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Substantial batch effects in TCGA exome
sequences undermine pan-cancer analysis
of germline variants
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Abstract

Background: In recent years, research on cancer predisposition germline variants has emerged as a prominent
field. The identity of somatic mutations is based on a reliable mapping of the patient germline variants. In addition,
the statistics of germline variants frequencies in healthy individuals and cancer patients is the basis for seeking
candidates for cancer predisposition genes. The Cancer Genome Atlas (TCGA) is one of the main sources of such
data, providing a diverse collection of molecular data including deep sequencing for more than 30 types of cancer
from > 10,000 patients.

Methods: Our hypothesis in this study is that whole exome sequences from blood samples of cancer patients are
not expected to show systematic differences among cancer types. To test this hypothesis, we analyzed common
and rare germline variants across six cancer types, covering 2241 samples from TCGA. In our analysis we accounted
for inherent variables in the data including the different variant calling protocols, sequencing platforms, and
ethnicity.

Results: We report on substantial batch effects in germline variants associated with cancer types. We attribute the
effect to the specific sequencing centers that produced the data. Specifically, we measured 30% variability in the
number of reported germline variants per sample across sequencing centers. The batch effect is further expressed
in nucleotide composition and variant frequencies. Importantly, the batch effect causes substantial differences in
germline variant distribution patterns across numerous genes, including prominent cancer predisposition genes
such as BRCA1, RET, MAX, and KRAS. For most of known cancer predisposition genes, we found a distinct batch-
dependent difference in germline variants.

Conclusion: TCGA germline data is exposed to strong batch effects with substantial variabilities among TCGA
sequencing centers. We claim that those batch effects are consequential for numerous TCGA pan-cancer studies. In
particular, these effects may compromise the reliability and the potency to detect new cancer predisposition genes.
Furthermore, interpretation of pan-cancer analyses should be revisited in view of the source of the genomic data
after accounting for the reported batch effects.

Keywords: Cancer predisposition, TCGA, Germline variants, Batch effect, Somatic mutations, Personalized medicine,
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Background
Identifying predisposition variants underlying cancer
heritability is of utmost importance and a critical mile-
stone for personalized medicine. Strong evidence for
variant contribution to cancer development is evident in
tens of genes, many of them are rare. However, a few
genes are common enough and thus harboring signifi-
cant effects at a population level. For example, inherited
mutations in BRCA1 and BRCA2 carry high risk for
breast and ovarian in women [1–3], prostate in men [4]
and pancreatic cancer in both gender [5]. The risk and
prevalence of specific germline variants in cancer predis-
position genes greatly vary across ethnicities and cancer
types, as illustrated by the high prevalence of BRCA1
and BRCA2 variants in Ashkenazi Jews [6, 7]. While
each cancer type may have its own signature, a substan-
tial overlap in the identity of known predisposition genes
has been observed [8, 9]. Studies of families with high
recurrence of cancer identified numerous genes carrying
germline mutations with high penetrance (e.g., [3, 10]).
The increasing number of sequenced exomes has led to
the discovery of additional cancer predisposition genes,
mostly with rare mutations [11–13].
In recent years, the task of identifying predisposition

variants [3] using data-driven and statistically-sound
approaches has become feasible, thanks to the availabil-
ity of thousands of genomic samples with satisfying
sequencing depth and quality, from healthy and diseased
individuals (e.g., [9, 14]). The premise is that identifying
germline cancer predisposition genes will lead to improved
clinical diagnosis of hereditary cancers [15]. The Cancer
Genome Atlas (TCGA) [16] is the most exhaustive collec-
tion of such data. Batch effects in miRNAs-Seq, RNA-Seq
and DNA methylation data from TCGA were reported
[17]. However, batch effects in genomic data from whole
exome sequencing (WES) were mainly attributed to
platform-dependent sequencing reactions and sampling
conditions [18]. Additionally, it was noted that TCGA
exome sequencing data is liable to inaccuracies resulting
from sample calling quality [19] and additional technical ef-
fects associated with different batches [20]. The latter is evi-
dent through monitoring loss of function (LoF) mutations,
and specifically short indels that cause frameshifts [20].
In this study, we performed a detailed analysis of

germline variants (common and rare) across six cancer
types covering thousands of samples. Our assumption is
that germline variants identified using WES of blood
samples extracted from cancer patients (excluding
leukemia, lymphoma and myeloma cancers) are not
expected to show systematic differences across cancer
types, assuming that biases attributed to variant calling,
indel recording, and population structure are eliminated.
Consequently, the reliability and consistency of the data
in TCGA can be directly assessed in an analysis avoiding

or correcting for such known confounders. In this study,
we show that the mapped reads are already subjected to
substantial batch effects, and demonstrate the impact of
such batch effects on critical statistical measures of the
data and pan-cancer downstream interpretation.

Methods
Data resource
Approval for access BAM files and clinical data of
TCGA cases was obtained from the database of Geno-
types and Phenotypes (dbGaP) [21]. We selected a total
of 2241 blood derived DNA samples with whole exome
sequencing data (Additional file 1: Table S1). We limited
the analysis to samples sequenced by the HiSeq-2000
Illumina technology. Aligned sequence data for normal
samples in BAM file format and the accompanying
metadata was downloaded from GDC portal [22].

Germline variant calling
Variant calling was limited to exome regions only, as
provided by UCSC GRCh38 reference genome [23]. We
ran four different variant calling pipelines on each BAM
file: GATK ‘HaplotypeCaller’ pipeline v3.5 [24], Atlas2
v1.4.3 [25], Freebayes [26] and Platypus v0.8.1 [27]. We
filtered the results by their quality score. Samples with
four complete VCF files (for each of the four pipelines)
were unified; samples with missing or incomplete VCF
files were discarded. Additionally, a conservative proto-
col was used based on consensus merging, limiting the
reported variants to those appearing in at least two
variant callers. Running this pipeline on a single BAM
file took approximately 22 h and produced a ~ 200MB
unified VCF file.

Comparing within-gene variant distributions
Many of the presented analyses required comparing the
distributions of within-gene variant locations between
cancer types. Within each gene, we collected all the
called variants (from all samples), and partitioned them
into six groups according to the cancer types they had
originated from. We considered only the per-gene exo-
mic locations of the variants (e.g. coordinates 0 to ~
8300 for BRCA1). Denote by Lg,t = (Lg,t(1),..,Lg,t(kg,t)) the
collection of the gene exomic locations of all kg,t called
variants in a given gene g originating from samples of a
given cancer type t. For example, if singleton germline
variants were called at nucleotide positions 17, 65, and
an additional variant was called at two individuals at
position 183 of the KRAS transcript in SKCM (Skin Cu-
taneous Melanoma) samples, then LKRAS,SKCM = (17,65,
183,183). Note that the same locations, or even same
variants, may appear multiple times in such a collection
(e.g. if a variant is called in multiple samples).
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In order to compare two cancer types t,s for a given
gene g and obtain a p-value for the difference in the dis-
tributions of variants within that gene between the two
cancer types, we applied a two-sided Kolmogorov-
Smirnov (KS) test between the two (cumulative) empir-
ical distributions of the collections, denoting the result-
ing p-values as pg,(t,s) = KS(Lg,t,Lg,s).
In order to obtain a final summary measure for the

possible presence of batch effect within a gene (with re-
spect to the distribution of variants along it), we took
the ratio between the KS p-value of an intra sequencing
center pair to the KS p-value of an inter sequencing cen-
ter pair. Specifically, we defined the ratio rg = pg,min/
pg,max between the minimum of the p-values of BI-BI
pairs pg,min = min (pg,(SKCM,STAD), pg,(SKCM,TCHA)

pg,(STAD,TCHA)) to the maximum of the p-values of BI-
WUGCS pairs pg,max = max(pg,(SKCM,BRCA), pg,(SKCM,U-

CEC), pg,(STAD,BRCA), pg,(STAD,UCEC), pg,(TCHA,BRCA),

pg,(THCA,UCEC),). We declared a gene to be possibly af-
fected by the batch effect if rg > 1. By taking a minimum-
to-maximum ratio, we adopted a conservative criterion
for the presence of the batch effect, requiring that all be-
tween-center p-values are smaller than all within-centers
p-values. As reported, only 33% of the analyzed genes re-
sulted a ratio rg < 1, indicating no batch effect.

Results
Ethics approval and consent to participate
Ethical approval for this study was obtained from The
Committee for Ethics in Research Involving Human
Subjects, For the Faculty of Medicine, Dental Medicine
and Life Sciences, The Hebrew University, Jerusalem,
Israel (approval number - 29072019).

Germline variants in exome sequences
In order to test the TCGA dataset for potential batch ef-
fects, we processed and analyzed a subset of the cancer-
type cohorts in TCGA. We focused on six cancer types,
each with at least 250 germline samples (total of 2241
samples): BRCA (Breast Invasive Carcinoma), UCEC
(Uterine Corpus Endometrial Carcinoma), STAD (Stom-
ach Adenocarcinoma), SKCM (Skin Cutaneous Melan-
oma), LIHC (Liver Hepatocellular Carcinoma) and THCA
(Thyroid Carcinoma) (Additional file 1: Table S1).
We implemented a unified variant calling pipeline for

aligned reads (i.e., TCGA germline BAM files) using
conventional, well-accepted variant calling methods (see
Methods). We restricted the reported analysis to 1522
samples classified as Caucasian (marked “White” by
TCGA) to eliminate possible biases due to ancestry. We
also restricted our analysis to samples profiled using
Massively Parallel Sequencing (MPS) methodology (only
HiSeq) to minimize variations due to the technical gen-
omic data production protocols. As short indels account

for the majority of batch effects and inconsistencies [20],
they were not included in the variant calling, and only
Single Nucleotide Variants (SNVs) were considered.

Batch effects manifestation in the number of called
variants
Our quantitative analysis reveals a significant batch
effect in the number of germline variants per sample
across different cancer types. The most prominent char-
acteristic shared by cancer types with similar numbers of
called variants is the sequencing center contributing to
the collection in TCGA (Fig. 1a). The blood samples
from patients with skin, stomach and thyroid cancers
(SKCM, THCA and STAD) were sequenced at the Broad
Institute (BI). Samples from patients with uterus and
breast cancers (UCEC and BRCA) were sequenced at
the Washington University Genome Sequencing Center
(WUGSC) and samples from lung cancer patients
(LIHC) were sequenced at the Baylor College of Medi-
cine (BCM) sequencing center.
Numerous aspects of the data analysis are sensitive to

the origin of the data, thus reflecting the effect of the
different batches. We present several such quantitative
measures:

20–30% difference in the number of called variants per
sample
In Fig. 1 we show the number of called variants per sam-
ple, partitioned by the patient’s cancer type. The average
number of germline variants greatly varies across se-
quencing centers. Samples provided by WUGSC and
BCM have up to 30% more variants compared to sam-
ples provided by BI (one-way ANOVA, p-value = 1.32E-
313). This observation applies to the other ethnic groups
(Additional file 1: Figure S1). Repeating the analysis for
each of the four variant callers individually, and
applying a conservative consensus-based protocol (see
Methods) show the same phenomenon (Additional file
1: Figure S2).
Recently, a report on a catalogue of rare pathogenic

germline mutations from TCGA was presented [9]. This
report relied on the use of a different variant calling
pipeline. The numbers of variants per sample extracted
from this report [9] is in a strong agreement with our
reported, supporting to notion that the batch effect is
insensitive to the underlying variant calling pipeline.
Additional file 1: Table S2 provides estimated values for
the average number of variants per sample across all 33
cancer types in TCGA [9]. In addition to the three
sequencing centers covered in this work, the extracted
data also includes a fourth sequencing center, the Sanger
center. The overlooked dominating signal of the identity
of the sequencing center applies in the data extracted
from this report, and generalizes to all 33 cancer types
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(Additional file 1: Figure S3A). For the six shared cancer
types, we report an almost perfect correlation (r = 0.91)
between the average number of variants per sample cal-
culated in our analysis to these numbers extracted from
Huang, 2018 #242} (Additional file 1: Figure S3B). We
conclude that the reported sequencing batch effect dom-
inates the results regardless of the variant calling pipe-
lines used.

Variations in nucleotide substitution ratios
We find strong evidence for batch effect in the
transition-transversion (TiTv) ratios of called variants
per sample across sequencing centers (Fig. 1b, one-way
ANOVA p-value <1E-320). Samples sequenced at BI
have ~ 6% higher transition-transversion ratio (average
2.73) compared to samples from the other two sequen-
cing centers (average 2.57). The phenomenon is less
prominent where the consensus variant calling protocol
was applied (see Methods). Still the batch effect remains
statistically significant under the consensus collection
protocol (Additional file 1: Figure S2, one-way ANOVA
p-value 7.49E-51).

Variant density per gene
We addressed the possibility that the observed differ-
ences in the number of variants according to the differ-
ent batches (Fig. 1a) might reflect a naive scaling issue
due to different sequencing depths or significance
thresholds in variant calling among the sequencing cen-
ters. We tested whether the batch effects apply also to
the relative variant densities across genes. For each com-
bination of gene and sample, we calculated variant dens-
ity per nucleotide (i.e., the number of variants divided by
the full transcript length). We then calculated Pearson’s
correlation for each pair of samples across all transcripts.
We show the resulted correlations for the 1522 Cauca-
sian samples (Fig. 2). We find that the batch effect domi-
nates these variant densities, with a strong similarity

among samples sequenced at the BI. The lung cancer
(LIHC) samples, which were sequenced at BCM, show
the largest deviation. We conclude that there are con-
sistent variations among samples from different sequen-
cing centers that are more substantial than naive scaling,
leading to enrichment or depletion of called variants in
specific genes.

Variant distribution within cancer predisposition genes
We tested whether the batches affect that is attributed
to the sequencing centers impact not only the number
of variants (Fig. 1) and their distribution among genes
(Fig. 2), but also their distribution within genes. The em-
pirical positional distributions of variant location collec-
tions Lg,t are displayed in Fig. 3 for all six cancer types
within four selected genes. These are representative
known cancer predisposition genes: BRCA1, BRCA2,
KRAS and RET. We noted marked differences associated
with the sequencing centers in the distribution of vari-
ants along three of these cancer genes. Interestingly, the
strongly reported predisposition gene BRCA2 is mostly
indistinguishable for all six cancer types and is thus rela-
tively insensitive to the described batch effect.
As illustrated in Fig. 3 for four selected genes, we ana-

lyzed the entire collection of 104 known cancer predis-
position genes from the COSMIC catalogue [28]. In
order to thoroughly quantify the batch effect on the dis-
tribution of called variants within those genes (Fig. 4),
we used the Kolmogorov-Smirnov (KS) statistical test to
compare these distributions between the 15 pairs of the
six cancer types for each gene. We clustered the genes
and pairs of cancer types based on these statistical re-
sults (p-values) using Bi-clustering approach. Pairs ori-
ginating from the same sequencing center were
clustered together (e.g., the three leftmost columns cor-
responding to the three pairs sequenced at BI),
highlighting the effect of the sequencing center on vari-
ants’ positional distribution.

A B

Fig. 1 Variability in called variants across TCGA sequencing centers. Batch effect due to sequencing center in 1522 samples associated with
Caucasian populations (originated in Europe, Middle East or North Africa) across the six analyzed cancer types. a Number of called exome variants
per sample. b Ratio of transition-transversion (TITv) variants per sample. Colors represent the genomic sequencing centers: BI (blue), WUGSC
(orange) and BCM (green)
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Fig. 2 Correlations in variant densities among samples from Caucasian populations. Heatmap of Pearson’s correlations of per-gene variant densities
between pairs of samples from Caucasian populations. The 1522 samples are sorted by their cancer types. The correlation values show high similarity
among cancer types sequenced by the same canter. The cancer types are as reported in Fig. 1. BRCA (Breast Invasive Carcinoma, 291 samples), UCEC
(Uterine Corpus Endometrial Carcinoma, 169 samples), STAD (Stomach Adenocarcinoma, 248 samples), SKCM (Skin Cutaneous Melanoma, 435 samples),
LIHC (Liver Hepatocellular Carcinoma, 146 samples) and THCA (Thyroid Carcinoma, 258 samples). Color for the sequencing centers are as in Fig. 1

Fig. 3 Gene exomic location distributions of germline variants within selected cancer predisposition genes. Empirical probability density functions
(PDF) of germline variant coordinates, plotted for four selected genes (BRCA1, BRCA2, RET and KRAS). Each line represents the density function of
one of the six cancer types, colored by their corresponding sequencing center: BI (SKCM, STAD and THCA) in blue, WUGSC (BRCA and UCEC) in
orange, and BCM (LIHC) in green. The genes BRCA1, RET and KRAS display distinct distributions per sequencing batch, while BRCA2 displays a
relatively cohesive distribution. Exons are colored by alternating gray and white backgrounds to enhance the visibility of exon boundaries
(introns, for which we have no data, are omitted). The schemas of the transcripts (including the non-coding 5′-UTR and 3′-UTR parts) are shown
below each figure. For visibility, the graphs are smoothed by kernel density estimation (KDE), using a window size of 100 nt
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The susceptibility of genes to the batch effect was
determined by the ratio of similarity (using KS p-values)
within and across the BI and WUGSC batches (see
Methods). Only 35 of the 104 genes were unaffected by
the batch effect (p-value ratio < 1.0; Additional file 1:
Table S3). Variant distribution of genes that are extremely
sensitive to the batch effect based on this p-value ratio
(e.g., MAX, SMACRE1) and other genes that are
insensitive to the batch effect (e.g. POLD1) is shown in
Additional file 1: Figure S4.

Batch effects is associated with clinical outcome
We assume that if the identity and distribution of called
variants along genes have no impact on pan-cancer
downstream clinical interpretation, there will be no dif-
ference between genes that are prone to such batch ef-
fect and those that are unaffected by it. To test this
assumption, we performed an indirect test and followed
the survival of patients while focusing on two disjoints
gene sets from the 104 genes annotated by COSMIC
[28] as germline-associated cancer predisposition genes.
Specifically, we sorted the 104 genes by their p-value
ratio and defined two extreme gene sets: (i) the top 10%

(10 genes) that display maximal sensitivity to the batch
effect according to the p-value ratio: MAX, RET, ERBB4,
TSC1, DICER1, BARD1, ERCC5, PRKAR1A, PHOX2B
and SMARCE1 and (ii) the bottom 10% (10 genes)
showing the minimal sensitivity to such effect: CYLD,
POLD1, SMAD4, TSHR, CDC73, NTHL1, SMARCB1,
TSC2, FH and SDHD. We performed a survival analysis
on cancer patients with somatic mutations from an inde-
pendent cohort, taken from MSK-IMPACT clinical
sequenced samples (MSKCC [29]), which covers 10,129
samples.
We found a clear difference in the Kaplan-Meier esti-

mated survival curves for the two sets of genes (compare
Figs. 5a to b). Specifically, statistically significant reduced
survival (Log rank test p-value = 4.58e-4, Fig. 5a) is asso-
ciated with patients carrying mutations in the genes that
are maximally sensitive to the batch effect. Such differ-
ence is not detected for genes that are resistant to the
batch effect (p-value = 0.236, Fig. 5b). In both instances,
the fraction of cases with mutations in the gene sets is
11% of all 10,129 samples, showing that the difference in
observed effects on survival for the two groups of genes
is not due to differences in statistical power. We

Fig. 4 Significant differences in variant location distributions between cancer-type pairs. Bi-clustering of Two-sided Kolmogorov-Smirnov (KS) test
results (log-p-values) comparing cancer-type pairs across 104 genes annotated by COSMIC as cancer predisposition genes

Rasnic et al. BMC Cancer          (2019) 19:783 Page 6 of 10



conclude that the relative sensitivity of genes to batch ef-
fect may be carried on to downstream analysis, including
clinical outcome and its interpretation, even when one
uses independent cohorts for such analysis.

Batch effects are associated with most of the analyzed
genes
We expanded the KS paired statistics analysis to include
all genes with variants in all six cancer types (overall, 18,
421 genes). Only 33% of the genes appear to be insensi-
tive to the batch effect (score < 1; see Methods and Add-
itional file 1: Table S3, all genes). Again, we observe
strong similarity between cancer-type pairs sequenced at
the same centers, compared to high variability between
pairs originating from different sequencing centers. Pairs
comparing cancer types from BCM (LIHC) and WUGSC
(UCEC and BRCA), as well as the UCEC-BRCA pair
show intermediate resemblance (Fig. 6).

Discussion
We report on multiple layers of batch effects associated
with the sequencing centers contributing to TCGA,
which are evident upon examination of called germline
variants from thousands of samples. These systematic
biases raise an urgent need to identify their exact source,
be it experimental [30], technical [19, 20] or computa-
tional [31]. Understanding the sources of biases is essen-
tial for the ongoing effort to mitigate and adjust for such
biases from high-throughput collection and data compil-
ation [32, 33].
Somatic mutations in cancer samples exhibit strong

characteristics by the cancer type. An entirely opposite

trend is expected for germline variants from healthy
samples. There, the genomic characteristics signify the
ethnic origin of the analyzed samples. By examining
samples from the same population (i.e. Caucasians), we
expect unified and cohesive genomic signals among
samples and across cancer-types. Under such setting, it
is easier to isolate the batch effect phenomenon, as we
have shown here. However, we anticipate that the batch
effect may also infiltrate, to some extent, into somatic
mutation analyses, as suggested by our clinical analysis
(Fig. 5). However, due to the orders-of-magnitude higher
variability in the number of somatic mutations observed
among different cancer types, the batch effect is often
masked, making it more challenging to identify. Many of
the pan-cancer studies performed on TCGA data rely
heavily on differences in the total number of somatic
mutations among cancer types. Such studies might be
skewed due to unaccounted sequencing batch effects.
The identity of the genomic centers in which the blood
samples were sequenced and the methodology used (i.e.,
the proportion between samples sequenced by HiSeq
technology to data extracted from GeneArray) differ
among cancer types and should be accounted for as
well.
The reported TCGA batch effect has a broad range of

implications. Our results demonstrate similarity among
samples originating from the same sequencing center,
compared to dissimilarity across samples from different
sequencing centers. Our results reaffirm the encompass-
ing nature of the sequencing batch effect that are not re-
stricted to any particular cancer type from TCGA
(Additional file 1: Figure S3).

A B

Fig. 5 Survival curves for gene sets differing by their sensitivity to batch effect. Kaplan-Meier estimate survival curves tested on 10,129 samples
from the MSK-IMPACT clinical sequenced cohort (MSKCC [29]). The analysis applies to genes from a collection of 104 CPGs annotated by COSMIC.
a Top 10 genes exhibiting maximal sensitivity to the batch effect. b Bottom 10 genes exhibiting minimal sensitivity to the batch effect. Additional
file 1: Table S3_104 CPG lists the 104 genes along with their batch effect measure
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In summary, the observed batch effects influence the
number of variants per sample (Fig. 1a), as well as the
types of variants (Fig. 1b), the number of variants at a
per-gene resolution (Fig. 2), and the distribution of
variants within genes (Fig. 3). They also drastically affect
the majority of candidate genes annotated as predis-
posed for cancer (Fig. 4) as well as other genes (Fig. 6,
Additional file 1: Table S2).

Conclusions
The batch effect described in this study is not restricted to
the context of cancer, and may affect other human cata-
logues of WES germline variants. In the context of cancer,
the pan-cancer studies are especially prone to batch effect
that may lead to false discoveries and misinterpretation.
Protocols for determining the identity and prevalence of
somatic mutations from patient’s biopsy rely on having an
accurate list of its germline variants. Developing method-
ologies to better control the inherent quantitative imbal-
ances caused by batch effects is urgently and critically
needed. Our results suggest that without batch effects
correction, pan-cancer analysis cannot guarantee the

precision required for personalized medicine. While it is
important to apply proper filters to avoid false-positives
[34, 35], some of the current filters designed to remove
batch effects from whole genome sequencing seem to im-
pede the ability to detect true associations, and find new
disease-associated variants [22, 33]. In conclusion, the re-
ported biases underlie the severe discrepancies in germline
variants detection and analysis. Additionally, data from
the different genomic centers may tamper with detection
of somatic mutations, and therefore must be taken into
consideration in any data driven pan-cancer analysis and
interpretation.

Additional file

Additional file 1: Figure S1. Number of variants in exomes per sample
across ethnic groups and cancer types. Figure S2. Variability in called
variants across TCGA sequencing centers for variants that are in
consensus (at least two different variant calling tools.). Figure S3.
Average number of variants per sample based on an alternative variant
calling pipeline (for all 33 cancer types). Figure S4. Germline variant
distribution plots for representative genes by cancer types. Table S1.
Number of variants in exomes per sample across ethnic groups and

Fig. 6 Violin plots based on Kolmogorov-Smirnov test per each group pairing. Two-sided Kolmogorov-Smirnov (KS) tests were carried per gene to test for
differences in the distributions of variants between each of the 15 cancer-type pairs (the same variant distributions shown in Fig. 3 for four selected genes).
Each panel displays the distribution of resulted p-values across all 18,421 analyzed genes. Red-colored images represent cancer-type pairs originating from
different sequencing centers, while blue-colored images represent pairs originating from the same sequencing center. Cancer-type labels are color-coded
by sequencing centers, as in all previous figures. The y axis scale is -log10(p-value), where all values above 2.5 were truncated to 2.5 (for visibility)
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cancer types. Table S2. Cancer-type statistics derived from TCGA. Table
S3. Kolmogorov-Smirnov P-value per gene across all pairs of the 6
analyzed cancer types. A measure of the batch distinctive variant
distribution pattern is shown for the 104 CPG annotated by COSMIC
(named “104 CPG”) and the entire genes (named “all genes”). The table
lists all genes with at least a single variant among the compared groups.
(ZIP 5414 kb)
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