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Synthetic gene networks are frequently conceptualized and visualized as
static graphs. This view of biological programming stands in stark contrast
to the transient nature of biomolecular interaction, which is frequently
enacted by labile molecules that are often unmeasured. Thus, the network
topology and dynamics of synthetic gene networks can be difficult to verify
in vivo or in vitro, due to the presence of unmeasured biological states.
Here we introduce the dynamical structure function as a new mesoscopic,
data-driven class of models to describe gene networks with incomplete
measurements of state dynamics. We develop a network reconstruction
algorithm and a code base for reconstructing the dynamical structure function
from data, to enable discovery and visualization of graphical relationships in
a genetic circuit diagram as time-dependent functions rather than static,
unknown weights. We prove a theorem, showing that dynamical structure
functions can provide a data-driven estimate of the size of crosstalk fluctu-
ations from an idealized model. We illustrate this idea with numerical
examples. Finally,we showhowdata-driven estimation of dynamical structure
functions can explain failure modes in two experimentally implemented
genetic circuits, a previously reported in vitro genetic circuit and a new
E. coli-based transcriptional event detector.
1. Introduction
Synthetic gene networks fulfil diverse roles in realizing circuit logic [1] and
timing in living organisms [2], ranging from single-input inverters [3,4] to com-
binatorial input logic gates [5,6], reduction in DNA synthesis and sequencing
costs have made it possible to build increasingly complex genetic circuits
with tens to hundreds of components. However, the ability to build novel
biological circuitry often outpaces our ability to revise designs or to verify
what has been built behaves as intended. As the fields of synthetic and systems
biology continue to build and integrate on successes of circuit and device-level
complexity to engineer entire genetic systems or pathways, we are consistently
seeing failure modes that arise from a lack of modularity, e.g. retroactivity [7–9],
and context effects [10].

Likewise, the expansion of CRISPR-based methods for genome editing [11,12]
has led to new network control problems in systems biology, e.g. design of
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minimal genomes [13], reprogramming regulatory networks
for phenotype control [14], and fine-tuned optimization of
metabolic pathways. The dynamical system in these design
challenges is often a complex network of interacting genes,
mRNA, proteins and metabolites. The expansion in DNA
sequencing read depth has made it possible to profile individ-
ual genes via the transcriptome [15], which combined with
quantitative proteomics [16] or metabolomics [17], enables
systems-level analysis of network activity. But prohibitive
sampling and library preparation costs make obtaining highly
time-resolved omicsmeasurements hard. Thismakes it difficult
to infer dynamic network activity at the scale of whole cell
models [18] without extensive experimental investment.

Dynamic network models that describe the intricate inter-
actions between every biomolecular state or species are
referred to as state-space models. Two key variables that
often determine the behaviour of these network models are
network topology [19,20] and parametric realization [21,22].
The structure of a network is generally determined by how
states in the system causally affect each other [22]; edges in
the network are determined by causal dependence while
nodes are determined by the states of the system [23].

Identifying the active, dynamic network structure of a bio-
logical network is critical, since the hypothesized network
architecture of a genetic circuit may be very different from
the realized network architecture using a specific collection
of parts, sequences, and composition approach [24]. While net-
work structure alone does not determine dynamical behaviour,
parametric information is also important in determining what
dynamical behaviours a system can achieve [25]. Rather, net-
work structure, or topology, often defines or narrows the
possible behaviours a system can achieve. Without any struc-
tural constraints, a dynamical system can have arbitrary
input–output behaviour. Once network structure is imposed,
the set of realizable input–output trajectories can be reduced
[26,27]. If the realized network differs significantly from
the intended network design, the dynamics of the system
may produce faults or glitches when appropriately excited or
interrogated [28,29]. Getting the actual network topology to
match the intended network motif is thus a key element to
robust synthetic biological design.

In systems and synthetic biology, canonical network motifs
are broadly accepted as enabling useful dynamical behaviour
[27,30]. For example, an incoherent feedforward loop can be
used for fold-change detection or adaptation [31,32]. A cyclic
network of repressors is associated with either oscillations
[33–35] or multi-stability [36] while a dual negative feedback
network of two nodes is used as memory module or toggle
switch [37]. Still, the active, dynamic network architecture of
most realizations of these networkmotifs in the form of genetic
circuits are not formally characterized or catalogued [38].
Systematic, generalizable tools that can discover and model
dynamic network topology from data are valuable [1].

Circuit network discovery is, at its core, a network recon-
struction problem. Given a desired network motif and a
physical system, we need to use measurements of the system
to determine if the actual, active network of the systemmatches
the intended design. There have been many network recon-
struction algorithms developed for natural and synthetic
biological networks [24,39–45]. Historically, the approach to
discovering network interactions has involved direct pertur-
bation of biochemical species or components in a network
[41,45,46]. Individual nodes are perturbed and depending on
if nearby nodes positively or negatively correlate, an activating
or repressing relationship between two network nodes can be
inferred. In [24], this framework was taken a step further, by
showing that the behaviour of direct and indirect links in a
benchmark circuit is network topology dependent. This pro-
vided a means for using steady-state perturbation data
[39,45,47] to estimate network models. Furthermore, these
steady-state estimation algorithms have been verified using a
benchmark synthetic gene circuit [43]. More recently, the
authors in [42] and [40] showed that retroactivity in gene net-
works can paradoxically confound network predictions that
are based wholly on correlation measures. The core issue is
that even when measurement data for all biological states are
available, causality is difficult to determine from steady-state
measurement data affected by back-action or retroactivity in
genetic networks [40].

At the single-cell level, the reconstruction problem for
biological networks introduces challenges of inferring non-
linear stochastic models from noisy data [44,48,49]. In [48],
the authors show that by comparing average abundances,
molecule lifetimes, covariances and magnitude of step, they
can map pairwise interaction dynamics, even when the rest
of the system is completely unspecified. The key observation
is that assembly stoichiometry of new molecules is fixed,
so unbalanced production of linked precursor components
will exacerbate imbalance further, resulting in empirically
observed large fluctuations. Furthermore, Hilfinger et al. [49]
showed that there are statistical invariants for certain kinds
of network interactions, which can be used to evaluate
and challenge existing hypotheses of stochastic gene inter-
action. More recently, Wang et al. showed that effective
stoichiometric spaces can be used to determine network struc-
ture from the covariances of single-cell multiplex data [44].
These studies show that it is possible to infer meaningful struc-
tural information about a genetic network, even when only a
portion of the network states are observed and the data are
fundamentally noisy.

In this paper, we introduce a class of mesoscopic network
reconstruction models with adaptable resolution, commen-
surate with the depth or coverage of the circuit states (or
genome) available from fluorimetric, spectometry-based, or
sequencing based measurements. Our method is distinct in
that we consider the use of high-resolution time-series
data, but where only partial measurement of the network’s
nodes is feasible. Furthermore, we consider dynamic measure-
ments of bulk culture rather than single cell, where we benefit
from the assumptions of high molecular copy number and
large reaction volumes [49]. Specifically, we present the
dynamical structure function, an abstract model class from
linear time-invariant systems theory and show it can be used
as a generalized representation of measured interactions
between biological or biochemical states. The contributions
of this paper are: (1) we show how a dynamical structure
function can encode both direct and crosstalk network inter-
actions, by way of theorem and simulated examples, (2) we
develop a direct estimation algorithm and code to directly
estimate the dynamical structure function, as well as visualiza-
tion tools to monitor repression and activation in genetic
circuits and (3) we demonstrate this theory on two experi-
mental systems: (A) an in vitro genelet repressilator from the
synthetic biology literature and (B) a novel transcriptional
event detector that we build specifically to illustrate dynamical
structure reconstruction.
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2. Representing network interactions in partially
measured biological networks with dynamical
structure functions

In both systems and synthetic biology, discovering (or verify-
ing) the network of a (engineered) biological system is an
important problem. However, discovering an entire biochemi-
cal reaction network is typically ill-posed, since many network
dynamics occur simultaneously from host or environmental
context [50], loading effects [51], or unanticipated retroactivity
effects [7,51–54]. Even without these effects, the reconstruction
problem is equivalent to finding a unique realization for the
dynamical system from direct measurements of every state of
the system. Unique realization problems are difficult, unless
the system of interest has specific structure, e.g. measurement
functions of the state that are diffeomorphic [55,56]. On the
other hand, there are many inputs that can be used to perturb
the system of interest, e.g. silencing RNA [57], genetic knock-
outs [58] and small chemical inducers [59]. Using these
inputs, it is straightforward to reconstruct the system transfer
function G(s) of the system [60,61], where

YðsÞ ¼ GðsÞUðsÞ:
Y(s) is a system’s output, U(s) a system’s input and s is
the Laplace variable. However, the standard system transfer
function G(s) only models closed-loop input-to-output depen-
dencies. It has no direct information about how chemical
species within the system are interacting with each other.

There are other kinds of transfer function models which
have the potential to describe the network of interactions
between chemical species, for example, the dynamical struc-
ture function [62]. The dynamical structure function is a
representation derived from linear systems theory, and thus
can be used to model transients of a genetic circuit around an
operating point or even unstable network dynamics diverging
from an equilibrium point. It is a more detailed description of
network structure than the system transfer functionG(s) since it
models causal interactions between measured outputs, in
addition to the causal dependencies of outputs on input vari-
ables. Most notably, necessary and sufficient conditions for
recovery of dynamical network models have been developed
and well-studied [22,62–66], but so far no open-source algor-
ithms, code bases, or applications of this theory have been
developed directly for synthetic biology.
2.1. Dynamical structure functions
Here we introduce the mathematical formulation of a dynami-
cal structure function, formulated in the context of biological
analysis. The dynamical structure function is formulated on
the premise that partial, rather than full, state measurements
are accessible. The measured states are denoted as y [ Rp

and the hidden or latent states are denoted as xh [ Rn�p,
where n is the dimension of the whole state. We then denote
the state of the dynamical system

x ¼ [yT xTh ]
T [ Rn:

We let u [ Rm denote exogenous inputs that can be introduced
to influence the dynamics of the state x. With the exception of
oscillators, many biochemical reaction networks converge to a
steady state. Moreover, it is generally the case that the par-
ameters of biochemical reaction networks are time-invariant
[67], so long as macroscopic experimental settings of the
system such as temperature, growth media and dissolved
oxygen content remain fixed. Therefore, while the model of a
biochemical reaction network is of the form

_y ¼ fyðy, xh, uÞ, yð0Þ ¼ y0
_xh ¼ fxhðy, xh, uÞ, xhð0Þ ¼ xh,0

and y ¼ I p�p 0
� � y

xh

� �
,

9>>>>=
>>>>;

ð2:1Þ

we will suppose that we can linearize the system about either
an equilibrium point, a nominal operating point, or even an
(unstable or oscillatory) initial condition to extract network
dynamics. In biological systems, networks are almost never
precisely linear, but we presume to model local fluctuations
or perturbations from a target point in the state space. As we
will see in the following, this will be enough to extract relevant
network information. Proceeding with the linearization, we
can write the system in the form

_y
_xh

� �
¼ A11 A12

A21 A22

� �
y
xh

� �
þ B1

B2

� �
u

and y ¼ C
y
xh

� �
,

9>>>=
>>>;

ð2:2Þ

where

C ¼ ½I p�p 0�:

We also assume the system’s initial condition of the linearized
system is x(0) = 0, and the entries in A [ Rn�n and B [ Rn�m

are calculated as

A11 ;
@fyðy, xh, uÞ

@y
jx¼xe ,u¼ue , A12 ;

@fyðy, xh, uÞ
@xh

jx¼xe ,u¼ue

A21 ;
@fxhðy, xh, uÞ

@y
jx¼xe ,u¼ue , A22 ;

@fxhðy, xh, uÞ
@xh

jx¼xe ,u¼ue

and B1 ;
@fyðy, xh, uÞ

@u
jx¼xe ,u¼ue , B2 ;

@fxhðy, xh, uÞ
@u

jx¼xe ,u¼ue :

Taking Laplace transforms, solving for Xh(s) and replacing
it in Y(s) we obtain

sY ¼ WðsÞYðsÞ þ VðsÞUðsÞ, ð2:3Þ
where

WðsÞ ¼ A11 þ A12ðsI � A22Þ�1A21

and VðsÞ ¼ B1 þ A12ðsI � A22Þ�1B2:

9=
; ð2:4Þ

Defining D(s) = diag(W(s)) and subtracting D(s)Y(s) from both
sides of equation (2.3) and solving for Y(s) we obtain the
following equation:

YðsÞ ¼ QðsÞYðsÞ þ PðsÞUðsÞ, ð2:5Þ
where

QðsÞ ¼ ðsI �DðsÞÞ�1ðWðsÞ �DðsÞÞ ð2:6Þ
is a p × p matrix transfer function and

PðsÞ ¼ ðsI �DðsÞÞ�1VðsÞ ð2:7Þ
is a p ×m matrix transfer function. In our use of the term
transfer function here, we distinguish between the system
transfer function G(s) that describes the closed loop relationship
between inputs and outputs and the matrix transfer functions
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Figure 1. Dynamical structure functions can be used to analyse synthetic gene networks. (a) Synthetic biological parts for an incoherent feedforward loop (IFFL)
using the LasR activator, the TetR repressor and reporter proteins CFP, YFP and RFP. (b,c) The dynamical structure graphs of the crosstalk-free IFFL from system (2.8),
in (b) and the crosstalk-impacted IFFL from system (2.9), in (c). Nodes represent measured biochemical species, with black edges denoting open-loop causal depen-
dencies stemming from designed interactions, and red edges denoting open-loop causal dependencies arising from crosstalk or loading effects. Note that the
dynamical structure captures network model interactions that are not described by the system transfer function G(s).
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Q(s) and P(s) that encode open-loop causal relationships. Each
entry Qij(s) is a transfer function that describes the open-
loop causal dependency of measured state Yi(s) on measured
state Yj(s). Similarly, the transfer function Pij(s) describes
the open-loop causal dependency of measured state Yi(s)
on input Uj(s). The matrix pair (Q(s), P(s)) is known as the
dynamical structure function, whereQ(s) is referred to as the net-
work structure and P(s) as the control structure. Finally, we
define the time-dependent dynamical structure function
(Q(t), P(t)) as the inverse Laplace transform of the dynamical
structure function, where

QðtÞ ; L�1(QðsÞ)
and

PðtÞ ; L�1(PðsÞ):
Note thatQ(s) is defined asQ(s) = (sI−D)−1(W−D) rather than
Qalt(s) = 1/sW(s). This guarantees that the diagonal entries of
Q(s) are 0, which implies that any non-zero terms Qij(s) are
strictly proper transfer functions and thus descriptions of
causal interactions among measured Yi and Yj. This also
means that Q(s), defined in this way, is unique and has p
fewer transfer functions to identify on its diagonal. This con-
struction of Q(s) and P(s) ultimately ensures identifiability
[62] under reasonable assumptions of independent input per-
turbation [24,39–45]. Furthermore, if Q(s) =W/s, then we
would face two simultaneous challenges in estimation: (1) dis-
entangling autoregulatory dynamics (Yi to Yi) from pairwise
interactions (Yi to Yj) and (2) too many unknown parameters
in bothQ(s) and P(s). Lastly, we find that studying the pairwise
interactionsQij(s) can already elicit important functional infor-
mation about a genetic network, as illustrated by the next two
examples.

2.1.1. Example: the dynamical structure function of an idealized
incoherent feedforward loop

Consider the following synthetic biology design problem:
design and implement an incoherent feedforward loop.
Specifically, we consider implementing a feedforward loop
using the synthetic parts pLac-LasR-CFP-LVA, pLas-TetR-
YFP-LVA, and pLas-Tet-RFP-LVA and IPTG, C3O6H12−
HSL, and aTc as inputs (figure 1). We model the protein
concentration of LasR-CFP, TetR-YFP, and RFP as x1, x2 and
x3, respectively. We denote the corresponding mRNA species
for each of these proteins as m1, m2 and m3. A simple model
without any loading effects, describing the dynamics of these
states can be written as

_x1 ¼ r1m1 � C0x1=k1,d
1þ x1=k1,d

_x2 ¼ r2m2 � C0x2=k2,d
1þ x2=k2,d

_x3 ¼ r3m3 � C0x3=k3,d
1þ x3=k3,d

_m1 ¼ a1u1
kM,u1 þ u1

� dmm1

_m2 ¼ a2x1u2=kM,u2

1þ x1u2=kM,u2
� dmm2

_m3 ¼ a3x1u2=kM,u2

1þ x1u2=kM,u2 þ x2=(kM,2 þ u3=kM,u3)
� dmm3

and y ¼ [I3�3 03�3][~xT ~mT]T ,

9>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>;
ð2:8Þ

where protein production rates ρ1 = 641.4, ρ2 = 585.1,
ρ3 = 652.8 nM s−1 [68], mRNA production rates α1 = 7.8,
α2 = 7.1, α3 = 7.92 nM s−1 [69], degradation Michaelis con-
stants k1,d = k2,d = k3,d = 200 nM, input Michaelis constants
kM,u1 = kM,u2 = kM,u3 = 4000 nM [67], degradation rate
constant C0 = 1 nM s−1 and mRNA degradation or dilution
rate δm = 10 nM s−1 [70].

Based on the parameters selected above, the system yields
a stable equilibrium point (xe, ue) which becomes the point
about which we linearize this example system. The dynami-
cal structure function for this system is derived following
the procedure outlined above: first, we take Laplace trans-
forms; second, we eliminate the hidden mRNA states of x1,
x2 and x3, namely m1, m2, m3. The network structure Qa(s)
and control structure Pa(s) matrix transfer functions evaluate
to the following:

0 0 0
0:045

s2þ1:5 sþ5:7�10�4 0 0
1:5�10�4

s2þ1:7 sþ0:2 � 1:5�10�4

s2þ1:7 sþ0:2 0

0
B@

1
CA
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Figure 2. Dynamical structure functions describe how network structure evolves over time (and as a function of frequency). The time-lapse response of the dyna-
mical structure convolution kernel QaðtÞ ¼ L�1ðQaðsÞÞ for the incoherent feedforward loop in system (2.8). By examining the functional response of each entry in
Qa(t) (or Qa(s)), we see that the network structure of the incoherent feedforward loop in example 2.1.1 is a time-evolving, or dynamic, entity.
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and Pa(s) is

6:7�10�7

s2þ1:5 sþ5:7�10�4 0 0

0 244:0
s2þ1:5 sþ5:7�10�4 0

0 0:78
s2þ1:7 sþ0:2

7:8
s2þ1:7 sþ0:2

0
B@

1
CA:

The network, with edge weight functions corresponding to
the entries of Qa(s), is drawn in figure 1b. Note that if we
take s [ R.0, the sign of the entries in Qa(s) coincides with
the form of transcriptional regulation implemented by TetR
and LasR, respectively. In [71], it was shown that the sign
definite properties of entries in QðR.0Þ are useful for reason-
ing about the monotonicity of interactions between measured
outputs and how fundamental limits in system performance
relate to network structure.

Let us now consider Qa(t) as defined above. We remark
that yðtÞ ¼ Ð t

0 Q
aðtÞyðt� tÞdt follows from the equation

L�1(YðsÞ) ¼ L�1(QaYðsÞ þ PaUðsÞ),

whenever u(t)≡ 0 such that U(s) is 0. This argument holds in
general for any system of the form (2.2). In particular, the
entries Qa(t) act as convolution kernels, and taken with the
integral, define an operator for mapping yj(t) to yi(t).
[Qa(t)]ij also models the isolated impulse response of yi(t) to
an impulse yj(t), while assuming all other elements are off
or set to zero. In this way, [Qa(t)]ij encodes the time-depen-
dent gain of yj(t) on yi(t) assuming all other nodes in the
network are momentarily off. In the case of our example,
we can see that the network structure of this incoherent feed-
forward loop is dynamical, hence our usage of the term
dynamical structure function to describe the network structure
among the measured chemical species y(t). In this particular
case, the time-domain analogue of the dynamical structure
(or dynamical structure convolution kernel) is given as

QaðtÞ ;
0 0 0

Q21ðtÞ 0 0
Q31ðtÞ Q32ðtÞ 0

0
@

1
A,
where

Q21ðtÞ ¼ (5:5� 10�3) e�(8:3�10�4) t sinh((6:0� 10�5) t)

Q31ðtÞ ¼ (4:1� 10�7) e�(4:9�10�3) t sinh((4:1� 10�3) t)

and Q32ðtÞ ¼ �(9:7� 10�8) e�(4:9�10�3) t sinh((4:1� 10�3) t):

A visualization of each of these impulse kernel functions and
their corresponding location in the dynamic adjacency
matrix, defined byQa(t), is given in figure 2. Note how the acti-
vating or repressing nature of genetic regulation is encoded by
the positive or negative sign of the corresponding kernel
response. In addition to uncovering the Boolean network of
interactions between biological states, the dynamical network
convolution kernel Qa(t) reveals the time scales of response of
each network edge, as well as the amplitude and the rate of
decay of the gain from the time of impulse. Similar response
profiles can be generated for step function inputs, though
finite impulse inputs are typically more common in biological
networks. Interestingly, the transfer function Ga(s) of the
system is likewise lower triangular, reflecting the feedforward
network topology in the genetic circuit. Specifically, Ga(s) has
a sparsity structure of the form

GaðsÞ ;
Ga

11ðsÞ 0 0
Ga

21ðsÞ Ga
22ðsÞ 0

Ga
31ðsÞ Ga

32ðsÞ Ga
33ðsÞ

2
4

3
5:

2.1.2. Example: the dynamical structure function of an
incoherent feedforward loop with crosstalk

In prototyping a feedforward loop, it is important to anticipate
in vivo context effects. We consider the same biocircuit as
described in example 2.1.1, except nowwe specifically consider
loading effects frequently neglected in the design process of
synthetic biology. First, we note that each gene may be suscep-
tible to loading effects [7]. For each gene in figure 1a, a
degradation tag is added, to provide tunability, to the rate of
degradation of the protein. Inside the cell, a protease called
ClpXP targets these degradation tags and degrades the associ-
ated protein. Different tags can be incorporated to modulate
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the gain of the degradation process. Furthermore, these
degradation tags can be subject to mutagenesis experiments,
as a means to modulate tunability.

Tunability of degradation introduces a tradeoff in
performance. Since the ClpXP protease is a housekeeping
protein expressed to form a common pool of proteases for
all genes in the cell, there is a limit to the supply of free
ClpXP protein in any instant of the cell’s growth cycle.
When there are too many degradation-tagged proteins [72],
the overloading of the protein degradation queue can trigger
unwanted effects such as stress response. More directly, the
competition for scarce proteases can induce coupled dynamics
or a virtual or indirect interaction between two genes competing
for the same protease pool. Even if the genes were engineered
to have no direct transcriptional or translational cross-regu-
lation, the competition for the same protease effectively
couples the protein states of both genes. Modifying the above
model to account for these type of loading effects yields

_x1 ¼ r1m1 � C0x1=k1,d
1þ x1=k1,d þ x2=k2,d þ x3=k3,d

_x2 ¼ r2m2 � C0x2=k2,d
1þ x1=k1,d þ x2=k2,d þ x3=k3,d

_x3 ¼ r3m3 � C0x3=k3,d
1þ x1=k1,d þ x2=k2,d þ x3=k3,d

_m1 ¼ a1u1
kM,u1 þ u1

� dmm1

_m2 ¼ a2ðx1u2=kM,u2Þ
1þ x1u2=kM,u2

� dmm2

_m3 ¼ a3x1u2=kM,u2

1þ x1u2=kM,u2 þ x2=(kM,2 þ u3=kM,u3)
� dmm3

and y ¼ [I3�3 03�3][~xT ~mT]T :

9>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>;
ð2:9Þ

We use the same parametric values as before. Computing the
dynamical structure function, we obtain Qc(s) as

0 1:6�10�3

sþ2:1�10�3
0:041
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s2þ1:6 sþ0:13 0

0
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1
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and Pc(s) as

6:7�10�7

s2þ1:5 sþ3:2�10�3 0 0

0 244:0
s2þ1:5 sþ3:3�10�3 0

0 0:78
s2þ1:6 sþ0:13

7:8
s2þ1:6 sþ0:13

0
B@

1
CA:

Note that Qc(s) is no longer lower-triangular, but fully connec-
ted. Introducing loading effects creates additional coupling
between nodes in the network. If the coupling is significant,
the designed network interactions of the incoherent feedfor-
ward loop are overcome by the crosstalk network interactions
[8,20,51,53,71,73,74]. Thus, the coupling that is introduced
into the biochemical reaction network by loading effects is
reflected in the structure of (Qc, Pc)(s) (see figure 3).

By contrast, the input–output transfer function Gc(s) of
the crosstalk system only characterizes how system outputs
causally depend on inputs. When calculated, Gc(s) also is a
full matrix like Qc(s) of sixth-order SISO transfer functions

Gc ;
Gc

11ðsÞ Gc
12ðsÞ Gc

13ðsÞ
Gc

21ðsÞ Gc
22ðsÞ Gc

23ðsÞ
Gc

31ðsÞ Gc
32ðsÞ Gc

33ðsÞ

2
4

3
5ðsÞ,
but all structural information about how loading effects cause
interference among measured system states Y(s) is mixed with
the information about how outputs causally depend on
inputs U(s) in G(s). An identification algorithm of entries in
G(s) will thus be unable to quantify the size of crosstalk or
interference among system states Y(s).

To what extent can the entries of (Q(s), P(s)) can be used
to quantify the size of crosstalk in a synthetic gene network?
The following theorem shows that the dynamical structure
function can quantify crosstalk-induced deviation from
idealized or ‘designed’ system behaviour.

Theorem 2.1. LetL denote the two-sided Laplace operator. Suppose
we have a system model that incorporates the effect of crosstalk:

_yc ¼ f cyðyc, xch, uÞ, ycð0Þ ¼ 0

and _xch ¼ f cxhðyc, xch, uÞ, xchð0Þ ¼ 0,

9=
; ð2:10Þ

where yc [ Rp is a vector of measured states in the output,
xch [ Rn�p are the unmeasured states of the system, xc ¼ ðyc, xchÞ
is the full system state, and u [ Rm is a vector of system inputs. Fur-
thermore, suppose we have a idealized system model to simulate
system dynamics in the absence of crosstalk:

_ya ¼ f ayðya, xah, uÞ, yð0Þ ¼ 0

and _xah ¼ f axahðy
a, xah, uÞ, xhð0Þ ¼ 0,

9=
; ð2:11Þ

where ya [ Rp is a vector of the measured states in the output,
xah [ Rn�p are the unmeasured states of the system, xa ¼ ðya, xahÞ is
the full system state, and u [ Rm is a vector of system inputs.
Let (Qc(s), Pc(s)) and (Qa(s), Pa(s)) denote the respective dynamical
structure functions calculated for each linearized system about the
origin. Let

zðtÞ ¼ xaðtÞ � xcðtÞ
denote the deviation of the crosstalk state from the idealized state. Then

@L(zi)
@Yj

¼ Qa
ijðsÞ �Qc

ijðsÞ þ
@

@Yj
L(OððxcÞ2Þ), ð2:12Þ

and in particular, if

Qa
ijðsÞ ; 0,

then

@LðziÞ
@Yj

¼ �Qc
ijðsÞ þ

@

@Yj
L(OððxcÞ2Þ),

and can be estimated from input output data (Y(s), U(s)).

Proof. The proof of this theorem is provided in the electronic
supplementary material (theorem C7). ▪

There are two ways to apply this result. First, if one has an
idealized or reference dynamical structure model of the circuit,
then this can be compared to the dynamical structure model
estimated from the data. Second, in the absence of a reference
model, the dynamical structuremodel can be estimated directly
from data to observe new edge functions or gain mismatch
directly from the data-driven dynamical structure model. In
the latter scenario, if the crosstalk interactions are mediated
on an existing edge, it will not be possible to separate the mag-
nitude of the crosstalk from the existing (intended) dynamics of
a given active edge in the network. However, the discovered
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Figure 3. Dynamical structure functions describe how network structure evolves over time (and as a function of frequency). The time-lapse response of the dyna-
mical structure convolution kernel QcðtÞ ¼ L�1ðQcðsÞÞ for the incoherent feedforward loop in system (2.9). By examining the functional response of each entry in
Qc(t) (or Qc(s)), we see that the network structure of the incoherent feedforward loop in example 2.1.1 is a time-evolving, or dynamic, entity.
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edge dynamics can be compared to the intended behaviour, e.g.
intentional activation or repression over a certain growth phase
of the cells.

When the assumptions of theorem 2.1 are satisfied, the
entries of Qc

ijðsÞ can be used to quantify the size of the cross-
talk in the system. Example 1 in the electronic supplementary
material shows how the H2 gain of entries in Qc

ijðsÞ quantify
crosstalk due to enzyme loading. Furthermore, we can com-
pute Qc

ijðtÞ ¼ L�1ðQc
ijðsÞÞ, which gives a simulated response

model of how crosstalk gain fluctuates over time to affect
Yi(t) in response to an impulse in Yj(t). This response
model also can be used to estimate the relevant time scales
where crosstalk gain is as large as the gain of designed inter-
actions between circuit components.

Knowledge of the active crosstalk in a genetic circuit can be
useful for revising closed-loop design or designing biological
controllers to compensate for crosstalk effects. As discussed
above, discovering the network model of a complex biological
network can be useful for design, verification, analysis or con-
trol. In the next section, we formally introduce the theoretical
conditions under which identification of the dynamical struc-
ture function is possible, as well as the formal problem of
network reconstruction.
3. Direct estimation algorithm for dynamical
structure functions

In this section, we will introduce a direct estimation algor-
ithm for estimating the dynamical structure function. The
dynamical structure function is a tuple of matrix transfer
functions (Q(s), P(s)) and can be directly estimated from
experimental or simulation data so long as the data and the
conditions of the experiment satisfy the assumptions of the
following theorem, originally shown in [62].
Theorem 3.1. Given a p ×m transfer function G(s), dynamical
structure reconstruction is possible from partial structure infor-
mation if and only if p− 1 entries in each column of [Q(s) P(s)]*
are known, to specify linearly independent elements of the nullspace
of the matrix function GðsÞ I½ ��:

Proof. See the proof of theorem 2 in section IIIB of [62]. ▪

It follows from this theorem that without additional
structural information about the columns of the matrix
½QðsÞPðsÞ��, it is not possible to identify (Q(s), P(s)). In
synthetic gene circuits with complex internal network
interactions encoded by Q(s), we can still solve for the
structure and parameters of Q(s), as long as p− 1 elements
of P(s) are known. For example, targeted gene knockdowns
(CRISPRi) or knockouts (engineered genomic mutations)
can be engineered so that P(s) is a diagonal matrix transfer
function. This guarantees that p− 1 entries of each column
of P(s) are known, which satisfies the conditions of theorem
3.1. In this set-up, all genes or biological states in the network
of interest are (A) monitored by some measurement channel
over time and (B) independently perturbed by a diagonal
element in P(s). These are necessary and sufficient conditions
for reconstruction of Q(s) and P(s) and corroborate the gen-
eral network reconstruction conditions developed for
network reconstruction of full state measurement systems
[24,39–45].

Under the above premises, the task is to estimate the diag-
onal transfer function entries of P(s) and to estimate all off-
diagonal entries of Q(s). Recall from the derivation in §2.1
that the diagonal entries of Q(s) are set to 0 by subtracting
the diagonal entries of the precursor W(s) transfer function
matrix from W(s). Furthermore, by left-multiplying (sI−D)−1

with W(s)−D(s), this guarantees that the representation for
Y(s) =Q(s)Y(s) + P(s)U(s) yields a unique Q(s) and P(s). The
entries of Q(s) and P(s) are all strictly proper rational transfer
functions and thus encode causal dynamics.
Problem 3.2 (Network reconstruction and estimation).
Given output measurements Y(s) and input measurements
U(s) for a system (2.1) satisfying identifiability conditions
described in theorem 3.1, the network reconstruction problem
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is to find the dynamical structure function (Q(s), P(s)), as
defined in (2.6) and (2.7) that satisfies the equation

YðsÞ ¼ QðsÞYðsÞ þ PðsÞUðsÞ:
The network estimation problem is to find an estimate dynamical
structure function ðQ̂ðsÞ, P̂ðsÞÞ to solve theminimizationproblem

min
Q̂,P̂

kYðsÞ � Q̂ðsÞYðsÞ � P̂ðsÞUðsÞk:

In practice, there are two approaches to solve for Q(s) and
P(s). The first is to estimate the transfer function G(s) using a
standard transfer function estimation routine, followed by
inversion ofG(s) and calculation of the entries of Pii(s) and sub-
sequently the entries of Q(s). This approach has the drawback
of relying on inversion of the matrix transfer function G(s),
which often requires symbolic inversion and is thus prone to
numerical instability and scaling issues for larger networks.

The second approach, which we propose here and
develop code for, is to identify the dynamical structure func-
tion directly from data by writing the model estimation
problem in normal form. First, we can denote the discrete-
time approximations of Q̂ðsÞ and P̂ðsÞ as Q̂ðzÞ, P̂ðzÞ, where z
denotes the z-transform. Q̂ðzÞ, P̂ðzÞ will follow the same iden-
tifiability conditions [62].

Specifically, we have that

YðzÞ ¼ Q̂ðzÞYðzÞ þ P̂ðzÞUðzÞ, ð3:1Þ
which given that Q̂ðzÞ and P̂ðzÞ share the same denominator,
we can multiply the characteristic polynomial of Q̂ðzÞ on both
sides, to obtain

(z�nd þ a1z�ndþ1 þ � � � þ and )YðzÞ ¼ Q̂numðzÞYðzÞ þ P̂numðzÞUðzÞ:
ð3:2Þ

Here, the matrices Q̂numðzÞ, P̂numðzÞ are matrices that contain
the numerator entries of each transfer function in Q(z) and
P(z). Namely

Q̂ijðzÞ ¼
[Q̂numðzÞ]ij

(z�nd þ a1z�ndþ1 þ � � � þ and )

and

P̂ijðzÞ ¼
[P̂numðzÞ]ij

(z�nd þ a1z�ndþ1 þ � � � þ and )
:

We can express the known quantity z�ndYðzÞ after inverse
Z-transforming to obtain

y½t� nd� ¼ �a1y½t� nd þ 1� � a2y½t� nd þ 2�
� � � � � andy½t� nd� �QQ,numYt�md : t�
�QP,numUt�md : t ð3:3Þ

where Yt�md : t denotes a matrix containing time-shifted entries
y[t−md], y[t−md + 1], y[t−md + 2],…y[t], of a time series or
time trace y½t�, t [ N0. Similarly, Ut�md : t denotes a matrix con-
taining time-shifted entries u[t−md], u[t−md + 1], u[t−md +
2],…u[t], of a time series or time trace u½t�, t [ N0. The terms
QQ,num and QP,num contain the coefficients of the numerator
polynomials of off-diagonal elements in Q(s) and the diagonal
elements in P(s), respectively.

The above equation can be thus written in normal form as

b ¼ vTQ: ð3:4Þ
Here b and v are dependent on the elements of a single time
trace of output measurements y[t] and input measurements
u[t]. This equation can be also stacked for multiple time
traces y1½t�, y2½t�, . . ., yNexp½t� collected from Nexp different con-
ditions or experimental replicates, or by simply staggering
the time horizon, to obtain the stacked normal form equations

B ¼ XQ, ð3:5Þ
where B is a stackedmatrix of b1, b2, . . ., bNexp andX is a stacked
matrix of v1, v2, . . ., vNexp of time-series data andQ contains the
coefficients determining the characteristic polynomial and the
numerators of the dynamical structure function. Once these
estimates are obtained, a standard discrete-to-continuous
transformation can be used to estimate Q(s) and P(s). The
steps of our algorithm are summarized in algorithm 1 and
the full MATLAB code is provided at the Github repository
https://github.com/YeungRepo/NetRecon.

https://github.com/YeungRepo/NetRecon
https://github.com/YeungRepo/NetRecon
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A couple remarks are in order. First, there are two distinct
hyperparameters that require optimization in generating the
estimates forQ(s) and P(s): (1) nd, the order of the characteristic
polynomial and (2) the selection of the number of subsampled
timepoints hmax in given time-series traces. The optimal value
of hmax will depend on the dataset, to ensure the condition
number of the matrix X must be small. In high-resolution
time-series measurements, a small or short subsampled hor-
izon hmax may produce virtually identical data if the transient
has a slow rate of change, which can result in ill-conditioning
ofX. We optimize nd, hmax tominimize the n-step L1 prediction
error across all Nexp experimental samples. In practice, we
observe that this criterion, by necessity, guarantees an appro-
priate selection of hmax as well as a lower optimal nd value. In
general, optimization of nd is non-convex, as this corresponds
to an estimate of the model order. In the examples below, we
leverage knowledge about the system to inform an initial esti-
mate for nd and perform a local optimization. A generalized
specification of nd, following the standard calculation of
the rank of a Hankel matrix, but generalized for dynamical
structure functions, is the subject of future work.

Secondly, at face value, the routine described above
may appear similar to a classic transfer function estimation
routine, analogous to the tools developed in [60] for
MATLAB. The primary difference in algorithm 1 from a
standard transfer function estimation procedure for

½QðzÞ PðzÞ�
is that we must impose structural information about Q(z) and
P(z) on the estimation process. This results in a structured
system identification problem, which typically is non-convex
and difficult to initialize properly. Specifically, the diagonal
entries of the estimated Q(z) and the off-diagonal entries of
P(z) must be exactly 0, as per the premises of [62]. Again,
these structural constraints guarantee a unique representation
of the dynamical structure function and identifiability of the
model. When using standard transfer function estimation
tools (in MATLAB’s System Identification Toolbox), we found
repeatedly over thousands of numerical trials that imposing
structural constraints as model priors sometimes resulted in
(A) models with extremely poor n-step prediction capacity
(forecasting) or (B) stable transfer function models that were
unable to capture transient (divergent) dynamics.

If the dynamics of the system appear to behave like a linear,
stable system, MATLAB system identification routines can be
adapted to perform reconstruction (e.g. the experimental data
for the in vitro transcriptional event detector). However, for
many in vivo gene networks, dynamics are nonlinear or
respond to perturbationswith transients that are unlike asymp-
totically stable linear dynamics. The latter observation violates
the premise of many transfer function estimation routines in
the MATLAB System Identification Toolbox. This motivated the
development of a direct estimation algorithm, that mirrors
the standard estimation of a discrete-time transfer function
model, but where structural constraints of Q(z) and P(z) are
directly encoded in the formulation of the normal form of
equations (lines 19–28, 32 and 36 of algorithm 1).
4. The dynamical structure of an in vitro genelet
repressilator

We now illustrate the process of data-driven estimation of
dynamical structure functions, using experimental data.
In this section, we take as a first test case the synthetic genelet
repressilator developed by Kim & Winfree [75]. The genelet
repressilator consists of three DNA switches that repress one
another through indirect sequestration. Specifically, each
DNA switch transcribes its mRNA product only when its acti-
vator strand binds to complete its T7 RNA polymerase
promoter sequence. The RNA product produced from each
DNA switch, in turn, acts as an inhibitor to the downstream
switch by binding to the downstream switch’s DNA activator
molecule. Thus, by sequestering the DNA activator from com-
pleting the T7 RNA polymerase promoter region, the mRNA
product of the upstream switch inhibits activation of the down-
stream switch. Figure 4a shows the mechanistic design of the
genelet switch.
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The genelet switch relies heavily on RNase H to degrade
any activator–mRNA inhibitor complexes. Without degra-
dation, the binding of activator to mRNA inhibitor is much
faster than unbinding and so sequestration is effectively irre-
versible. Thus, in order for the repressilator to function
properly, RNase H must degrade its target substrates suffi-
ciently fast. If RNase H is saturated with high levels of a
particular substrate, this slows the degradation of other sub-
strates, creating a crosstalk interaction between competing
DNA–RNA complexes.

By performing network reconstruction on the genelet
repressilator, we can determine how much crosstalk exists
in the biocircuit. Furthermore, we can validate our dynamical
structure reconstruction algorithm in an in vitro setting, by
deliberately attenuating one of the components to create a gain
imbalance. We can see if the reconstruction process recovers
the deliberate imbalance we introduce into the genelet repres-
silator, even when simply measuring local perturbations of
an operating point for a normally oscillatory circuit.

To reconstruct Q(s) and P(s), we performed a single exper-
iment with three perturbations applied in series [24,39–45,62].
To perturb each switch, we pipetted a small perturbative con-
centration of DNA inhibitor (a DNA analogue of RNA
inhibitor). Since DNA is not degradable in a T7 expression
system by RNase H, it effectively acts as a step input since
it binds to DNA activator and does not degrade. In this
way, our perturbation design ensures sufficiency of excitation
and independent perturbation of each activator (and
downstream switch), thereby satisfying the identifiability
conditions in [62] and the persistence of excitation conditions
described in [60]. Furthermore, we attenuated the concen-
tration of the third switch T31 by 20%, to create a deliberate
gain imbalance for evaluating our reconstruction algorithm.

A detailed model of the repressilator can be found in the
supplement of [75]. Since the derivation is lengthy, it suffices
to write the idealized dynamical structure function Qa(s) of
this system, corresponding to the detailed model provided
in [75, supplementary §1.6]. The structure is obtained by lin-
earizing the system, transforming into the Laplace domain,
eliminating hidden variables to obtain the following:

0 0 Qa
13ðsÞ

Qa
21ðsÞ 0 0
0 Qa

32ðsÞ 0

2
4

3
5

reflecting the cyclic structure of the system. This represents an
idealized model of the system. As stated in theorem 2.1 every
entry where Qa

ijðsÞ ; 0, the corresponding entry in Q(s) esti-
mated directly from experimental data will be a crosstalk
interaction present in the network. Here Q(s) is used to
denote Qc(s), the dynamical structure function estimated
directly from data.

The experimental data used to fit Q(s) and P(s) are plotted
in figure 5, along with their respective fits. For each row i of
Q(s), we use Yj, j≠ i and Ui as inputs and Yi as the output for
a direct MIMO p × 1 transfer function estimation problem.
The impulse response for the convolution kernel Q(t) of the
reconstructed Q(s) is plotted in figure 6.

If we compute the correspondingH1 gain of each entry in
Qij(s) and scale by the maximum gain, we obtain

kQðsÞk1 ¼
0 0:07 0:73
1:0 0 0:3

0:053 0:17 0

0
@

1
A:
We see significant crosstalk on the edge Q23(s) and minor
crosstalk from entries Q31(s) and Q12(s). This crosstalk need
not occur simultaneously, since the H1 gain calculates the
worst-case or maximum gain over all possible frequencies.
With the exception of Q23(s), all other crosstalk entries have
strictly smaller H1 gain than the designed edge. Examining
the impulse response of the convolution kernel confirms
these observations; the crosstalk edge Q23(t) has a larger
impulse response than designed edge Q32(t). The response of
output is normalized per the maximum signal gain achieved,
using the technique described in [75], in arbitrary fluorescent
units (a.f.u.).

As intended in the design of the experiment, our estimated
network model shows a gain imbalance between the designed
edges Q32(s), Q13(s) and Q21(s). It is well known that in order
for a repressilator to stably oscillate [75], it needs to have
approximately the same gain along each edge in the network.
This example verifies that our reconstruction algorithm can
identify important functional dynamics of a genetic circuit;
especially for debugging purposes. The linearization scheme
is valid, so long as we model fluctuations in dynamics from
a nominal initial condition, even if the initial condition is
not stable or leads to oscillatory dynamics. Our results here
illustrate how linearized models can provide insight into
local dynamics. In this simple, controlled dataset, we know
we can increase the gain of the edge in Q32(s) by adjusting
the binding affinity of the activator DNA with its inhibitor
RNA, or by increasing the concentration of the correspond-
ing downstream switch T31. Note that this design insight
may not be obvious by direct examination of experimental
trajectories of each switch in figure 5. As long as we have an
idealized network model, we can measure the deviation
from that model Qa(s) in the network model identified from
the data Qc =Q(s) and identify edges or nodes in our network
that need tuning.
5. The dynamical structure of an in vivo
transcriptional event detector

We now introduce a new transcriptional event detector
circuit, one that is designed, built, and constructed for illus-
trating the use of our dynamical structure estimation
algorithm in in vivo circuit design. Event detectors are
useful because of their ability to perform temporal logic.
Making temporal logic decisions enable applications such
as programmed differentiation, where the goal is to perform
some operation based on combinatorial and temporal
sequences of events that dictate cell fate.

So far there are two demonstrations of temporal logic
gates: (1) a temporal logic gate that differentiates start times
of two chemical outputs [76] and (2) a molecular counter
that counts the number of sequential pulses of inducers
[77]. Both event detectors use serine integrases to perform
irreversible recombination, while [77] demonstrates the use
of transcription-based event detecting to perform event
counting. The advantage of an integrase-based approach is
the persistent nature of DNA-based memory. At the same
time, the drawback of integrase-based event detection is
that it is limited to one-time use.

By contrast, transcription based event detectors use pro-
teins instead of DNA to encode a memory state [77,78]. The
advantage of a transcription-based event detector is that
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proteins are labile, since they are diluted through cell growth
or can be tagged for degradation. Thus, a transcriptional
event detector’s memory state can be reset after some period
of time. On the other hand, maintaining protein state over
multiple generations is metabolically expensive [51] and the
dynamics of the circuit can become sensitive to production
and growth phase of the cells. Therefore, a transcription
based event detector biocircuit must be designed with precise
timing, balance of production rates, and carefully tuned
gain of each transcriptional regulator. This presents a suitable
application for our network reconstruction algorithm.

5.1. Designing a transcriptional event detector
We designed our transcriptional event detector to be made of
two constitutively expressed relay genes, AraC and LasR, and
an internal toggle switch. The two relay genes transmit the
arrival of two distinct induction events (arabinose and
HSL) to relay output promoters pBAD and pLas, respectively,
which drive production of a fluorescent response in two relay
promoters. To record these induction events historically, the
output of each relay gene is coupled to one of two combina-
torial promoters (pBAD-Lac or pLas-Tet) in a toggle switch.
Each combinatorial promoter implements NIMPLY logic,
e.g. pBAD-Lac (pLas-Tet) expresses TetR (LacI) only when
arabinose (HSL) and AraC (LasR) are present and LacI
(TetR) is absent. Thus, when one analyte (e.g. arabinose)
arrives, it triggers latching of the toggle switch only if the
toggle switch is unlatched to begin with or the prior latching
protein state has been diluted out. The relay outputs thus
transmit the current or recent induction event state while the
toggle switch maintains the historical induction event state.
Depending on the order of arrival of each inducer, we
obtain different biocircuit states. Figure 7 details the genetic
elements in the event detector biocircuit and the designed
component interaction network.

We can write down an idealized model for the event
detector (assuming no crosstalk), assuming first-order degra-
dation and production, with Hill functions encoding the
NIMPLY logic of each promoter in the memory module:

_x1 ¼ r1m1 � dpx1,
_x2 ¼ r2m2 � dpx2,
_x3 ¼ r3m3 � dpx3,
_x4 ¼ r4m4 � dpx4,

_m1 ¼ k1ðkl þ u1=kM,u1Þ
ð1þ u1=kM,u1Þ � dmm1,

_m2 ¼ k2ðkl þ u1=kM,u1Þ
ð1þ x3=kM,3 þ u1=kM,u1Þ � dmm2,

_m3 ¼ k3ðkl þ u2=kM,u2Þ
ð1þ x2=kM,2 þ u2=kM,u2Þ � dmm3,

_m4 ¼ k4ðkl þ u2=kM,u2Þ
ð1þ u2=kM,u2Þ � dmm4

and y ¼

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

2
6664

3
7775[xT mT]T ,

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð5:1Þ

where the measured outputs of the system are yi = xi, i = 2, 3,
ρi is the translation rate of mi into xi, δp is the effective dilution
rate of xi, i = 1,…, 4, δm is the combined dilution and degra-
dation rate of mi, i = 1,…, 4, kM, ui is the Michaelis constant



0.2

0.1

0

–0.1

–0.2

0.2

0.1

0

–0.1

–0.2

0.2

0.1

0

–0.1

–0.2

0.2

0.1

0

–0.1

–0.2

0.2

0.1

0

–0.1

–0.2

0.2

0.1

0

–0.1

–0.2

0.2

0.1

0

–0.1

–0.2

0.2

0.1

0

–0.1

–0.2

0.2

0.1

0

–0.1

–0.2

time (min)

im
pu

ls
e 

re
sp

on
se

 (
a.

f.
u.

)
1 1 1

111

1 1 1

Q11(t) Q12(t) Q13(t)

Q23(t)Q22(t)Q21(t)

Q31(t) Q32(t) Q33(t)

Figure 6. Impulse response of the estimated convolution kernel Q(t) matrix. Q(s) is estimated directly from experimental data, transformed into the frequency
domain, and simulated in time for t = 0 to t = 300 min. The x-axis is plotted in log scale, to visualize fast, transient edge dynamics that happen upon impulse
stimulation of a given edge.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210413

12
for ui, kl is the leaky catalytic transcription rate, ki is the cata-
lytic transcription rate for mi, and u1, u2 are arabinose and
HSL, respectively.

Again, the dynamical structure function for this system is
calculated by linearizing the system about a nominal initial
condition, (x0, m0), taking a Laplace transform and solving
out the hidden variables m1,…, m4. We present a simplified
case here, assuming algebraic symmetry of the parameters
ki = k, ρi = ρ, kM,i = kM as it does not qualitatively change the
structure of (Q(s), P(s)). We obtain

QaðsÞ ¼ 0 Q12ðsÞ
Q21ðsÞ 0

� �

and

PaðsÞ ¼ P11ðsÞ 0
0 P22ðsÞ

� �
,

where Pii(s) = ρ/(δm + s)(δp + s) for i = 1, 2 and

Q12ðsÞ ¼ �krðkl þ u1=kMÞ
kMðdm þ sÞðdp þ sÞðu1=kM þ x3=kM þ 1Þ2
and

Q21ðsÞ ¼ �krðkl þ u2=kMÞ
kMðdm þ sÞðdp þ sÞðu2=kM þ x2=kM þ 1Þ2 :

In the absence of protein degradation, Q12(s) and Q21(s) can
be approximated with first-order SISO transfer functions.
These expressions for Q(s) and P(s) are for the idealized dyna-
mical structure function of the alternative system. Notice that
Q12(s) and Q21(s) are strictly negative transfer functions, indi-
cating the repression present in an idealized simulation of the
event detector circuit. This is the intended dynamical network
structure of the event detector, in the absence of all genetic
crosstalk or context effects.

Depending on the abundance of transcription factors such
as LacI, TetR and AraC, as well as commonly shared tran-
scriptional and translational proteins, the actual dynamical
structure function Qc(s) may not exhibit monotonic repres-
sion or may even unveil unwanted interactions. We can
investigate these interactions under a range of conditions
with dynamical structure estimation.

We constructed a biological implementation of the event
detector, using the design specified in figure 7. The logical
components containing the relays and the memory module
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Figure 7. (a) Left: We design an event detector to determine the identity
and relative ordering of two events E1 and E2 occurring within a finite
time horizon. (b) A schematic showing the logic of the circuit for the
event detector. Arrival of event type A triggers transient reporter for A
(top) and latching of the toggle in an A-dominant state as a memory
state. Similarly, arrival of event type B triggers transient reporter for B
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state. (c) A diagram showing the synthetic biocircuit parts used to implement
the network architecture in (b). (d ) The arabinose and HSL inducers indepen-
dently perturb distinct elements of the memory module in the event
detector; a network model of the dynamic graph of the event detector
can be reconstructed using dynamical structure function reconstruction
experiments.
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were encoded on to a plasmid vector with a kanamycin
resistance marker and a ColE1 (high copy) replication
origin. The fluorescent reporter elements with the relay pro-
moters and readouts for the toggle switch were encoded on
a plasmid vector with chloramphenicol resistance and the
p15 replication origin.
5.2. Event detector latching experiments
We evaluated the performance of our transcriptional event
detector circuit using a temporal logic test. A standard tem-
poral logic experiment for any two-input event detector is to
evaluate the effect of varying the order of presentation of two
input signals. In one test, we present the first input, arabinose,
for 7.5 h, followed by induction of the second input, a homo-
serine lactone (HSL) quorum sensing molecule to activate the
pLas-Tet promoter. In the second test, we swap the order of
the inputs, presenting HSL quorum sensing molecule to the
event detector for 7.5 h, then present arabinose inducer as a
second input. Both tests evaluate the ability of the memory
module of the event detector to latch in the correct state in
response to the first input, followed by a challenge to ignore
the second input signal while the relays detect and read out
the second input signal. The data for both of these in vivo
tests are plotted in figure 8b,c.

The event detector showed the correct latching response in
all tests at standard maximum induction concentrations of ara-
binose (1 mM) and working induction concentrations of 1 μM
HSL. For example, figure 8c shows thatwhen the event detector
is given arabinose followed by HSL, it generates the correct
fluorescent response of YFP, with lower expressions level of
RFP. Conversely, when we add HSL first, followed by arabi-
nose, RFP signal ramps up immediately beginning as early
as 1–2 h after induction while YFP expression is abolished to
background levels.

We tested a variety of combinations of high and low con-
centrations for arabinose and HSL. When the concentration
of HSL was decreased to 1 nM, we observed consistent leaks
in the memory module in either the YFP channel or the RFP
channel. Decreasing arabinose down to 1 μM still allows for
latching of high YFP expression, but in the presence of 1 μM
HSL, any arabinose latching is reversed by HSL induction
(data not plotted). Conversely, when we attenuate HSL induc-
tion to 1 nM, HSL does not prevent arabinose from reversing a
HSL latch on the memory module; see figure 8b. This leak is
significant enough in the 1 nM HSL induction level that
the difference in signal between the arabinose–HSL induction
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scenario versus the HSL–arabinose induction scenario van-
ished. This temporal logic response profile is evident of a
glitch in the event detector circuit that occurs at lower HSL
and arabinose concentrations.

5.3. Network reconstruction experiments to debug
circuit failure

We conducted 4 in vivo network reconstruction experiments (2
inducers versus 2 concentrations), recording time-series data of
the memory module relay elements, YFP and RFP. The
memory module is designed using two hybrid promoters, so
from a design standpoint, verification of the memory module
was most critical. The arabinose inducer targets the pAra-Lac
promoter, while theHSL inducer targets the pLas-Tet promoter
(see electronic supplementary material for sequences).

As shown in themodel (5.1) of the event detector, the actual
event detector we constructed exhibits nonlinear response.
However, for any one parametric concentration regime, e.g.
at a fixed arabinose or HSL concentration, the response of the
system behaves similar to that of a linear system. Thus, we esti-
mated a dynamical structure function for both conditions of the
reconstruction experiment. The one-step accuracies in fitting
dynamical structure models to the low gain condition (1 μM
arabinose, 1 nM HSL) and high gain condition (1mM arabi-
nose and 1 μM HSL) were 99.996% and 99.995%, respectively.

As in the case of the genelet repressilator, we can plot a
dynamical network graph for the in vivo event detector to
understand how the memory module components labelled by
YFP and RFP, representing TetR and LacI, respectively, interact
with each other. Amovie visualizing the dynamics of the edges
of the graph is available for download (see electronic sup-
plementary material). Each edge represents the convolution
kernel response of the edge to an impulse applied to that
input. All responses are superimposed to form a dynamical
graph. Snapshots of the graph are plotted in figure 10, while
time-lapse responses of the weights of each edge are plotted
in figure 9. Again as with the repressilator, we can see that the
regulatory nature of edges in the event detector’s memory
module manifests as two edges with negative or positive
values indicating repression or activation, respectively.

The reconstructed network of our transcriptional event
detector reveals the functional relationship between states in
the circuit at different concentration regimes. At lower
concentrations of arabinose and HSL, the reconstructed tran-
scriptional event detector network reveals functional cause of
failed circuit latching. Both edges in the memory module did
not repress their target promoters as intended, while the pLas-
Tet promoter appears to enact a much higher gain of activated
expression from HSL induction than does the activated
expression of the pAra-Lac promoter in response to arabinose.

In the high gain setting, where arabinose is induced at
1mM and HSL is induced at 1 μM, we see that the memory
module exhibits the proper mutually repressing motif charac-
teristic of the genetic toggle switch up after the arrival of the
HSL inducer. The repression in both edges steps up their gain
as t approaches 4 h, which is roughly the time when we see a
plateauing of production in the RFP signal in figure 8c. From
our reconstruction model, we can see that the edges are well
balanced at the higher concentration of inducers. At the low
gain of inducers, the network is completely inactive, even
though the genetic sequence of the circuit is the same. This
example shows that our network verification algorithm can
be used to determine the conditions, or the performance
envelope, under which the circuit is functioning properly.
Even though the underlying model of our system is a linear
approximation to a nonlinear system, we can test the
system at multiple initial conditions, operating points, or
equilibria, to quantify network behaviour of the system
locally. Taken in aggregate, these can provide a
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parameterized view of how the network behaves over a range
of experimental conditions (figure 10).
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6. Conclusion
The dynamical structure function models the dependencies
among measured states. It is a flexible representation of
network structure that naturally adapts to the constraints
imposed by experimental measurement. Since identifiability
conditions of the dynamical structure function have been
well characterized, appropriate experimental design can
ensure that the process of network reconstruction produces
a sensible answer.

In this work, we introduced a network reconstruction
algorithm and a code base for reconstructing the dynamical
structure function from data, to enable discovery and visual-
ization of graphical relationships in a genetic circuit diagram
as time-dependent functions rather than static, unknown
weights. We proved a theorem, showing that dynamical
structure functions can provide a data-driven estimate of
the size of crosstalk fluctuations from an idealized model.
We then illustrated these findings with numerical examples.
Next, we used an in vitro genetic circuit, deliberately tuned
with gain imbalance, to validate our algorithm on experimen-
tal data. Finally, we built a new E. coli based transcriptional
event detector and showed how estimation of the dynamical
structure reveals active and inactive network states, depend-
ing on inducer concentration. These results show how the
dynamical structure function characterizes the operational
or active network. They also provide a route for future
study of relationships between environmental parameters,
active network dynamics, and biocircuit performance.
7. Experimental methods
All plasmids were constructed using either Golden Gate
assembly [79] or Gibson isothermal assembly [80] in E. coli.
Plasmids were sequence verified in JM109 cloning strains and
transformed into the strain MG1655ΔLacI, provided as a cour-
tesy by R. J. Krom and J. J. Collins. The event detector was
transformed as a two-plasmid system with kanamycin and
chloramphenicol selection. All in vivo experimentswere carried
out with n = 2 replicates using MatriPlates (Brook Life Science
SystemsMGB096-1-2-LG-L) 96 square-well glass bottom plates
at 29°C in a H1 Synergy Biotek plate reader using 505/535 nm
and 580/610 nm excitation/emission wavelengths. Cell
density was quantified with optical density at 600 nm.

For in vitro experiments, all genelet repressilator recon-
struction experiments were carried out at 37°C in a Horiba
spectrofluoremeter with 1min readout times, using Rhoda-
mine Green, TYE 563 and Texas Red flourophores with
10 nm monochromator excitation and emission bands centred
at 502/527, 549/563 and 585/615 nm, respectively. All event
detector network reconstruction reactions were performed
using 500 μl reaction volumes in transformed E. coli, grown
in square well glass-bottom plates using MatriPlates (Brook
Life Science Systems MGB095-1-2-LG-L) with Luria-Bertain
rich media broth at 29°C.

Data accessibility. All data files, network reconstruction code and visual-
ization scripts can be obtained from the GitHub repository https://
github.com/YeungRepo/NetworkRecon.
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Appendix A. Supplementary information

A.1. Experimental methods for circuit preparation, assembly
and testing

A.1.1. The repressilator genelet circuit
TheDNA sequences for the T31, T12, T23 switchwere obtained
as a gift from the Winfree lab, mirroring the design identically
of the repressilator genelet circuit used in [75]. Oligo-
nucleotides were ordered with functionalized fluorophores or
quenchers, corresponding to the original design of the genetic
repressilator. DNA sequences were suspended in Tris-EDTA
buffer for primary stock storage, while all genelet switches
T12, T31, T23 added at concentrations of 75 nM, 75 nM and
60 nM, respectively to match previous tuning experiments to
balance the repressilator, with 7.5mM working concentration
of mono-NTP solution, 24mM MgCl2, and 1× T7 expression
system buffer.

DNA analogues of RNA inhibitors were added to seques-
ter DNA activator signal from the switches as an effective
step input perturbation to each node. The switches produced
a RNA signal that was designed to interfere with formation of
a complete promoter region of the next downstream switch in
the repressilator circuit. Adding DNA served as a step pertur-
bation to the corresponding switch. Each DNA moiety added
thus had the effect of an activator. Activator DNA molecules
A1, A2 and A3, each containing Iowa Black quencher were
added at 75 nM, 80 nM and 75 nM working concentration
at 20min from the onset of the reaction, to determine the
maximum range of quenching. At 58min, we added 0.7 μl
of pyrophosphatase, 3 μl of T7 RNA Polymerase and 2.2 μl
of RNase H to achieve identical working concentrations to
those described in [75].
A.2. The transcriptional event detector circuit
The transcriptional event detector circuit, as illustrated in
figure 7 in the main text, is composed of four distinct gene
expression cassettes that define the regulatory logic of the cir-
cuit and four distinct gene expression cassettes that generate
the fluorescent reporter elements of the circuit. Each gene cas-
sette defines a transcriptional unit, with a promoter element, an

https://github.com/YeungRepo/NetworkRecon
https://github.com/YeungRepo/NetworkRecon
https://github.com/YeungRepo/NetworkRecon
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RBS, a coding sequence, and a terminator sequence. Each gene
cassette was cloned using a 5 part Golden Gate assembly, with
a type II BsaI restriction enzyme and overhang sequences from
[81,82]. Each assembled gene cassette was cloned in JM109 E.
coli cloning strains and sequence verified at Eurofins Genomic,
by Sanger sequencing. Assembled plasmids were engineered
to enable a second stage Golden Gate assembly, using the
BbsI type II restriction enzyme, and assembled to either (1)
form a master regulatory logic plasmid (pEY15K), comprised
of four distinct gene expression cassettes driving transcription
factor or allosteric response or (2) form a master reporter plas-
mid comprised of four distinct reporter elements (pEY14C).
Both stage 2 assembled regulatory logic and reporter plasmids
were sequence verified using Sanger sequencing (Eurofin
Genomics) and transformed into MG1655ΔLacI (a gift from
the Collins laboratory). The sequences for all individual
plasmids and the circuit plasmids are listed in table 1.
 erface

18:20210413
Appendix B. Sequences of genetic circuit
components

The sequences for all genetic components and circuits for the
event detector circuit are listed in table 1. All genelet repressi-
lator sequences are identical to the sequences used and listed
in [75]. All ribosome binding site (RBS) sequenceswere derived
from the bicistronic design (BCD) ribosome binding site library
[83], while all terminator sequences were drawn from the
synthetic terminator library characterized in [84].
Appendix C. Quantifying crosstalk in biochemical
reaction networks

A common way that crosstalk arises in biochemical reaction
networks is when species compete for commonly shared
enzymes. When this occurs, the sequestration of an enzyme
by one competing species makes the enzyme less accessible
to other competing species. For example, when two mRNA
are competing for a single ribosome, the binding of one
mRNA to the ribosome during translation makes it less acces-
sible to other mRNA. At the core of any such crosstalk is a
sudden increase in the dependency of one biochemical state
on another. Though enzyme loading may be a common
source of crosstalk, such interactions can be modelled at a
higher level of abstraction, namely how the dynamics of a
given state are affected by the concentration fluctuations of
other states.

Nearly every synthetic gene network implements causal
dependencies among states. Often, these ‘designed’ inter-
actions take the form of transcription factor binding, sense–
anti-sense mRNA regulation, and sequestration events. In
practice, every physical system exhibits trajectories that are
a mixture of the consequences of both interaction types:
designed and crosstalk interactions. Throughout the course
of this paper, we will denote the physical system of interest
in our models as

_y ¼ f cyðy, xh, uÞ, yð0Þ ¼ y0

_xh ¼ f cxhðy, xh, uÞ, xhð0Þ ¼ xh,0

and y ¼ ½I p�p 0� y
xh

� �
:

9>>>>>=
>>>>>;

(C 1Þ
To quantify crosstalk in such systems, we can compare the
dynamics of system (C 1) against the dynamics of a reference or
alternative system that is free of crosstalk. Such a reference
system will still retain the desired interaction dynamics and
reflects the idealized model often used to design a synthetic
gene network, e.g. the feed forward loop model in example
2.1.1. Moreover, it can represent the desired behaviour of the
system in a regime where the magnitude of crosstalk effects
are supposed to be minimal or engineered in such a way that
they are suppressed [7]. We write the reference system as

_y ¼ f ayðy, xh, uÞ, yð0Þ ¼ y0

_xh ¼ f axhðy, xh, uÞ, xhð0Þ ¼ xh,0

and y ¼ I p�p 0
� � y

xh

� �
:

9>>>>>=
>>>>>;

(C 2Þ
Remark C.1. For the comparison between the alternative
and crosstalk system to be fair, it is important that (C4) satisfies
internal equivalence [85]. Specifically, we will suppose that
any parameters or dynamics unassociated with crosstalk,
e.g. interaction dynamics, catalytic reactions, or anabolic reac-
tions with no loading effects, are held fixed. Thus, as we
compare the behaviour of both systems, any differences in
the hidden state xh or output y dynamics are purely due to
effects of crosstalk.

With the definition of an alternative system in place, it
becomes possible to reason about the size of crosstalk, by com-
paring the dynamics of both systems. In particular, we can
develop a rigorous notion for describing the amount of cross-
talk arising from the difference of trajectories in both systems.

Definition C.2 (Crosstalk trajectory). Consider two systems,
a crosstalk system and an alternative or reference system,
initialized from the same initial condition x(0). For each initial
condition xð0Þ ¼ ðyð0Þ, xhð0ÞÞ [ Rn and input trajectory u(t),
we define the crosstalk trajectory ζ(t) as

zðtÞ ¼ xaðtÞ � xcðtÞ:

The crosstalk trajectory is a time-evolving vector that
describes the deviation of the physical system (subject to
crosstalk) from the reference system’s trajectory. With this
notion of crosstalk, we can also make precise the concept of
crosstalk between states. We note that in writing the follow-
ing quantity of interest (∂/∂xj)ζi, it is with a slight abuse of
notation, since ζi(x

a(t), xc(t)). Mathematically, we are comput-
ing the jth partial derivative of each term in zi ¼ xai ðtÞ � xci ðtÞ:
Thus, to be clear, when we write (∂/∂xj)ζi, it will be implicit
that we mean ð@=@xaj Þxai ðtÞ � ð@=@xcj Þxci ðtÞ:

Definition C.3 (Directed crosstalk). Given an initial con-
dition of (x(0), y(0)) and input trajectory u(t) we say that a
chemical species xj exerts a crosstalk effect on chemical
species xi if the ith component of the crosstalk trajectory
ζ(t) has non-zero partial derivative

@

@xj
ziðtÞ = 0,

for some initial condition of (x(0), y(0)) and input trajectory
u(t). In general, we will refer to (∂/∂xj)ζi(t) as the crosstalk
sensitivity of xi to xj.



Table 1. Table of genetic sequences for all parts used to make the transcriptional event detector circuit.

sequence ID sequence description DNA sequence

pAra-Lac hybrid promoter CATAGCATTTTTATCCATAAGATTAGCGGATCCTAAGCTTTACAA

TTGTGAGCGCTCACAATTATGATAGATTCAATTGTGAGCGGATA

ACAATTTCACACA

BCD2 RBS GGGCCCAAGTTCACTTAAAAAGGAGATCAACAATGAAAGCAATT

TTCGTACTGAAACATCTTAATCATGCAGGGGAGGGTTTCTAATG

TetR transcription factor ATGTCTAGATTAGATAAAAGTAAAGTGATTAACAGCGCATTAGAG

CTGCTTAATGAGGTCGGAATCGAAGGTTTAACAACCCGTAAACT

CGCCCAGAAGCTAGGTGTAGAGCAGCCTACATTGTATTGGCATG

TAAAAAATAAGCGGGCTTTGCTCGACGCCTTAGCCATTGAGATGT

TAGATAGGCACCATACTCACTTTTGCCCTTTAGAAGGGGAAAGCT

GGCAAGATTTTTTACGTAATAACGCTAAAAGTTTTAGATGTGCTTTA

CTAAGTCATCGCGATGGAGCAAAAGTACATTTAGGTACACGGCCTA

CAGAAAAACAGTATGAAACTCTCGAAAATCAATTAGCCTTTTTATGC

CAACAAGGTTTTTCACTAGAGAATGCATTATATGCACTCAGCGCTGT

GGGGCATTTTACTTTAGGTTGCGTATTGGAAGATCAAGAGCATCAAG

TCGCTAAAGAAGAAAGGGAAACACCTACTACTGATAGTATGCCGCCA

TTATTACGACAAGCTATCGAATTATTTGATCACCAAGGTGCAGAGCCA

GCCTTCTTATTCGGCCTTGAATTGATCATATGCGGATTAGAAAAACAA

CTTAAATGTGAAAGTGGGTCTGCAGCAAACGACGAAAACTACGCTTT

AGCAGCTTAA

ECK120033736 terminator AACGCATGAGAAAGCCCCCGGAAGATCACCTTCCGGGGGCTTTTTT

ATTGCGC

BCD9 RBS GGGCCCAAGTTCACTTAAAAAGGAGATCAACAATGAAAGCAATTTTC

GTACTGAAACATCTTAATCATGCAGAGGAGTCTTTCT

AraC transcription factor ATGCAATATGGACAATTGGTTTCTTCTCTGAATGGCGGGAGTATGAA

AAGTATGGCTGAAGCGCAAAATGATCCCCTGCTGCCGGGATACTCG

TTTAATGCCCATCTGGTGGCGGGTTTAACGCCGATTGAGGCCAACG

GTTATCTCGATTTTTTTATCGACCGACCGCTGGGAATGAAAGGTTATA

TTCTCAATCTCACCATTCGCGGTCAGGGGGTGGTGAAAAATCAGGG

ACGAGAATTTGTTTGCCGACCGGGTGATATTTTGCTGTTCCCGCCAG

GAGAGATTCATCACTACGGTCGTCATCCGGAGGCTCGCGAATGGTAT

CACCAGTGGGTTTACTTTCGTCCGCGCGCCTACTGGCATGAATGGCT

TAACTGGCCGTCAATATTTGCCAATACGGGGTTCTTTCGCCCGGATGA

AGCGCACCAGCCGCATTTCAGCGACCTGTTTGGGCAAATCATTAACG

CCGGGCAAGGGGAAGGGCGCTATTCGGAGCTGCTGGCGATAAATCT

GCTTGAGCAATTGTTACTGCGGCGCATGGAAGCGATTAACGAGTCGC

TCCATCCACCGATGGATAATCGGGTACGCGAGGCTTGTCAGTACATCA

GCGATCACCTGGCAGACAGCAATTTTGATATCGCCAGCGTCGCACAGC

ATGTTTGCTTGTCGCCGTCGCGTCTGTCACATCTTTTCCGCCAGCAGTT

AGGGATTAGCGTCTTAAGCTGGCGCGAGGACCAACGTATCAGCCAGGC

GAAGCTGCTTTTGAGCACCACCCGGATGCCTATCGCCACCGTCGGTCG

CAATGTTGGTTTTGACGATCAACTCTATTTCTCGCGGGTATTTAAAAAATG

CACCGGGGCCAGCCCGAGCGAGTTCCGTGCCGGTTGTGAAGAAAAAGT

GAATGATGTAGCCGTCAAGTTGTCATAA

ECK120029600 terminator TTCAGCCAAAAAACTTAAGACCGCCGGTCTTGTCCACTACCTTGCAGTA

ATGCGGTGGACAGGATCGGCGGTTTT

CTTTTCTCTTCTCAA

(Continued.)
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Table 1. (Continued.)

sequence ID sequence description DNA sequence

pLas-Tet hybrid promoter TTCTTCGAGCCTAGCAAGGGTCCGGGTTCACCGAAATCTA

TCTCATTTGCTAGTTATAAAATTATGAAATTTGCGTAAATTCC

CTATCAGTGATAGAGATTCAGAAGC

BCD10 RBS GGGCCCAAGTTCACTTAAAAAGGAGATCAACAATGAAAGCA

ATTTTCGTACTGAAACATCTTAATCATGCGGAGGATCGTTTCTA

LacI transcription factor ATGAAACCAGTAACGTTATACGATGTCGCAGAGTATGCCGGTG

TCTCTTATCAGACCGTTTCCCGCGTGGTGAACCAGGCCAGCC

ACGTTTCTGCGAAAACGCGGGAAAAAGTGGAAGCGGCGATG

GCGGAGCTGAATTACATTCCCAACCGCGTGGCACAACAACTG

GCGGGCAAACAGTCGTTGCTGATTGGCGTTGCCACCTCCAGT

CTGGCCCTGCACGCGCCGTCGCAAATTGTCGCGGCGATTAAA

TCTCGCGCCGATCAACTGGGTGCCAGCGTGGTGGTGTCGATG

GTAGAACGAAGCGGCGTCGAAGCCTGTAAAGCGGCGGTGCAC

AATCTTCTCGCGCAACGCGTCAGTGGGCTGATCATTAACTATCC

GCTGGATGACCAGGATGCCATTGCTGTGGAAGCTGCCTGCACT

AATGTTCCGGCGTTATTTCTTGATGTCTCTGACCAGACACCCATC

AACAGTATTATTTTCTCCCATGAGGACGGTACGCGACTGGGCGT

GGAGCATCTGGTCGCATTGGGTCACCAGCAAATCGCGCTGTTAG

CGGGCCCATTAAGTTCTGTCTCGGCGCGTCTGCGTCTGGCTGGC

TGGCATAAATATCTCACTCGCAATCAAATTCAGCCGATAGCGGAAC

GGGAAGGCGACTGGAGTGCCATGTCCGGTTTTCAACAAACCATG

CAAATGCTGAATGAGGGCATCGTTCCCACTGCGATGCTGGTTGC

CAACGATCAGATGGCGCTGGGCGCAATGCGCGCCATTACCGAGT

CCGGGCTGCGCGTTGGTGCGGATATCTCGGTAGTGGGATACGAC

GATACCGAGGACAGCTCATGTTATATCCCGCCGTTAACCACCATCA

AACAGGATTTTCGCCTGCTGGGGCAAACCAGCGTGGACCGCTTG

CTGCAACTCTCTCAGGGCCAGGCGGTGAAGGGCAATCAGCTGTTG

CCCGTCTCACTGGTGAAAAGAAAAACCACCCTGGCGCCCAATACGC

AAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGC

ACGACAGGTTTCCCGACTGGAAAGCGGGCAGGCAGCAAACGACGA

AAACTACGCTTTAGCAGCTTGA

ECK120015440 terminator TCCGGCAATTAAAAAAGCGGCTAACCACGCCGCTTTTTTTACGTCTGCA

pLas LasR promoter GCATTGCTGTTCTTGATGGCTAGCTCAGTCCTAGGTACAATGCAAGC

BCD1 RBS GGGCCCAAGTTCACTTAAAAAGGAGATCAACAATGAAAGCAATTTTCG

TACTGAAACATCTTAATCATGCACAGGAGACTTTCTAATG

LasR transcription factor ATGGCCTTGGTTGACGGTTTTCTTGAGCTGGAACGCTCA

AGTGGAAAATTGGAGTGGAGCGCCATCCTCCAGAAGATG

GCGAGCGACCTTGGATTCTCGAAGATCCTGTTCGGCCTG

TTGCCTAAGGACAGCCAGGACTACGAGAACGCCTTCATC

GTCGGCAACTACCCGGCCGCCTGGCGCGAGCATTACGA

CCGGGCTGGCTACGCGCGGGTCGACCCGACGGTCAGTC

ACTGTACCCAGAGCGTACTGCCGATTTTCTGGGAACCGTC

CATCTACCAGACGCGAAAGCAGCACGAGTTCTTCGAGGAA

GCCTCGGCCGCCGGCCTGGTGTATGGGCTGACCATGCCG

(Continued.)

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210413

18



Table 1. (Continued.)

sequence ID sequence description DNA sequence

CTGCATGGTGCTCGCGGCGAACTCGGCGCGCTGAGCCTC

AGCGTGGAAGCGGAAAACCGGGCCGAGGCCAACCGTTTC

ATAGAGTCGGTCCTGCCGACCCTGTGGATGCTCAAGGACT

ACGCACTGCAAAGCGGTGCCGGACTGGCCTTCGAACATC

CGGTCAGCAAACCGGTGGTTCTGACCAGCCGGGAGAAGG

AAGTGTTGCAGTGGTGCGCCATCGGCAAGACCAGTTGGGA

GATATCGGTTATCTGCAACTGCTCGGAAGCCAATGTGAACTT

CCATATGGGAAATATTCGGCGGAAGTTCGGTGTGACCTCCC

GCCGCGTAGCGGCCATTATGGCCGTTAATTTGGGTCTTATT

ACTCTCTAATAA

ECK120010799 terminator GTTATGAGTCAGGAAAAAAGGCGACAGAGTAATCTGTCGCC

TTTTTTCTTTGCTTGCTTT

CFP CDS ATGAGTAAAGGAGAAGAACTTTTCACTGGAGTTGTCCCAATTC

TTGTTGAATTAGATGGTGATGTTAATGGGCACAAATTTTCTGTC

AGTGGAGAGGGTGAAGGTGATGCAACATACGGAAAACTTACC

CTTAAATTTATTTGCACTACTGGAAAACTACCTGTTCCATGGCC

AACACTTGTCACTACTTTGACTTGGGGTGTTCAATGCTTTGCTA

GATACCCAGATCATATGAAACAGCATGACTTTTTCAAGAGTGCC

TGCCCGAAGGTTATGTACAGGAAAGAACTATATTTTTCAAAGAT

GACGGGAACTACAAGACACGTGCTGAAGTCAAGTTTGAAGGT

GATACCCTTGTTAATAGAATCGAGTTAAAAGGTATTGATTTTAAA

GAAGATGGAAACATTCTTGGACACAAATTGGAATACAACGCTAT

TTCAGATAATGTATACATCACTGCAGACAAACAAAAGAATGGAAT

CAAAGCTAATTTCAAAATTAGACACAACATTGAAGATGGAAGCGT

TCAACTAGCAGACCATTATCAACAAAATACTCCAATTGGCGATGGC

CCTGTCCTTTTACCAGACAACCATTACCTGTCCACACAATCTGCCC

TTTCGAAAGATCCCAACGAAAAGAGAGATCACATGGTCCTTCTTGAG

TTTGTAACAGCTGCTGGGATTACACTAGGCATGGATGAACTATACAAA

citrine CDS ATGTCTAAAGGTGAAGAATTATTCACTGGTGTTGTCCCAATTTTGGTT

GAATTAGATGGTGATGTTAATGGTCACAAATTTTCTGTCTCCGGTGAA

GGTGAAGGTGATGCTACTTACGGTAAATTGACCTTAAAATTTATTTGTA

CTACTGGTAAATTGCCAGTTCCATGGCCAACCTTAGTCACTACTTTAG

GTTATGGTTTGATGTGTTTTGCTAGATACCCAGATCATATGAAACAACA

TGACTTTTTCAAGTCTGCCATGCCAGAAGGTTATGTTCAAGAAAGAAC

TATTTTTTTCAAAGATGACGGTAACTACAAGACCAGAGCTGAAGTCAAG

TTTGAAGGTGATACCTTAGTTAATAGAATCGAATTAAAAGGTATTGATTTTA

AAGAAGATGGTAACATTTTAGGTCACAAATTGGAATACAACTATAACTCTC

ACAATGTTTACATCATGGCTGACAAACAAAAGAATGGTATCAAAGTTAACT

TCAAAATTAGACACAACATTGAAGATGGTTCTGTTCAATTAGCTGACCATT

ATCAACAAAATACTCCAATTGGTGATGGTCCAGTCTTGTTACCAGACAAC

CATTACTTATCCTATCAATCTAGATTATCCAAAGATCCAAACGAAAAGAGAG

ATCACATGGTCTTGTTAGAATTTGTTACTGCTGCTGGTATTACCCATGGTAT

GGATGAATTGTACAAA

mRFP CDS ATGGCTTCCTCCGAAGATGTTATCAAAGAGTTCATGCGTTTCAAAGTTCGT

ATGGAAGGTTCCGTTAACGGTCACGAGTTCGAAATCGAAGGTGAAGGTG

(Continued.)
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Table 1. (Continued.)

sequence ID sequence description DNA sequence

AAGGTCGTCCGTACGAAGGTACCCAGACCGCTAAACTGAAAGTTACCAA

AGGTGGTCCGCTGCCGTTCGCTTGGGACATCCTGTCCCCGCAGTTCCA

GTACGGTTCCAAAGCTTACGTTAAACACCCGGCTGACATCCCGGACTAC

CTGAAACTGTCCTTCCCGGAAGGTTTCAAATGGGAACGTGTTATGAACT

TCGAGGACGGTGGTGTTGTTACCGTTACCCAGGACTCCTCCCTGCAAG

ACGGTGAGTTCATCTACAAAGTTAAACTGCGTGGTACCAACTTCCCGTC

CGACGGTCCGGTTATGCAGAAAAAAACCATGGGTTGGGAAGCTTCCAC

CGAACGTATGTACCCGGAAGATGGTGCTCTGAAAGGTGAAATCAAAATG

CGTCTGAAACTGAAAGACGGTGGTCACTACGACGCTGAAGTTAAAACC

ACCTACATGGCTAAAAAACCGGTTCAGCTGCCGGGTGCTTACAAAACCG

ACATCAAACTGGACATCACCTCCCACAACGAGGACTACACCATCGTTGA

ACAGTACGAACGTGCTGAAGGTCGTCACTCCACCGGTGCTTAA
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Note that the mathematical definition of crosstalk sensi-
tivity (∂/∂xj)ζi(t) depends on the initial condition x0(t) and
the input u(t). This dependency is consistent with the para-
metric sensitivity of biological function. Many genetic
circuits in bacteria behave acceptably in one initial condition
and for one input condition, e.g. in log-phase with an attenu-
ated amount of a small molecule or sugar compound, but
exhibit significantly different behaviour when input concen-
trations are increased by an order of magnitude or subject
to an alternative preparation method prior to the experiment.
The latter imposes a state history that defines a distinct initial
condition, which can drive a biological network to a highly
coupled or decoupled state.
Example C.4. Consider two mRNA species m1 and m2 com-
peting for the same degradation enzyme D in a physical
system. For simplicity of exposition, suppose their production
dynamics do not depend on each other and can bemodelled as
P1(t) and P2(t), respectively. The crosstalk system is given as

_m1 ¼ P1ðtÞ � D0m1=kM,1

1þm1=kM,1 þm2=kM,2

and

_m2 ¼ P2ðtÞ � D0m2=kM,2

1þm1=kM,1 þm2=kM,2
,

while the reference system is given as

_m1 ¼ P1ðtÞ � D0m1=kM,1

1þm1=kM,1

and

_m2 ¼ P2ðtÞ � D0m2=kM,2

1þm2=kM,2
:

In both systems, we have supposed that time has been rescaled
so that the customary parameter kcat for degradation is unity.
The crosstalk sensitivities of m1 and m2 (with respect to each
other) are given as

@z1
@m2

¼ @

@m2

ðt
0

�D0 m1=kM,1 m2=kM,2

ð1þm1=kM,1Þð1þm1=kM,1 þm2=kM,2Þ
and

@z2
@m1

¼ @

@m1

ðt
0

�D0m1=kM,1 m2=kM,2

ð1þm2=kM,2Þð1þm1=kM,1 þm2=kM,2Þ ,

respectively. The crosstalk sensitivity between m1 and m2 is
non-zero whenever m1 or m2 have non-zero initial condition.

Remark C.5. In synthetic biocircuit design, two chemical
species xi and xj are often declared orthogonal when there
is no designed interaction between them. Mathematically, in
the crosstalk free system, this corresponds to

@

@xj
xai ðtÞ ; 0,

for all x(0) and u(t). In such a situation, ζ(xi, xj)≠ 0 if and
only if

@

@xj
xci ðtÞ ¼

ðt
0
f ci ðy, xh, uÞdt = 0:

This condition is interesting in experimental settings since a
computational estimate of ð@=@xjÞ

Ð t
0 f

c
i ðtÞ from perturbation

experiments coincides with a direct estimate of the sensitivity
of the crosstalk (∂/∂xj)ζi. More specifically, when xi and xj
are measured outputs of the system, we will show in the
following that quantifying kQc

i,jðsÞk is directly related to an
estimate of the crosstalk sensitivity (∂/∂xj)ζi(t) near the
equilibrium point xce.

Remark C.6. In general, estimating the crosstalk sensitivity
for the nonlinear systems (C 1) and (C 4) can be challenging
if either xi and xj are not measured directly. Firstly, if exper-
imental data are available, they will often consist of data
for the measured species y in the crosstalk system, but not
the reference system. Second, if only one of the species xi
(or none) is available for measurement, even if perturbation
of xj is possible, a nonlinear observer is required to estimate
the trajectory of xj(t). Unless the parameters of fi(x, u)
are known a priori (which is generally not the case), this
then also requires system identification of the parameters of
fc(x, u) and fa(x, u) which often results in a non-convex
optimization problem.
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Thus, our goal is to estimate the observed crosstalk
between measured species Yi and Yj. This crosstalk estimate
will invariably include the dynamics of unmeasured
chemical species (such as ATP, RNAP, untagged mRNA and
protein species, DNA–protein complexes etc.). From a syn-
thetic biology design standpoint, this is not a disadvantage,
since the goal is to design a synthetic gene network with an
abstracted circuit architecture operating reliably in the context
of many unmeasured species. In any genetic circuit, there are
always additional biochemical compounds that are unmea-
sured. As stated in the main text, theorem 2.1 shows that
under certain conditions, the dynamical structure function
is able to estimate the crosstalk in a nonlinear system. We
present the proof of this theorem now here.

Theorem C.7. Let L denote the two-sided Laplace operator. Sup-
pose we have a system model that incorporates the effect of crosstalk

_yc ¼ f cyðyc, xch, uÞ, ycð0Þ ¼ 0

and _xch ¼ f cxhðyc, xch, uÞ, xchð0Þ ¼ 0,

9=
; (C 3Þ

where yc [ Rp is a vector of measured states in the output,
xch [ Rn�p are the unmeasured states of the system, xc ¼ ðyc, xchÞ
is the full system state, and u [ Rm is a vector of system inputs.
Furthermore, suppose we have an idealized system model to
simulate system dynamics in the absence of crosstalk

_ya ¼ f ayðya, xah, uÞ, yð0Þ ¼ 0

and _xah ¼ f axahðy
a, xah, uÞ, xhð0Þ ¼ 0,

9=
; (C 4Þ

where ya [ Rp is a vector of the measured states in the output,
xah [ Rn�p are the unmeasured states of the system, xa ¼ ðya, xahÞ
is the full system state, and u [ Rm is a vector of system inputs.
Let (Qc(s), Pc(s)) and (Qa(s), Pa(s)) denote the respective dynamical
structure functions calculated for each linearized system about the
origin. Let

zðtÞ ¼ xaðtÞ � xcðtÞ

denote the deviation of the crosstalk state from the idealized state.
Then

@L(zi)
@Yj

¼ Qa
ijðsÞ �Qc

ijðsÞ þ
@

@Yj
L(OððxcÞ2Þ), (C 5Þ

and in particular, if

Qa
ijðsÞ ; 0

then

@LðziÞ
@Yj

¼ �Qc
ijðsÞ þ

@

@Yj
L(OððxcÞ2Þ),

and can be estimated from input output data (Y(s), U(s)).

Proof. First, note that the Laplace transform of
LðzðtÞÞ ¼ Lðxa � xcÞ W XaðsÞ � XcðsÞ, which can be decom-
posed into its measured and unmeasured states

Ya

Xa
h

� �
ðsÞ � Yc

Xc
h

� �
ðsÞ

¼ QaYaðsÞ �QcYcðsÞ þ ðPa � PcÞUðsÞ þ L(Oðx2Þ)
Xa

hðsÞ � Xc
hðsÞ þ L(Oðx2Þ)

" #
:

Examining the ith component equation and taking partials
along Yj(s) yields equation (C 5). ▪

This result is important, since it tells us when estimat-
ing Qc(s) from experimental data will correspond to
estimating crosstalk between measured states in Y(s). Since
necessary and sufficient conditions for identifying Q(s) and
P(s) have been already characterized [62], this provides con-
ditions for inferring crosstalk from input–output data. For
example, a sufficient condition required is that there is an
input variable available to excite each measured output of
the genetic network attempting to be reconstructed. This
allows for the possibility that some biological states are
unmeasured and unexcited, but these will be viewed as
hidden states that play a role in defining the edge dynamics
in Qc(s).

More generally, even if parameters for fa(x, u)(t)
are unknown, the structure of Qa(s) can be analytically
calculated (using a symbolic algebra package). For
every zero entry in Qa(s) (coinciding with designed ortho-
gonality between measured states), we can then estimate
Qc(s) directly.

In practice, estimation of Qc(s) is also confounded by
noise. In our analysis in this paper, we suppose that a
series of filters can be applied to eliminate the noise in
the data. This may not be the case for biological systems
that have been characterized as inherently stochastic, e.g.
single cell gene expression dynamics. In such settings, the
estimated dynamical structure Qc(s) is a mixture of
the process noise in the system and the crosstalk. From the
standpoint of synthetic biocircuit prototyping, both are
undesirable in the ultimate iteration of the biocircuit
and thus need to be quantified. In this paper, we will
demonstrate our theoretical and computational frame-
work with experimental results derived from in vitro
systems, where signal-to-noise ratios are high and the only
sources of noise are measurement noise and pipetting
error. For a theoretical treatment of how to reverse
engineer Qc(s) in the presence of process noise or system
perturbation, see [86].

An advantage of using Qc(s) to estimate the crosstalk is
that we can use the H1 norm of Qc

i,jðsÞ to calculate the
worst-case crosstalk magnitude and H2 of Qc

i,jðsÞ to calculate
the average crosstalk across all frequencies.

C.1.1. Quantifying crosstalk with Qc(s)
Recall the incoherent feedforward loop in §§2.1.1 and 2.1.2. In
particular, comparing Qa(s) and Qc(s), we see that Qc(s) is a
full transfer function matrix

0 1:6�10�3

sþ2:1�10�3
0:041

sþ2:1�10�3

(1:6�10�3) sþ0:048
s2þ1:5 sþ3:3�10�3 0 0:041

sþ2:1�10�3

(3:8�10�4) sþ7:4�10�4

s2þ1:6 sþ0:13
(3:8�10�4) sþ4:4�10�4

s2þ1:6 sþ0:13 0

0
BB@

1
CCA

and Qa(s) is lower-triangular, reflecting the network
structure of the intended IFFL. By examining the upper tri-
angular entries in Qc(s), we can directly examine the effects
of degradation crosstalk. In the lower entries of Qc(s), these
crosstalk effects are confounded with the direct interactions
modelled in Qa(s). Although the gains of the entries in
Qc(s) are small, they nonetheless can have a significant
effect on the dynamics of the IFFL.
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Figure 11. Dynamical structure functions quantify biomolecular crosstalk. (a) A schematic illustrating the design of this simulation example. The crosstalk and
reference model of the incoherent feedforward loop from examples 2.1.1 and 2.1.2 are simulated accordingly to satisfy internal equivalence, for varying values
of k2,d. Standard parameters from the literature [87] were used to generate the simulation. As the size of the load Δload increases, the ability of the IFFL to
respond with a pulse decreases. (b) The H2 gain of Qc23ðsÞ is plotted as a function of ζ. Note that Qc23ðsÞ is a pure crosstalk term, since Qa23ðsÞ ; 0. As
the effective crosstalk in ζ2 increases, Qc23ðsÞ mirrors that increase, as shown in proposition 1. (c,d ) Time lapse responses of the incoherent feedforward loop:
for each value of k2,d, the value of ζ2 at t = 3 h is calculated and used to label curves (as percentage of maximum load). Note the monotonic relationship between
k2,d, ζ and the output responses of Y2 and Y3 (negatively monotonic).
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In figure 11, we plot the time-lapse response of y2(t) and
y3(t) for varying parameter values of k2,d in equation (2.9).
The k2,d parameter is a Michaelis constant that determines the
effective affinity of substrate x2 in binding with C0. As k2,d
increases, the affinity of substrate x2 is diminished, relative to
the affinity of x1 and x3. Attenuating k2,d can be viewed as similar
to swapping out a strong degradation marker for protease
degradation with a weaker degradation marker on the species
x2. In the experimental literature, there are multiple degradation
markers for proteins that confer varying binding affinities to an
associated protease [88]. In our simulation, we consider five
potential values for k2,d: 500, 1625, 2750, 3875 and 5000 μMcor-
responding to five artificial LVA markers of varying strengths
for the protease ClpXP frequently used in E. coli.

Note that as we decrease the affinity of y2 for ClpXP, this
also coincides with an increased ζ2 crosstalk magnitude.
Here, we have computed z2 ¼ yc2ðtÞ � ya2ðtÞ: We find that
|ζ2| increases as k2,d increases. In figure 11b–d, ζ2 is plotted
as a percentage of maximum absolute change across all
values of k2,d.
We see that the time-lapse response of y2(t) increases
monotonically for all t as the crosstalk ζ2(t) increases. This
is consistent with biological intuition, since an increase in
competition for resource loading (an increase in k2,d) results
in prolonged lifetimes of each individual y2 (TetR-YFP)
protein. This in turn results in higher repression levels of y3
in the incoherent feedforward loop. Increased competition
for ClpXP from substrates y3 and y1 have the effect of damp-
ing y3 dynamics and reinforcing the pulsatile response of the
IFFL. The crosstalk in this circuit thus has the effect of effec-
tively strengthening the negative regulation of y2 on y3,
encouraging the downward transient after 0:75 h. Our net-
work analysis shows we can improve the robustness of an
IFFL’s pulse by attenuating the relative binding affinity of
the repressor to its protease.

In general, crosstalk effects do not necessarily reinforce
the feedback architecture of a biocircuit. This underscores
the importance of having techniques for quantifying crosstalk
in a synthetic gene network and validating that designed
interactions are dominant over crosstalk interactions.
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