades have
implicated chronic inflammation and microvascular remodeling in the development of
obesity and insulin resistance. Newer observations, however, suggest that dysregulation
of the lymphatic system underlies the development of the metabolic syndrome.
This review summarizes recent advances in the field, discussing how lymphatic
abnormality promotes obesity and insulin resistance, and, conversely, how the
metabolic syndrome impairs lymphatic function. We also discuss lymphatic biology in
metabolically dysregulated diseases, including type 2 diabetes, atherosclerosis, and
myocardial infarction.
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INTRODUCTION

Obesity, characterized by increased storage of fatty acids in expanded adipose tissues, is becoming a
major health problem in modern society, as humans increasingly embrace a relatively sedentary
lifestyle. The chronic obese status predisposes individuals to the development of the metabolic
syndrome and increases the incidence of type 2 diabetes (T2D) and cardiovascular diseases (Kahn
and Flier, 2000; O’Neill and O’Driscoll, 2015; Catrysse and van Loo, 2017). Dysregulated lipid
metabolism and low-grade chronic inflammation are among the notable pathologies in obese
adipose tissue (Ruotolo and Howard, 2002; Konner and Bruning, 2011). More recently, there is
increasing evidence that dysfunction of the lymphatic vasculature is involved in the pathogenesis
of obesity and obesity-associated dyslipidemia and low-grade chronic inflammation (Harvey et al.,
2005; Aspelund et al., 2016), presumably because the lymphatic system is important for immune
homeostasis and lipid transport (Jiang et al., 2018). This review provides an overview of the
interplay between the function of lymphatic system and presence of obesity and insulin resistance.
We also discuss how the lymphatic system may be harnessed to treat T2D and cardiovascular
diseases associated with obesity and insulin resistance.

THE LYMPHATIC SYSTEM

Lymphatic Structure
The lymphatic system is comprised of lymphatic vessels and the secondary lymphoid organs that
include lymph nodes, spleen, tonsils, and Peyer’s patches (Ruddle and Akirav, 2009; Choi et al.,
2012). The lymphatic vasculature is a unidirectional circulatory network that begins as blunt-ended
capillaries composed of a single layer of lymphatic endothelial cells (LECs) that tether directly to

Frontiers in Physiology | www.frontiersin.org 1 November 2019 | Volume 10 | Article 1402

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2019.01402
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphys.2019.01402
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2019.01402&domain=pdf&date_stamp=2019-11-14
https://www.frontiersin.org/articles/10.3389/fphys.2019.01402/full
http://loop.frontiersin.org/people/97531/overview
http://loop.frontiersin.org/people/842450/overview
http://loop.frontiersin.org/people/799751/overview
http://loop.frontiersin.org/people/725361/overview
https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-01402 November 12, 2019 Time: 17:3 # 2

Jiang et al. Lymphatics in Obesity, Cardiovascular Diseases

the interstitial tissue through anchoring filaments, with disconti-
nuous basement membrane coverage (Jiang et al., 2018). Capillary
LECs are interconnected by unique button-like structures that
are formed by discontinuous layers of junctional proteins such as
VE-cadherin, claudin, Zonula occludens-1 (ZO-1), connexin, and
occludin (Baluk et al., 2007). The presence of these buttons serves
to create overlapping LEC flaps that serve as de facto primary
valves. In response to interstitial fluid pressure fluctuation,
these flaps can open and close to regulate fluid reabsorption
as well as the uptake of macromolecules and immune cells
(Yao et al., 2012; Jiang et al., 2018). The lymphatic capillaries
converge into precollectors and these in turn coalesce into the
collecting lymphatics, in which LECs are joined by zipper-
like, continuous, seamless junctions and invested with basement
membrane along with smooth muscle cell coverage. Intraluminal
lymphatic valves divide the collecting lymphatics into contractile
segments designated as lymphangions, thus providing a structural
basis for the unidirectional lymph flow (Aspelund et al., 2016;
Figure 1). The collecting lymphatics travel through chains of
lymph nodes, which allows the delivery of free antigens and
antigen-loaded dendritic cells (DCs) from interstitial tissue for
immune priming; the central lymphatic vasculature eventually
joins the subclavian veins via the thoracic duct(s) conveying the
lymph node-filtered interstitial fluid back to the blood circulatory
system (Thomas et al., 2016; Jiang et al., 2018).

Early Lymphatic Development and
Lymphangiogenesis
Lymphatic vasculature originates from the cardinal vein
and subsequently develops independently from the blood
circulatory system (Wigle and Oliver, 1999). The homeobox
gene Prox-1 appears to be the master control gene for lymphatic
differentiation and development (Choi et al., 2012). In E9.5
mouse embryos, Prox-1 expression begins in a subset of
endothelial cells (ECs) of the cardinal vein and specifies them
as LECs. Prox-1 then upregulates lymphatic markers such as
LYVE-1, VEGFR3, and Chemokine (C–C motif) ligand (CCL)21,
and concurrently downregulates blood vascular signature genes
(Wigle et al., 2002). This molecular differentiation enables
LEC budding from the cardinal vein to form the rudimentary
lymphatic vessels, known as the jugular lymph sac, at E11.5 (Choi
et al., 2012). Conditional Prox-1 downregulation reprograms
LECs into blood endothelial cells (BECs) in both developing
and adult mice as well as in cell culture (Johnson et al.,
2008), supporting the notion that Prox-1 is an indispensable
transcriptional factor for the maintenance of LEC identity.
Following the initial specification and budding, the lymph
sac then expands through lymphangiogenesis, a process of
new lymphatic vessel sprouting from preexisting structures
(Aspelund et al., 2016). VEGF-C/D-activated VEGFR3 signaling
is the most central pathway for lymphangiogenesis (Zheng et al.,
2014). VEGF-C deficiency leads to lymphatic insufficiency and
lymphedema, a defect that can be rescued by VEGF-D during
development (Karkkainen et al., 2004); VEGFR3 activation is
also critical for pathophysiological lymphangiogenesis following
lymphatic injury (Szuba et al., 2002). VEGFR3 missense
mutations in the tyrosine kinase domains underlie the etiology

of 70% cases of primary congenital lymphedema, known as
Milroy disease (Karkkainen et al., 2000; Connell et al., 2009),
indicating that the VEGFR3 signaling is important for the
normal development of human lymphatic vasculature. The
axon guidance protein neuropilin (NRP)-2 enhances VEGFR3
signaling by acting as its co-receptor (Yuan et al., 2002; Xu et al.,
2010). By facilitating VEGF-C maturation, the collagen- and
calcium-binding EGF domains 1 (CCBE1) protein also promotes
lymphangiogenesis (Bos et al., 2011; Jha et al., 2017). Thus, both
NRP2 and CCBE1 are factors involved in lymphangiogenesis by
regulating the VEGF-C/VEGFR3 signaling.

Following the initial sprouting, lymphatic capillaries mature
through activating the Notch signaling pathway (Zheng et al.,
2011), resembling the well-known tip–stalk cell paradigm in
angiogenesis (Potente et al., 2011). Maturation of collecting
lymphatic vessels requires concerted smooth muscle cell
recruitment and patterning as well as valve development.
Although angiopoietin (ANG)2 antagonizes TIE2 receptor
activation during blood angiogenesis, it appears to stimulate
TIE2 signaling in LECs and to promote postnatal lymphatic
remodeling (Gale et al., 2007); ANG2-deficient mice do
not develop normal hierarchical lymphatic vascular system
(Dellinger et al., 2008). The forkhead box protein FOXC2
modulates lymphatic capillary development by controlling
SMC recruitment and basement membrane formation (Petrova
et al., 2004). In coordination with Prox-1, FOXC2 senses
lymph flow and induces the expression of gap junction
protein connexin 37 (Cx37) and activates calcineurin/nuclear
factor of activated T-cells (NFAT) signaling, which regulates
lymphatic valve formation (Sabine et al., 2012). While FOXC2
controls ANG2 expression in angiogenesis (Xue et al., 2008), it
induces TIE2 in LECs (Thomson et al., 2014), suggesting that
FOXC2 may promote lymphatic maturation by regulating the
ANG2/TIE2 signaling.

Other signaling pathways, including fibroblast growth
factor (FGF)2/FGF receptor (FGFR)1, sphingosine-1-phosphate
(S1P)/S1P receptor (S1PR)1, and bone morphogenetic protein
(BMP)9/activin receptor-like kinase 1 (ALK1), also regulate
lymphangiogenesis (Zheng et al., 2014). Additionally, pro-
inflammatory cytokines influence lymphangiogenesis and affect
immune activation and resolution. In general, type 1 cytokines
including IL-1, IL12, IL-18, and TNF-α promote, and type
2 and anti-inflammatory cytokines such as IL-4, IL-5, IL13,
and IL-10 suppress lymphangiogenesis (Sainz-Jaspeado and
Claesson-Welsh, 2018). The pro-inflammatory lipid molecule
leukotriene B4 (LTB4) promotes lymphatic regeneration at
low concentration but suppresses lymphangiogenesis at high
pathological concentrations (Tian et al., 2017). In summary,
lymphangiogenesis is regulated by growth factors and cytokines,
as well as by interstitial fluid flow (Figure 1).

THE INTERPLAY BETWEEN LYMPHATIC
VASCULATURE AND OBESITY

Interaction of genetic, epigenetic, environmental, and
psychological factors regulates the production of physiological
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FIGURE 1 | Lymphatic vascular tree and lymphangiogenesis. Lymphatic capillaries are comprised of single layer LECs that tether directly to the extra cellular matrix.
Junctional proteins form button structure that interconnects capillary LECs; and those buttons allow the formation of overlapping LEC flap, through which interstitial
fluid and macromolecule enter the blind-ends of the capillaries. Capillaries converge into pre-collectors, which in turn coalesces into collecting lymphatics. SMCs
loosely cover the precollector, but invest collecting lymphatics more completely. Junctional proteins of the collecting lymphatics form a continuous structure, known
as zipper. Collecting lymphatics are comprised of lymphangions that are demarcated by intravascular valves, the segment between two valves is designated as one
lymphangion. Factor regulates lymphangiogenesis include pro-lymphangiogenic growth factors, pro-inflammatory cytokines, and interstitial fluid. Type 2 cytokines,
and high concentrations of LTB4, are molecules that suppress lymphangiogenesis. LEC, lymphatic endothelial cell; VEGF, vascular endothelial growth factor; ANG,
angiopoietin; FGF, fibroblast growth factor; S1P, sphingosine 1 phosphate; BMP, bone morphogenetic protein; IL, interleukin; LTB4, leukotriene B4; TNF, tumor
necrosis factor; SMC, smooth muscle cell.

mediators that control the balance of energy intake and
expenditure (Gonzalez-Muniesa et al., 2017). When energy
intake is in surplus, about 70–80% of the excessive intake is
stored as fat, and the remainder is converted into glycogen
or protein or lost as heat; long-term positive energy balance
ultimately leads to obesity (Oussaada et al., 2019). Genetic
mediation of obesity can be monogenic or polygenic. Monogenic
mutation is relatively rare and primarily affects the genes
involved in the leptin–melanocortin pathway, the central
regulator of food intake and energy balance (Oussaada et al.,
2019); as examples, the leptin receptor (LEPR) (Farooqi et al.,
2007), pro-opiomelanocortin (POMC) (Krude et al., 2003),
melanocortin 4 receptor (MC4R) (Krude et al., 2003), and
MC3R (Lee et al., 2002) have all been linked to early onset
of obesity in humans. Polygenic causation, however, is more
common and accounts for >90% cases of childhood-onset
obesity (Kleinendorst et al., 2018). Notably, common variants
in certain loci within the fat mass and obesity-associated
gene (FTO) have been linked to higher BMI in human
populations (Claussnitzer et al., 2015; Oussaada et al., 2019).
DNA methylation studies have identified epigenetic modification
of several genes that are associated with obesity, as detailed
elsewhere (Rohde et al., 2019). Whether obesity promotes
epigenetic change and further deteriorates the imbalance
between energy intake and expenditure to exacerbate obesity is
an open question.

The lymphatic vasculature regulates both dietary lipid
absorption and peripheral cholesterol removal. The intestinal
lacteals are lymphatic vessels comprised of both capillary
and collecting lymphatic elements. The lacteals absorb dietary
lipids packaged as chylomicrons (Iqbal and Hussain, 2009;
Randolph and Miller, 2014). Intravital imaging indicates
that lacteals possess a spontaneous contractile feature; they
actively absorb and transport enterocyte-processed lipids to
the systemic circulation in concert with contractile forces
produced by adjacent smooth muscle cells controlled by
the autonomic nervous system (Choe et al., 2015). It was
recently revealed that lacteal function controls dietary lipid
absorption and, consequently, body weight, supporting the
concept that the lacteals are the gatekeepers of lipid intake
from the environment (McDonald, 2018; Zhang et al., 2018;
Cifarelli and Eichmann, 2019).

In peripheral tissues, the lymphatic vasculature is generally
considered to be the only route for the return of lipoprotein to
the blood circulation (Cooke et al., 2004); removal of interstitial
cholesterol by the lymphatic route is known as reverse cholesterol
transport (RCT) (Huang et al., 2015). Although both lacteals and
peripheral lymphatics may selectively uptake cargoes based on
their size (Randolph and Miller, 2014), they may preferentially
absorb lipoproteins depending on specific receptor expression.
As an example, LEC expression of the scavenger receptor class
B type I (SR-B1) is required for RCT in skin lymphatic capillaries
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but not for intestinal cholesterol absorption (Bura et al., 2013; Lim
et al., 2013). Impaired RCT has been observed in ob/ob mice with
induced obesity (Duong et al., 2018), suggesting that defective
RCT may be a prerequisite for the development of obesity.

Several lines of evidence support the notion that lymphatic
functionality impacts the pathogenesis of obesity. In patients
with lymphatic injury-induced (secondary) lymphedema, fat
hypertrophy in the lymphedematous tissues is prominent,
accompanying tissue swelling and fibrosis (Jiang et al., 2018); the
Chy mutant mouse, with its defective lymphatic development,
also display abnormal lipid accumulation adjacent to affected
hypoplastic lymphatic vessels (Karkkainen et al., 2001). Prox-1
haploinsufficiency causes lymphatic dysfunction and leads to
adult-onset of obesity (Harvey et al., 2005), in those mice,
lymphatic restoration rescues them from the development of
obesity (Escobedo et al., 2016). Accumulated interstitial fluid,
including retrograde lymph leakage from the dysfunctional
lymphatics, may promote adipocyte differentiation and enhance
local fat deposition (Harvey et al., 2005; Escobedo and Oliver,
2017). Increasing lymphatic density in adipose tissue by
overexpressing VEGF-D reduces local immune cell accumulation
and improves systemic metabolic responsiveness in high-fat diet
(HFD)-induced obese mice (Chakraborty et al., 2019), although
it cannot be excluded that VEGF-D may also exert effects on
blood vascular cells because it also binds to VEGFR2 (Achen et al.,
1998). Increased expression of Apelin, an endogenous peptide
identified as a ligand of the orphan G protein-coupled receptor
APJ, was shown to inhibit HFD-induced obesity by promoting
both lymphatic and blood vascular integrity (Sawane et al., 2013).
Collectively, these studies suggest that lymphatic dysfunction
promotes obesity, and that improving lymphatic function
inhibits the development of obesity and alleviates obesity-caused
metabolic syndrome. Studies have also illustrated that obesity
promotes lymphatic abnormalities, such as decreased initial
lymphatic density, heightened lymphatic leakiness, impaired
collecting lymphatic pumping, and diminished macromolecule
transport; but those phenotypic and functional changes are
reversible in response to dietary modification and weight control
(Garcia Nores et al., 2016; Nitti et al., 2016). Decreased
collecting lymphatic pumping may result from the perilymphatic
accumulation of iNOS-expressing macrophages that can affect
lymphatic contractility and damage LECs by conversion of NO
to a powerful oxidant, peroxynitrite (Nitti et al., 2016; Torrisi
et al., 2016). Consistent with experimental animal data, a clinical
study showed that obesity is a risk factor for the development
of lymphedema in post-surgical breast cancer patients (Helyer
et al., 2010). Also, severely obese individuals often develop
acquired lymphedema of the extremities (Greene et al., 2012).
In vitro cell culture study showed that leptin compromises
LEC proliferation and tube formation by enhancing STAT3
phosphorylation, although leptin also induces IL-6, which, on the
other hand, promotes lymphatic tube formation. In aggregate, the
net effect of high concentrations of leptin on lymphangiogenesis
appears to be suppressive (Sato et al., 2016). These findings
suggest that high concentrations of leptin produced by adipose
tissue maybe responsible for suppressing lymphatic vasculature
in obese individuals. In summary, lymphatic dysfunction

sensitizes individuals to develop obesity, and obesity worsens
lymphatic function.

LYMPHATIC ENDOTHELIAL CELL
INSULIN RESISTANCE

Insulin signaling regulates glucose, lipid, and energy homeostasis,
predominantly through its action on adipose tissues, liver,
and skeletal muscles (Boucher et al., 2014). Insulin exerts
its known function by binding to the insulin receptor
(INSR) expressed on target cells; ligand engagement leads
to INSR autophosphorylation, followed by recruitment of
various phosphotyrosine-binding scaffold proteins, which in
turn activates downstream effectors (Taniguchi et al., 2006).
The most crucial INSR substrates for metabolic regulation
are insulin receptor substrate (IRS)1 and IRS2 proteins. They
exert downstream effects by activating the PI3K/AKT signaling
pathway (Petersen and Shulman, 2018). Insulin signaling in
skeletal muscle promotes glucose uptake and net glycogen
synthesis; IRS1 appears to be the primary scaffold protein
for this process (Bouzakri et al., 2006; Thirone et al., 2006).
In the liver, insulin promotes the synthesis of major classes
of metabolic macromolecules, including glycogen, lipids, and
proteins, and, concurrently, it reduces hepatic glucose production
by controlling the PI3K/AKT/GSK3α/β or mTORC1 or FOXO1
signaling cascades (Cherrington et al., 1998; Petersen and
Shulman, 2018). In white adipose tissue (WAT), insulin signaling
suppresses lipolysis; but its role in glucose uptake is relatively
minor, accounting for about 5–10% of whole body glucose uptake
(Virtanen et al., 2002; Ng et al., 2012). Attenuation or reversal of
cAMP/PKA-mediated lipolysis induced by adrenergic signaling
is the best understood mechanism for insulin suppression of
lipolysis (Jaworski et al., 2007). Insulin resistance arises under
the condition of chronic energy surplus (Samuel and Shulman,
2016). Continuous overnutrition with insulin resistance impairs
insulin secretion by pancreatic β-cells, which eventually leads
to overt T2D (DeFronzo et al., 2015). At the molecular level,
both decreased INSR expression and impaired intracellular
signaling transduction contribute to typical obesity-induced
insulin resistance (Petersen and Shulman, 2018).

While WAT, liver, and skeletal muscles have been generally
recognized as major insulin target tissues, ECs, including
both BECs and LECs, are also sensitive to insulin. It was
suggested that blood vascular ECs might act as “first-responders”
to overnutrition (Barrett and Liu, 2013). Impaired insulin
signaling in BECs diminishes AKT-dependent NO production
and simultaneously increases Endothelin 1 (ET-1) activity, which
leads to endothelial dysfunction (Mather et al., 2002; Federici
et al., 2004; Okon et al., 2005; Shemyakin et al., 2006; Muniyappa
and Sowers, 2013). Unhealthy microvasculature hampers insulin
delivery to muscle and adipose tissue and affects glucose
disposal and lipid homeostasis (Barrett and Liu, 2013). LEC
insulin signaling has only recently been explored. One study
showed that LECs derived from human dermal tissue (HDLECs)
express much higher levels of INSR than that of adipose tissue
microvascular ECs; an insulin level as low as 2.5 nM can induce
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AKT phosphorylation in HDLEC (Jaldin-Fincati et al., 2018),
although circulating insulin concentrations in healthy individuals
may still well-below the 2.5 nM range, which are around
100 pmol/L (Ford et al., 2006), whether similar responses
can be induced at physiological conditions are unknown.
Insulin-induced downstream signaling appears to be required
for normal lymphatic vascular structure and function (Lee
et al., 2018). Diminished LEC insulin signaling decreases eNOS
phosphorylation and NO production, reduces mitochondria
oxygen consumption, which alters LEC metabolism, and causes
increased expression of proinflammatory molecules (Lee et al.,
2018); these results suggest that physiological insulin signaling
is essential for normal functioning of LECs. Supporting the role
of insulin signaling in lymphatic function, blockade of IRS1
suppresses lymphangiogenesis (Hos et al., 2011). Collectively,
these studies indicate that insulin signaling likely plays important
roles in regulating both LEC metabolism and lymphangiogenesis
(Figure 2); LEC insulin resistance diminishes lymphatic function,
and exacerbates obesity and metabolic abnormality.

LYMPHATIC VASCULAR
PATHOPHYSIOLOGY IN T2D

Type 2 diabetes is characterized by dysregulation of carbohydrate,
lipid, and protein metabolism caused by impaired insulin
signaling resulting from reduced insulin secretion, insulin
resistance, or the combination of both (DeFronzo et al., 2015).
The lymphatic pathology likely co-evolves with the pathogenesis
of diabetes. In an alloxan-induced rat diabetes model, the lymph
flow through the thoracic duct in diabetic rats is significantly
higher than in that of healthy controls, possibly because increased
interstitial glucose levels increase tissue colloid pressure, which
then enhances interstitial fluid absorption and lymph production.
By contrast, lymph node uptake of 99mTc−dextran 500 is
impaired in diabetic rats, a result that might explain the
observation that patients with diabetes often have decreased
function for immune priming (Moriguchi et al., 2005).
Interestingly, insulin treatment normalizes both lymph flow
and lymph node dextran retention, but glucose normalization
through diet-control only corrects lymph flow (Moriguchi et al.,
2005), suggesting that fluid transport and immune regulatory
function of the lymphatics are regulated by discrete mechanisms.
It is worth noting that the alloxan model simulates type 1
diabetes (Ighodaro et al., 2017), it nevertheless will provide
insights about how hyperglycemia may impact the lymphatic
system. In a clinical study, skin specimens of diabetic patients
displayed increased lymphatic density, and transcriptional
analysis of isolated dermal LECs indicated that cells from
diabetic patients exhibit signatures of inflammation, adhesion,
migration, growth, and lymphangiogenesis (Haemmerle et al.,
2013). Increased lymphatic density found in human patient
samples seemingly correlates with the phenomenon observed in
diabetic rats that have enhanced lymphatic return to the systemic
circulation. However, it is possible that the lymphatic function
may decompensate after prolonged interstitial fluid overload
caused by hyperglycemia (Kanapathy et al., 2015). Increased

lymphatic collecting vessel permeability caused by diminished
NO availability appears to be a contributing factor for lymphatic
dysfunction (Scallan et al., 2015).

One common complication of diabetes is diabetic retinopathy,
which is characterized by a pathology that involves vascular,
glial, and neuronal components and causes significant visual
loss (Duh et al., 2017). A recent study investigating the
lymphatics in diabetic retinopathy detected the expression
of LEC markers, such as VEGFR3 and Prox-1, in excised
human specimens (Loukovaara et al., 2015), providing the
first clinical evidence that abnormal lymphatic growth, in
addition to pathological microvascular remodeling, occurs in
diabetic retinopathy. A follow-up study demonstrated that
soluble pro-growth factors in vitreous fluid promoted lymphatic
sprouting of patient-derived tissues with diabetic retinopathy
(Gucciardo et al., 2018a), further supporting the notion that the
microenvironment of the eyes of diabetic retinopathy contains
sufficient cue for abnormal lymphatic expansion. Pathological
lymphangiogenesis observed in the eyes of diabetic retinopathy
may, therefore, be regarded as a feature for therapeutic targeting
(Yang et al., 2016; Gucciardo et al., 2018b). Ongoing clinical
trials targeting VEGFR- or RTK-mediated signaling may provide
possibilities to suppress pathological lymphatic overgrowth, but
identification of novel lymphatic specific targets is probably
necessary for better therapeutic outcomes (Williams et al., 2010).

LYMPHATICS IN ATHEROSCLEROSIS
AND MYOCARDIAL INFARCTION

The metabolic syndrome poses a significant risk for the
development of cardiovascular diseases, such as atherosclerosis
and its severe complication, myocardial infarction (MI)
(Wilson et al., 2005; Mottillo et al., 2010). Following the
revelation of the interplay between metabolic syndrome
and lymphatic dysfunction, a multiplicity of research has
shown that the lymphatic vasculature is also actively involved
in the progression of atherosclerosis and development of
MI (Aspelund et al., 2016). Atherosclerosis is a chronic
inflammatory disease of the arterial wall with dyslipidemia
as the root cause. The atherosclerotic lesion is characterized
by a prominent population of lipid-filled foam cells, which
are macrophages that contain an excess of plasma-derived,
modified lipoproteins (Back et al., 2019). In this inflammatory
pathology, the balance between pro- and anti-inflammatory
molecules dictates whether a nascent atherosclerotic lesion
will reverse course to normal or progress to more advanced
stages. Among all the inflammatory cells that populate an
atherosclerotic locus, the lipid-laden macrophage is central
to disease progression. Macrophage uptake and modification
of lipoprotein are physiologically important for lipid removal
from intima, but uncontrolled, excessive lipid infiltration and
inflammation exhausts macrophages and creates a hypoxic
environment; this, in turn, promotes macrophage death and
release of oxidized lipid and perpetuates the vicious cycle of
foam cell formation, death, and intimal lipid accumulation
(Tabas, 2010). Tipping the balance of local inflammation to an
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FIGURE 2 | Summary of the function of insulin signaling in metabolic organs and LECs. Insulin signaling in the liver promotes glycogen, lipid, and protein synthesis
while decreases glucose production. In the skeletal muscle, insulin mediates glucose uptake and glycogen synthesis. In white adipose tissue, insulin suppresses
lipolysis and promotes glucose uptake. Insulin activation of its receptor in LECs promotes eNOS activity, which keeps normal lymphatic structure, and promotes
lymphangiogenesis. WAT, white adipose tissue; LEC, lymphatic endothelial cell; eNOS, endothelial nitric oxide synthase.

anti-inflammatory profile is, therefore, a therapeutic concept in
treating atherosclerosis (Ruparelia et al., 2017). Recent studies
have delved into lymphatic biology in the pathogenesis of
atherosclerosis, presumably because the lymphatics play an
essential role in immune trafficking and lipid transport (Milasan
et al., 2015; Csanyi and Singla, 2019).

Lymphatic vessels are present in the adventitial and
periadventitial regions of arterial walls (Sacchi et al., 1990;
Martel et al., 2013; Milasan et al., 2015). Early observations that
associated diminished lymphatic drainage to atherosclerosis
were reported nearly three decades ago (Miller et al., 1992; Solti
et al., 1994). Utilizing a mouse aorta transplantation model,
the lymphatic vasculature was shown to be critical for RCT in
arterial wall of the large vessel (Martel et al., 2013). Another
study demonstrated that mice fed a HFD were prone to atheroma
formation when the lymphatic vasculature is defective (Vuorio
et al., 2014), supporting the notion that lymphatic dysfunction
diminishes cholesterol removal and promotes atherosclerosis.
In atherosclerosis-prone Ldlr−/−; ApoB100+/+ mice, lymphatic
dysfunction, mainly of the collecting lymphatic vessels, occurs
before the onset, and during the progression, of atherosclerosis
(Milasan et al., 2016), suggesting that lymphatic vascular
abnormalities likely promote atherosclerosis. In agreement with
these hypotheses, the rescue of lymphatic vasculature during the
early phase of atherogenesis retards disease progression, through
reducing tissue inflammation and, likely also through increased
lymphatic cholesterol transportation (Milasan et al., 2019). These
studies in aggregate link lymphatic vascular functionality to
atherosclerosis pathogenesis.

While the lymphatic vasculature is critical for immune
trafficking and immune regulation, inflammatory molecules,
produced by infiltrated local immune cells, also impact lymphatic
vascular remodeling and function. Targeting inflammation may,

therefore, not only ameliorate tissue inflammation but also
improve lymphatic function. In a mouse tail surgery-induced
tail lymphedema model, we have previously shown that high
concentrations of LTB4 sustain local tissue inflammation, which
is characterized by infiltration of cells of both innate and
adaptive immunity; blockade of LTB4 signaling not only reduces
tissue inflammation but also improves lymphatic function and
alleviates lymphedema (Tian et al., 2017). In a series of in vivo
and in vitro experiments, we showed that >100 nM LTB4
induces LEC apoptosis and suppresses lymphangiogenesis, while
LTB4 in the 10 nM range enhances lymphatic regeneration; a
physiological LTB4 level appears to be essential for surgery-
induced wound healing (Tian et al., 2017); these experiments
indicate that inflammation and lymphatic dysfunction are closely
associated. LTB4 is an important proinflammatory molecule that
promotes atherosclerosis by magnifying monocyte chemotaxis
and foam cell formation (Subbarao et al., 2004), LTB4 may also
directly impact endothelial survival and angiogenesis (Tian et al.,
2013) and exacerbates insulin resistance (Li et al., 2015). It is
therefore possible that targeting the LTB4 signaling pathway may
simultaneously limit tissue inflammation, boost both lymphatic
and blood vasculature, increase insulin sensitivity, and normalize
cellular metabolism. Several Phase I atherosclerosis clinical trials
targeting the LTB4 pathway are underway (Bhatt et al., 2017).

Myocardial infarction can be triggered by rupture or erosion
of vulnerable atherosclerotic plaque, which results in blood
clot formation by the exposure of thrombogenic core and
matrix components of plaque (Anderson and Morrow, 2017).
MI is followed by robust inflammatory responses that can
be categorized into the initial pro-inflammatory responses
that function to remove necrotic debris, and reparative
anti-inflammatory responses poised to repair the damaged
tissue (Ong et al., 2018). Targeting the inflammatory response
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in different phases of MI appears to be logical, but several
such interventions have failed to improve patient outcomes
(Ong et al., 2018), indicating additional mechanisms are
likely at play for post-MI recovery. A recent study revealed
significant lymphangiogenic responses following MI. Promotion
of lymphangiogenesis by exogenous administration of VEGFC
results in a transient improvement of post-MI myocardial
function (Klotz et al., 2015). Improved outcome by VEGFC-
induced lymphangiogenesis depends on lymphatic-mediated
immune cell clearance through a pathway involving LEC
expressed LYVE-1 (Vieira et al., 2018). Consistent with a
protective role of the lymphatic vasculature in promoting post-
MI recovery, downregulation of the LEC marker VEGFR3 alters
cardiac lymphatic structure, increases lymphatic leakage, and
raises MI-induced mortality (Vuorio et al., 2018). These recent
studies suggest that the lymphatic vasculature might be a viable
therapeutic target for post-MI cardiac repair (Vuorio et al., 2017).

CONCLUDING REMARKS

Type 2 diabetes and cardiovascular diseases associated with
obesity are the leading cause of death in the developed world
(Benjamin et al., 2019). There is an unmet need to improve

the medical care for these patients. Our understanding of
mechanisms underlying these diseases has grown substantially
but remains incomplete. Promoting lymphatic function has the
apparent capacity to reduce pathology in preclinical obesity and
cardiovascular disease models. More in-depth study of lymphatic
biology is therefore urgently needed. Discoveries that derive from
these investigations will likely provide novel therapeutic targets
and improve disease survival.
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