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ABSTRACT 

Background. For decades, description of renal function has been of interest to clinicians and researchers. Serum 

creatinine ( Scr ) and estimated glomerular filtration rate ( eGFR ) are familiar but also limited in many circumstances. 
Meanwhile, the physiological volumes of the kidney cortex and medulla are presumed to change with age and have been 

proven to change with decreasing kidney function. 
Methods. We recruited 182 patients with normal Scr levels between October 2021 and February 2022 in Peking Union 

Medical College Hospital ( PUMCH ) with demographic and clinical data. A 3D U-Net architecture is used for both cortex 
and medullary separation, and volume calculation. In addition, we included patients with the same inclusion criteria but 
with diabetes ( PUMCH-DM test set ) and diabetic nephropathy ( PUMCH-DN test set ) for internal comparison to verify the 
possible clinical value of “kidney age” ( K-AGE ) . 
Results. The PUMCH training set included 146 participants with a mean age of 47.5 ± 7.4 years and mean Scr 
63.5 ± 12.3 μmol/L. The PUMCH test set included 36 participants with a mean age of 47.1 ± 7.9 years and mean Scr 
66.9 ± 13.0 μmol/L. The multimodal method predicted K-AGE approximately close to the patient’s actual physiological 
age, with 92% prediction within the 95% confidential interval. The mean absolute error increases with disease 
progression ( PUMCH 5.00, PUMCH-DM 6.99, PUMCH-DN 9.32 ) . 
Conclusion. We established a machine learning model for predicting the K-AGE, which offered the possibility of 
evaluating the whole kidney health in normal kidney aging and in disease conditions. 

LAY SUMMARY 

We established a multimodal machine learning method to estimate the “kidney age” ( K-AGE ) for evaluating the whole 
renal health status. We recruited 182 patients with normal serum creatinine levels from Peking Union Medical 
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College Hospital for data acquisition and model training. First, we used semantic segmentation ( a deep learning 
method ) to auto-segment the kidney volume into different regions ( cortex and medulla ) . Then we trained a 
multimodal machine learning model applying the combination of volumes and clinical characteristics as input 
features, and patients’ chronological age as output feature. Differences in K-AGE prediction ( K-AGE delta ) were found 
between various types of computed tomography ( CT ) images ( contrast-enhanced CT and non-contrast-enhanced CT ) . 
K-AGE delta also differed between the control group, diabetes mellitus group and diabetic nephropathy 
group. 

Keywords: computed tomography, kidney function, kidney volume, multimodal machine learning, semantic 
segmentation 
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NTRODUCTION 

or decades, clinicians and researchers have tried hard to de- 
ne a suitable way to describe the overall kidney health sta- 
us of a patient. Unfortunately, after one and half centuries [ 1 ],
erum creatinine ( Scr ) [ 2 ] or the estimated glomerular filtration 
ate ( eGFR ) computed by formulas based on Scr [ 3 –5 ] are still the
ost commonly used markers of GFR since 1999. Although the 
ias of Scr affected by muscle mass and metabolic status [ 6 ] can 
e corrected by eGFR, the eGFR formula depends on data from 

pecific populations with limitation in some cases, for exam- 
le, in overweight or elderly populations. Chuah et al . observed 
hat eGFR measurement in patients undergoing obesity surgery 
ight not be accurate because of creatinine reduction accom- 
anied by muscle-mass reduction [ 7 ], which is consistent with 
he report that both body adiposity index and visceral adipos- 
ty index would influence the calculation of eGFR [ 8 , 9 ]. In ad-
ition, pathological renal structural changes usually result from 

idney disease caused by various etiologies, such as glomeru- 
ar sclerosis, interstitial fibrosis and tubular atrophy [ 10 ], usually 
oupled with a decline in GFR [ 11 –14 ]. Furthermore, due to the 
ompensatory capacity of the kidney, sometimes the structural 
amage to the kidney is noted as more sensitive evidence than 
n elevation of serum creatinine. Meanwhile, kidney aging cor- 
elates well with kidney volumes and function decreasing [ 15 ].
herefore, it is an urgent task to define a more comprehensive 
ethod to assess the overall condition of kidney structure and 

unction. 
Recently, automatic kidney segmentation techniques com- 

ining kidney images derived from magnetic resonance ( MR ) 
maging or computed tomography ( CT ) and artificial intelli- 
ence algorithms is developed, which is a novel fully au- 
omated method to separately segment each kidney cortex 
nd medulla in contrast-enhanced CT images [ 16 ]. These new 

echniques offer the possibility of evaluating the whole kid- 
ey health status in combination with clinical data. Simi- 
ar strategies are also successfully applied in the brain and 
eart [ 17 , 18 ]. 
In this study, we included as the study cohort populations 

hose Scr is between normal ranges and without significant 
idney structural defects. Based on an auto-segmentation al- 
orithm on either standard CT or contrasted-enhanced CT, we 
eveloped a prediction model for the “kidney age” ( K-AGE ) 
f populations involving kidney structure information. Clinical 
haracteristics were also collected to eliminate its possible dis- 
raction on prediction. The difference between the actual physi- 
logical age and the K-AGE was used to verify the model’s ac- 
uracy and was also considered a measure of accelerated ( or 
ecelerated ) kidney aging. 
t

ATERIALS AND METHODS 

tudy cohort 

e included patients with normal Scr levels and abdominal 
ontrast-enhanced CT images between October 2021 and Febru- 
ry 2022 in Peking Union Medical College Hospital ( PUMCH 

ataset ) . The inclusion criteria were: ( i ) patients aged > 35 years,
 ii ) no reported history of kidney disease, ( iii ) complete labo- 
atory results including Scr, albumin ( Alb ) and electrolytes, ( iv ) 
ormal Scr levels, ( v ) received abdominal contrast-enhanced CT 
can and ( vi ) no anatomic abnormalities of kidneys revealed by 
T scan. All CT exams were acquired on a 256-slice CT scanner 
 Discovery CT 750 HD, GE Healthcare ) , a dual-source dual-energy 
T scanner ( Somatom Definition Flash, Siemens Healthcare ) or 
n Aquilion ONE Genesis scanner ( Canon Medical Systems ) . Im- 
ges files of CT scan were firstly exported as Dicom format,
hen transformed into NIFTI format ( through Python code ) for 
urther operation. The exclusion criteria were: ( i ) CT images 
ailed to be transformed into NIFTI format, and ( ii ) incomplete 
aboratory results or patient information ( Fig. 1 ) . In addition, we 
ncluded patients with the same inclusion criteria but with dia- 
etes ( PUMCH-DM test set ) and diabetic nephropathy ( PUMCH- 
N test set ) for internal comparison to verify the possible clini- 
al value of K-AGE. Data from DongZhiMen Hospital ( DZMH test 
et ) were used as separate external validation sets to evaluate 
odel generalizability. This study was approved by the Institu- 

ional Review Boards of PUMCH ( S-K1975 ) . The informed consent 
as waived since de-identified images were used. 

ata collection 

e collected the clinical data from the medical records, includ- 
ng age, gender, height, weight, current smoker and intake of al- 
ohol, and lab data included Scr, sodium ( Na ) , Alb, etc. Body mass
ndex ( BMI ) was calculated as weight ( kg ) /height ( m ) 2 and eGFR 
as calculated using the Chronic Kidney Disease Epidemiology 
ollaboration ( CKD-EPI ) equation [ 19 ]. Selected types of data in 
he PUMCH dataset were randomly chosen according to the sta- 
istical analysis and separated into a training set ( PUMCH train- 
ng set, 80% ) and a test set ( PUMCH test set, 20% ) following equal
ge distribution. Data augmentation was applied by adding ran- 
om Gaussian noise to the PUMCH training set to reduce the pre- 
iction error because of the unbalanced distribution of patient 
ge. 

mage data annotation 

e annotated the imaging data to create the ground truth and 
o build the automatic segmentation algorithm. The standard 
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Figure 1: ( A ) Patient flow chart for PUMCH dataset. ( B ) Patient flow chart for 
PUMCH-DN dataset. ( C ) Patient flow chart for DZMH dataset. 
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T images were annotated by a senior radiologist with 5 years
f experience using ITK-SNAP ( version 3.8 ) . First, the sub-region
s manually identified from the axial plane to include both kid-
eys. Then, we used active contour evolution for kidney seg-
entation based on intensity value thresholds in the sub-region 

 Supplementary data, Fig. S1 ) [ 16 ]. 
he design of automatic segmentation algorithms 

he prediction of K-AGE contained two steps with different al-
orithms ( Fig. 2 ) . First was automatic kidney segmentation with
wo deep learning methods for automatic kidney segmentation.
 modified U-Net architecture [ 16 ] ( named U-NET-Con ) was ap-
lied to auto-segment the contrast-enhanced CT images of kid-
eys into four classes ( right cortex, right medulla, left cortex and
eft medulla ) for volume and ratio calculation of each part. Then,
e developed another U-Net architecture ( named U-NET-STD ) to
utomatically segment standard CT images for volume calcula-
ion of the right and left kidneys in verification and comparison
 Fig. 3 ) . 

he design of the K-AGE prediction algorithm 

e first designed a stacking regressor for K-AGE prediction
ased on the combination of clinical data and images by the
achine-learning model, which consisted of a Random Forest,
n Extra Trees and a linear regression algorithm. In the PUMCH
raining set, different initial weights were randomly batched to
rain the stacking regressor ( 100 times ) . Through 100 repetitions,
he final test result was described as the weighted average value
erived in the test sets of PUMCH and DZMH. The prediction per-
ormance was measured by the mean absolute error ( MAE ) be-
ween the predicted K-AGE and the actual physiological age. The
redictions were defined to be accurate if the true age was in the
5% confidence interval of the predicted K-AGE. Finally, various
odels were trained based on different combinations of image
ata from the auto-segmentation of CT images ( Fig. 2 ) , then the
rediction results of K-AGE from the three models were com-
ared. 

tatistical analysis 

ategorical variables were shown as frequency and percentage,
nd continuous variables as mean values with standard devi-
tion were analyzed. We used the one-way analysis of variance
 ANOVA ) analysis to compare continuous variables with the nor-
al distribution and the chi-squared test to compare the pro-
ortion of categoric variables. The multi-linear regression was
sed to describe age and kidney volume correlations, with a P -
alue of < .05 considered statistically significant. The relation-
hip between clinical characteristics and kidney volume of each
art was illustrated by the “regplot” function in Python library
 Version 3.8 ) . 

ESULTS 

linical characteristics and auto-segmentation kidney 
olume 

he study included 182 participants with CT or contrast-
nhanced CT images from PUMCH and the training set partic-
pants ( 146 ) with a mean age of 47.5 ± 7.4 years, 58.9% female
nd mean Scr 63.5 ± 12.3 μmol/L; the PUMCH test set ( n = 36 ) and
ZMH external validation set ( n = 40 ) had similar mean age, fe-
ale percentage and mean Scr levels, without significant differ-
nce ( Table 1 ) . Auto-segmentation kidney volume estimated by
-NET-Con indicated no significant difference among the total
idney volume, both sides kidney cortex and medullar volume
mong the PUMCH training set, PUMCH test set and DZMH test
et ( Table 1 ) . 

https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad167#supplementary-data
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Figure 2: Flow chart shows model performance comparison between various types of the automatic segmentation algorithm. 
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olumes and age 

ge was significantly associated with the total kidney volume 
nd cortical volume obtained by automated segmentation in two 
odels with different adjusted parameters ( only gender, or BMI,
lb, Na, smoking status, alcohol intake and Scr ) , neither kid- 
ey medullary volume ( Table 2 ) . Participants with higher eGFR 
 eGFR > 110 ) had a relatively larger cortex volume than those 
ith lower eGFR ( eGFR < 110 ) . Meanwhile, the cortex volume of 
articipants with high BMI ( BMI > 24 ) attenuated more slowly 
han those with BMI < 24 ( Supplementary data, Fig. S2 ) . 

erformance of automatic segmentation and K-AGE 

e obtained a similar automated segmentation by the CT and 
nhanced CT in the PUMCH test set ( Fig. 4 ) . For segmented kid- 
eys, the volume differences between CT and enhanced CT in 
oth side kidneys were not evident ( P < .01, Fig. 5 ) . 
In the U-NET-Con segmentation algorithm, the total predic- 
ion accuracy of K-AGE prediction from the cortical volume and 
atio is 91.7% with MAE 3.46 ( r = 0.81, P < .01 ) , while 83.3% of the
hole kidney volume had a slightly higher MAE 5.16 ( r = 0.57,
 < .01 ) . There was a similar performance of the total kidney
olume from U-NET-STD ( 83.3%, MAE = 5.00, r = 0.56, P < .01,
ig. 6 a–c ) . 

The total prediction accuracy of K-AGE prediction in the 
ZMH test set, based on the cortical volume and ratio from the 
-NET-Con segmentation algorithm, is 90.0% with MAE as 3.94 
 r = 0.80, P < .01 ) . We observed less prediction accuracy ( 82.5% )
nd a higher MAE ( 5.39, r = 0.46, P < .01 ) based on the total kid-
ey volume in U-NET-Con and U-NET-STD of 82.5% ( MAE = 4.79,
 = 0.51, P < .01, Fig. 6 d–f ) . 

erformance of K-AGE in diabetes patients 

y the U-NET-STD segmentation algorithm, the MAE of K-AGE 
rediction in diabetic nephropathy is the highest in the PUMCH- 
N test set ( 9.32, r = 0.32, P = .11 ) , followed by the PUMCH-DM

https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad167#supplementary-data
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Figure 3: Architecture of U-NET-STD for non-contrasted enhanced CT image segmentation. 

Table 1: Clinical characteristics of study subjects for the training validation and test sets considered in this study. 

Clinical characteristics 

PUMCH training 
set 

( N = 146 ) 

PUMCH 

test set 
( N = 36 ) 

DZMH 

test set 
( N = 40 ) P 

Age ( years ) 47 . 5 ± 7 . 4 47 . 1 ± 7 . 0 50 . 2 ± 7 . 5 .103 
Sex, n ( % ) 

Men 60 ( 41 ) 17 ( 47 ) 15 ( 37 ) .857 
Women 86 ( 59 ) 19 ( 53 ) 25 ( 63 ) 

Height ( cm ) 166 . 30 ± 7 . 13 167 . 00 ± 7 . 49 164 . 16 ± 5 . 80 .133 
Weight ( kg ) 63 . 50 ± 10 . 85 65 . 61 ± 12 . 22 63 . 59 ± 10 . 92 .586 
BMI ( kg/m 

2 ) 22 . 90 ± 3 . 26 23 . 44 ± 3 . 64 23 . 58 ± 3 . 58 .432 
Alb ( g/L ) 41 . 62 ± 5 . 11 41 . 91 ± 4 . 56 39 . 39 ± 3 . 83 .025 
Na ( mmol/L ) 139 . 77 ± 2 . 34 139 . 77 ± 1 . 79 139 . 80 ± 3 . 25 .998 
Smoking, n ( % ) 35 ( 24% ) 11 ( 31% ) 8 ( 20% ) .703 
Alcohol, n ( % ) 39 ( 27% ) 11 ( 31% ) 7 ( 18% ) .552 
Scr ( μmol/L ) 63 . 47 ± 12 . 31 66 . 91 ± 12 . 97 61 . 28 ± 10 . 69 .127 
eGFR ( mL/min/1.73 m 

2 ) 107 . 57 ± 9 . 31 105 . 89 ± 10 . 53 107 . 36 ± 7 . 49 .617 
Volume ( mL ) 

Right cortex 100 . 50 ± 20 . 31 103 . 34 ± 24 . 14 96 . 47 ± 23 . 04 .368 
Right medulla 41 . 26 ± 10 . 40 45 . 94 ± 15 . 01 42 . 65 ± 11 . 42 .089 
Left cortex 101 . 51 ± 20 . 57 103 . 80 ± 24 . 93 101 . 33 ± 25 . 19 .846 
Left medulla 43 . 83 ± 10 . 84 45 . 82 ± 19 . 98 46 . 65 ± 11 . 59 .398 

Values are presented as mean ( standard deviation ) unless stated otherwise. 
eGFR was calculated by CKD-EPI equation. 
P -value was calculated by the one-way ANOVA test for continuous variables and a chi-square test for categorical variables. 
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est set ( 6.99, r = 0.44, P = .09 ) , and smallest in PUMCH test set
 5.00, r = 0.56, P < .01, Fig. 7 ) . 

ISCUSSION 

n this research, we first developed deep learning algorithms 
ased on kidney CT images to complete the comprehensive and
utomated assessment of the renal structure, a stable K-AGE 
rediction model combined with the images and clinical data.
dditionally, we applied this multimodal method to clinical 
ystems to reveal structure abnormalities and detect potential 
idney disease. 

In our study, we observed decreased kidney cortex volume 
nd increased medulla volume with age, which is consistent 
ith the decrease in total kidney volume published before [ 14 ,
5 ]. Kidney cortex and medulla volume both show a positive
orrelation with gender, height, BMI and eGFR, which matched 
he conclusion of the earlier research [ 16 ]. Automatic segmenta-
ion in the kidney has been of interest for years, spanning var-
ous imaging systems and segmentation algorithms. Cai et al .
roposed a semi-automatic segmentation method of the re-
al cortex and medulla based on dynamic MR images in pigs
 20 ]. Couteaux et al . trained an ensemble of fully convolutional
etworks ( 2D U-NET ) to aggregate their prediction at test time
o perform the segmentation [ 21 ]. Li et al . presented an auto-
atic renal cortex segmentation approach using implicit shape

egistration and novel multiple surfaces graph search based
n a hierarchy system [ 22 ]. In this study, a novel method of
tandard CT segmentation is established and compared with
 published contrasted-enhanced CT segmentation method.
onsidering total kidney volume, U-NET-Con has a similar kid-
ey segmentation effect to U-NET-STD, with prediction of K-AGE
y total kidney volume from these two segmentation methods
eing without significant difference. However, U-NET-Con can 
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Table 2: Multiple linear regression coefficients between age and kidney volumes obtained by automated segmentation. 

Model 1 Model 2 

Independent variables Coef P ( 95% CI ) Coef P ( 95% CI ) 

Total volume −0 .042 < .001 −0.062 to −0.022 −0 .039 < .001 −0.031 to 0.004 
Cortex volume −0 .076 < .001 −0.100 to −0.052 −0 .074 < .001 −0.058 to −0.013 
Medulla volume 0 .011 .642 −0.035 to 0.057 0 .021 .393 −0.008 to 0.064 

Model 1 was adjusted for gender only. 
Model 2 was adjusted for gender, BMI, Alb, Na, smoking status, alcohol intake, Scr. 

Coef, coefficient; CI, confidence interval. 

Figure 4: An example of automated segmentations for standard CT and contrast-enhanced CT segmentation results. 
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ffer detailed information about kidney cortical and medullary 
nformation for a better prediction performance of K-AGE. 

K-AGE aims to describe the total health status of the kid- 
ey in both kidney function and structure to help acknowl- 
dge patients’ condition more comprehensively. Both structural 
nd functional changes are related to the human aging process 
n systemic organs, such as the kidney, liver, brain and heart.
clean et al . revealed significant age-related thickening of the 
inusoidal endothelium with loss of fenestrations of the liver,
hich might impair the transfer by diffusion of substrates such 
s oxygen and drugs [ 23 ]. Ritchie et al . show that brain vol-
me declines with age in the geriatric population, while white 
atter volumes are informative about cognitive decline with 
ge [ 24 ]. Horn showed that aging-induced myocyte cell necro- 
is or apoptosis leads to hypertrophy of the remaining myocytes 
 25 ]. Therefore, we want to unite the structural and functional 
hanges to evaluate the overall health status of the kidney. Co- 
ncidentally, this multimodal method has been applied in the 
rediction of “heart age.” In their interpretable biological estima- 
ion model, cardiovascular magnetic resonance radionics mea- 
ures the ventricular shape and myocardial characters [ 26 ]. As 
e know, kidney physiological changes and pathological impli- 
ations vary with age [ 10 ]. In this study, we take the lead in rais-
ng the concept of K-AGE as an intermediate variable and es- 
ablish an estimation model utilizing multimodal renal informa- 
ion ( including auto-segmentation contrast-enhanced and stan- 
ard CT images and clinical data in subjects without kidney 
iseases ) . The stability of the method made it possible to dig into
he potential relationship between structural and functional 
hanges with multi-center validation, to verify different effects 
n K-AGE prediction from CT with or without contrast enhance- 
ent, and finally to describe the overall health status of the 
idney. 

Although the Scr is within the normal range, patients with or 
ithout diabetes and diabetic nephropathy perform differently 

n the K-AGE prediction. Patients with diabetes have a relatively 
arger K-AGE variance than non-diabetic patients, and there was 
ore variance in diabetic nephropathy patients. This may reveal 

he effects of potential kidney diseases on imaging examina- 
ion. Though the predicted K-AGE performs similarly between 
tandard CT and contrast-enhanced CT, contrast-enhanced CT 
s still superior in the calculation of cortex volume and ratio.
owever, contrast-induced kidney injury still accounts for about 
1% of all cases of hospital-acquired acute kidney injury [ 27 ], and
tandard CT has better popularity in elder patients with renal 
nsufficiency. 

There are also some limitations to the prediction model.
irstly, K-AGE prediction performance is limited by the sample 
ize, especially in an aged population with relatively normal re- 
al function. As a retrospective study, we did not involve enough 
iabetic patients who had normal renal function and normal 
lood pressure at the same time. In a future prospective study,
ore diabetic patients should be included. Secondly, it could 
e optimized with more input clinical and imaging features for 
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Figure 5: High correlation and agreement for volume measurements obtained from contrast-enhanced CT and standard CT. 

Figure 6: The agreement of K-AGE and actual physiological age in the test set obtained from contrast-enhanced CT and standard CT automatic segmentation in PUMCH 

test set and DZMH test set. 
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odel training, such as 24-h urine protein, high-density lipid 
holesterol [ 15 ] and kidney stiffness measurement [ 28 , 29 ]. Fi-
ally, as a cross-sectional study, we could not confirm the K-AGE
n predicting the endpoint of the patients during the follow-up

isits. d  
Besides CT, other techniques are also used to evaluate the
idney structure. Ultrasound evaluation is a noninvasive imag-
ng technique to assess kidney structure. However, the chal-
enge is rooted in the scarcity of standardized ultrasound image
atasets for deep learning training, attributable to the common
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Figure 7: The K-AGE prediction in PUMCH, PUMCH-DM and PUMCH-DN test sets applying U-NET-STD segmentation algorithm in non-contrast CT images. 
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ractice of sonologists in China who capture and diagnose ul- 
rasound images concurrently, without preserving high-quality 
ata. A future prospective study with standard records would 
enefit the deep learning training process. MR evaluation could 
lso describe the kidney structure boundary similarly, but kid- 
ey MR evaluation is relatively underutilized in China, and our 
reliminary results based on public databases suffer from lim- 
ted spatial resolution, which compromises the imaging quality 
 Supplementary data, Fig. S3 ) . In addition, patients with differ- 
nt diseases, eGFR and renal structure abnormality should be 
nvolved as input features for further optimizing the prediction 
odel. The gap between K-AGE and true age will help to indicate 
otential kidney disorders and predict prognosis. 

ONCLUSION 

e developed a segmentation algorithm based on CT images us- 
ng published and self-developed algorithms that can accurately 
ssess the kidney structure. Combined with clinical data, we de- 
eloped a multimodal machine learning algorithm that can pre- 
ict the K-AGE more accurately in people with normal Scr. This 
rovides a novel method for a more comprehensive assessment 
f kidney health status in chronic kidney disease patients for 
uture studies. 
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