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Abstract

Kidneys age at different rates, such that some people show little or no effects of aging whereas others show rapid functional
decline. We sequentially used transcriptional profiling and expression quantitative trait loci (eQTL) mapping to narrow down
which genes to test for association with kidney aging. We first performed whole-genome transcriptional profiling to find
630 genes that change expression with age in the kidney. Using two methods to detect eQTLs, we found 101 of these age-
regulated genes contain expression-associated SNPs. We tested the eQTLs for association with kidney aging, measured by
glomerular filtration rate (GFR) using combined data from the Baltimore Longitudinal Study of Aging (BLSA) and the
InCHIANTI study. We found a SNP association (rs1711437 in MMP20) with kidney aging (uncorrected p = 3.661025, empirical
p = 0.01) that explains 1%–2% of the variance in GFR among individuals. The results of this sequential analysis may provide
the first evidence for a gene association with kidney aging in humans.
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Introduction

Aging trajectories vary among individuals. Both the age at

which physiological function begins to decline and the rate of such

decline varies among individuals. The heritability of human

longevity ranges from 0.23–0.26, but little is known about specific

genes that affect the rate of aging or human lifespan [1].

Candidate gene studies have found a few genes in which certain

alleles are enriched in centenarians versus the normal population,

including APOC3 (GeneID 345), IGF1R (GeneID 3480) and

FOXO3A (GeneID 2309) [2–4]. These alleles may promote better

health and contribute toward extended lifespan.

We chose to identify genes that associate with a focused

phenotype of aging rather than the nonspecific phenotype of living

to age 100. Specifically, we examined aging in the kidney, an

organ that shows an objectively quantifiable decline in function

with age. With age, the kidney gets smaller, particularly in the

cortex, and kidney function begins to measurably decline after age

40–50 [5,6]. The glomeruli are ball-shaped structures in the

kidney composed of capillary blood vessels actively involved in the

filtration of the blood to form urine. The rate at which blood is

filtered through all of the glomeruli, and thus the measure of the

overall renal function, is the glomerular filtration rate (GFR). The

major aging phenotype in the kidney is a 25% decline in GFR

starting at age 40 [7]. Individuals show variable rates of kidney

aging. In one longitudinal study, one third of individuals showed

no decrease in GFR measured over a 20 year period, whereas the

remainder of the population showed a distinct decline [8]. The

heritability of GFR is estimated to be 0.40–0.46 [9,10]. In a

genome-wide association study, single nucleotide polymorphisms

(SNPs) in three gene regions (UMOD, GeneID 7369; SHROOM3,

GeneID 57619; GATM-SPATA5L1, GeneIDs 2628 and 79029)

were shown to associate with GFR [11].

In genome-wide association studies, hundreds of thousands of

SNPs are tested, thus the penalty for multiple hypothesis testing is

a large obstacle to overcome. A powerful alternative to genome-

wide association studies is genomic convergence, which selects

candidate genes for a specific phenotype based on genome-wide

expression studies [12–17]. Differential expression between cases

and controls may indicate that the gene is functionally involved in
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disease pathogenesis. DNA chips can be used to identify gene

expression increases or decreases in affected individuals compared

to controls, and then SNPs within the genes that change

expression can be used as candidates in genetic association studies.

This approach scans the entire genome for expression changes

associated with a disease in order to prioritize genes with a greater

chance of contributing to the disease phenotype. This approach

was first used to identify genes associated with Parkinson’s disease,

schizophrenia, and Alzheimer’s disease [12–17].

In this study, we have extended the genomic convergence

approach to find genes associated with kidney aging by adding an

eQTL analysis after the initial genome-wide transcriptional

analysis. If a gene is functionally involved in kidney aging and if

DNA differences in the gene cause variation in expression among

individuals, then there may be an association between the specific

allele carried by an individual and that individual’s physiological

aging trajectory. Finally, we tested the set of eQTLs for association

with kidney aging in two studies of normal aging, the Baltimore

Longitudinal Study of Aging and the InCHIANTI study. Using

this sequential approach, we were able to find SNPs in the matrix

metallopeptidase gene MMP20 (GeneID 9313) that are signifi-

cantly associated with kidney aging.

Results

Selection of Age-Regulated Genes
We used a sequential method involving transcriptional profiling,

eQTL mapping and gene association to identify genes that may

contribute to kidney aging. We determined which genes change

expression with age in the kidney because these are likely enriched

for genes that affect physiological aging. For example, a gene that

decreases expression with age may contribute to poor renal

function because it is expressed at levels below a physiological

threshold in the elderly. We obtained a set of 447 age-regulated

genes from a genome-wide transcriptional profile of aging in the

human kidney [18]. In addition, a previous gene set enrichment

analysis identified four genetic pathways that were coordinately

age-regulated in each of three human tissues (kidney, muscle and

brain). These pathways include 152 extracellular matrix genes, 85

ribosomal genes, 35 chloride transport genes and 95 electron

transport chain genes [19]. We combined the age-regulated genes

with the age-regulated pathways and obtained a set of 630 genes

that change expression with age.

Identification of eQTLs by Total Expression Analysis
If age-regulated genes are important for kidney function, then

variation in gene expression may correlate with kidney function. We

focused on finding expression-associated SNPs (eSNPs) using two

methods. The first method searched for eQTLs by pooling

individuals that have the same genotype for a particular SNP, and

then determining whether the different SNP genotypes are

associated with average expression of the corresponding gene. We

selected 1041 SNPs in the promoter regions and 386 SNPs in the

coding and untranslated regions of the 630 age-regulated genes. We

then used a custom Illumina GoldenGate assay to genotype these

SNPs in 96 kidney samples (Table S1). Total expression data for

these 96 samples was obtained from whole-genome microarrays of

69 kidneys from Rodwell et al. (2004) and new expression data from

26 kidney samples. Kidney samples were from normal tissue from

patients aged 29 to 92 years. The kidney samples were dissected into

cortex (94 samples) and medulla (59 samples). Expression levels of

each gene in the genome were determined using Affymetrix HG-

U133A and HG-U133B microarrays.

We compared the genotypes from our chosen SNPs to their

corresponding gene expression levels and found 16 SNPs in 12

genes associated with total expression level (Linear Regression,

p,0.001, Table S2). Four of the genes have two significant SNPs; in

two cases, the SNPs are in different linkage disequilibrium blocks

indicating that the eSNPs are independent, and in two cases, the

SNPs are linked to each other (r2.0.8 HapMap CEU population)

and thus represent only one significant association [20].

One promoter region SNP that showed strong association with

total expression is rs705704, which is 274 base pairs upstream of

the transcription start site of ribosomal protein S26 (RPS26,

p = 1.2610220, Figure 1A). Individuals with the AA genotype have

the highest expression, heterozygotes have medium expression,

and GG homozygotes have the lowest expression of RPS26

(GeneID 6231). RPS26 has been identified as an eQTL in other

studies (Figure 1B) [21–25].

Figure 1. Total expression analysis. Genotypic associations with
total expression level. (A) Boxplot of RPS26 expression according to
genotype at the promoter SNP rs705704 (p = 1.2610220). The boxes
define the interquartile range and the thick line is the median. Open
dots are possible outliers. (B) Haploview linkage disequilibrium (LD) plot
of the RPS26 region. The SNP rs705704 is 274 bp upstream of the RPS26
transcription start site. Values in boxes correspond to the pairwise r2 LD
values (darker boxes correspond to higher r2 values) for the HapMap
CEU population. rs705704 (red) is partially linked to three SNPs (black)
previously shown to associate with RPS26 expression levels [21–25].
doi:10.1371/journal.pgen.1000685.g001

Author Summary

Although family studies have shown that genes play a role
in longevity, it has proven difficult to identify the specific
genetic variants involved. We developed a sequential
transcriptional profiling and eQTL mapping approach to
find genes associated with aging in the kidney. First, we
used genome-wide transcriptional profiling to determine
which genes change expression with age in kidney tissue.
Next, we used two methods to determine which of these
age-regulated genes contain SNPs that associate with
expression level. The allele-specific expression method,
which compares the mRNA levels of the two alleles within
heterozygous individuals, was more sensitive than the
total expression method. We tested the eQTLs for
association with kidney aging in two populations. One
gene that encodes an extracellular matrix protein, MMP20,
significantly associated with kidney aging, providing the
first gene association with kidney aging. Our approach of
combining both expression and genotype data can be
applied to any phenotype of interest to increase the power
to find genetic associations.

eQTLs and Kidney Aging
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Identification of eQTLs by Allele-Specific Expression
Analysis

The second method identified differential allelic expression

within individuals that are heterozygous for a specific SNP. In this

method, the expression levels of each allele are measured directly

by assaying SNPs within the mRNA transcript. Heterozygotes

were examined for allelic transcript levels that differ from each

other, using genomic DNA allelic ratios as a control of 1:1

hybridization intensity. Because differential expression is examined

within heterozygotes, mRNA levels are measured within the same

genetic background and cellular environment.

Allele-specific expression analysis was used to test all of the age-

regulated genes that had SNPs in their mRNAs. We assayed the

relative expression levels of 386 mRNA SNPs in 276 age-regulated

genes in 96 individuals. Most of the mRNA SNPs were in the 39

untranslated regions of genes (249), some were in coding regions

(115), and a few were in the 59 untranslated regions (22).

Oligonucleotides specific for each allele of each SNP were

designed for use in the Illumina GoldenGate multiplex PCR assay.

Kidney cortex mRNA was reverse transcribed into cDNA prior to

the start of the GoldenGate assay. In the assay, the PCR products

for each allele were labeled with a different fluorophore and the

intensities of each allele were compared to determine if one allele

was expressed higher than the other. The cDNA allelic intensities

for each SNP were compared within heterozygotes to test for

differential allelic expression. Because the intensities from each

fluorophore (Cy3 and Cy5) can differ, the genomic DNA allelic

intensities of heterozygotes were used as a control to define a 1:1

allelic ratio for each SNP. The cDNA allelic ratio for each

heterozygote was compared to the 95% confidence interval

surrounding the mean genomic DNA allele intensity ratio for

each SNP. At least five heterozygotes were tested per SNP. If the

cDNA allele intensity ratio for more than 50% of individual

heterozygotes fell outside the 95% confidence interval and the

combined p-value was less than 1026, the SNP was considered to

be an eSNP.

In total, 105 eSNPs in 93 age-regulated genes were detected

(Table S3, Figure 2). The median fold-change of the higher

expressed allele to the lower-expressed allele was 2.1. The level of

overexpression of one allele varied widely among genes, from 1.4-

fold to apparent monoallelic (.10-fold) expression (Table S3).

Two genes (SPP1, GeneID 6696 and TIMP3, GeneID 7078) had

linked eSNPs (r2.0.8 HapMap CEU population) that both

showed allele-specific differences in expression. Ten genes

contained two eSNPs that independently showed differences in

expression.

For most of these eSNPs (96/105), the higher-expressed allele

was usually the same across heterozygotes. For example, the A

allele is expressed higher than the C allele in 11 of 12

heterozygotes tested at rs2245803 in the gene matrix metallopro-

teinase 20 (MMP20, Figure 3A), and the G allele is expressed

higher than the A allele in 14 of 15 heterozygotes tested at rs8643

in TXNDC5 (GeneID 81567, Figure 3B). In these SNPs, the

functional SNP causing the expression difference is likely linked to

the SNP we measured. For a smaller subset of the SNPs (9/105

eSNPs), both alleles were observed at a higher level in different

heterozygotes. One explanation for this is that the functional SNP

causing the expression difference is not closely linked to the SNP

we measured in the transcript. Another explanation is that

epigenetic effects such as imprinting could cause the differences in

expression from the two homologs. For example, one of the genes

in which either allele was associated with higher expression is

PEG3 (GeneID 5178, paternally expressed 3), which is known to be

imprinted [26,27]. Presumably, the higher-expressed allele in our

studies is from the paternal homolog.

386 SNPs were tested for association with expression by both

the allele-specific method and the total expression method. While

105 eSNPs were identified by the allele-specific method, only five

eSNPs were identified by the total expression method. Of the five

SNPs found by the total expression method, four were also found

by the allele-specific expression method (Bold in Table S3). One

example is rs8643 in the gene TXNDC5, in which both methods

found that the G allele is associated with higher expression than

the A allele (Figure 3B and 3C). These results indicate that the

allele-specific assay identified many more eSNPs and is likely more

sensitive in detecting expression differences than the total

expression assay. A probable reason is that for the allele specific

assay, expression is measured from two alleles in heterozygotes and

thus variability due to genetic background and environmental

effects are reduced or eliminated.

Genetic Association with Kidney Aging
Our sequential experimental approach identified 101 genes that

show age-related changes in expression in the kidney and that also

contain eSNPs, indicating a presence of functional polymorphisms.

We used these eQTLs as candidates in a gene association study of

normal kidney aging. We genotyped a total of 2038 SNPs within

these 101 genes (Table S4) in two different cohorts selected to

study normal aging. In these studies, the function of the kidney was

measured by GFR using 24-hour creatinine clearance. The first

cohort is the Baltimore Longitudinal Study of Aging (BLSA),

which is a long-running study of human aging begun in 1958 [28].

This study has enlisted over 3000 healthy volunteers from the

Baltimore area for clinical evaluations of many age-related traits

and diseases [29]. GFR was measured at multiple ages for each

individual, with an average of 3–4 measurements per individual

taken at different times spanning decades. Thus, this study shows

Figure 2. Distribution of allele-specific expression. The white
bars show the distribution of the allelic expression ratio for all
heterozygotes that express the transcript of the 309 SNPs tested. The
red bars show the distribution of the allelic expression ratio for
heterozygotes that show allele-specific expression.
doi:10.1371/journal.pgen.1000685.g002

eQTLs and Kidney Aging
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not only the average level of kidney function with respect to age,

but also shows the age-related downward trend in kidney function

for each individual. Multiple GFR measurements and genotype

data were available for 1066 participants.

The second cohort is the InCHIANTI study, which is a

population-based epidemiological study aimed at measuring factors

important for aging in the older population living in the Chianti

region of Tuscany, Italy [30]. About 90% of the elderly from two

towns participated in this study, making it an exceptionally useful

source to study genetic determinants of normal aging. GFR

measurements were performed at one age in 1130 individuals.

Characteristics of both cohorts are shown in Table 1.

We used regression models that included age as a covariate to

test the SNP genotypes in each population for association with

GFR (See Methods). In order for an allelic association with GFR

to be considered significant, we first required evidence of

association in both populations (p,0.05 in each population). A

total of 13 genes contained SNPs that met these criteria (Table 2).

Next, we combined these p-values using Fisher’s meta analysis, a

method for combining p-values from independent tests with the

same overall hypothesis [31]. To correct for multiple hypothesis

testing, we performed 1000 permutations of each model by

swapping identification labels and keeping the genotypes together

to preserve linkage disequilibrium (See Methods). Two linked

SNPs (rs1711437 and rs1784418) in matrix metalloproteinase 20

(MMP20) remained significant after permutation testing (uncor-

rected p,561025, corrected p = 0.01).

We considered whether associations found in the BLSA cohort

could have been due to population structure. Concern for population

structure was minimal in the InCHIANTI cohort because it is a

homogeneous Italian population. Most of the BLSA cohort is made of

Caucasian individuals (84%). Our mixed-effect regression model

included a covariate for self-reported race, which should control for

differences due to population structure. In addition, we found that

rs1711437 in MMP20 showed an association with kidney aging using

only data from self-reported Caucasians in the BLSA cohort

(uncorrected p = 0.0010). These results indicate that the MMP20

SNPs associate with kidney aging per se, and are not artifacts arising

from genetic differences between races.

A SNP in the insulin-like growth factor 1 receptor gene (IGF1R)

was strongly associated with GFR when taking age into account in

the meta-analysis (rs11630259, p = 7.861025, Table 2). Decreased

activity of this gene has been associated with longer lifespan in

model organisms and humans [3,32,33]. However, SNPs in IGF1R

did not remain significant following permutation testing. There-

fore, further studies are required to establish a connection between

this SNP and kidney aging.

In both populations, one or two copies of the A allele at

rs1711437 in MMP20 associated with a higher GFR (Figure 4).

For an individual who carries the A allele, his or her creatinine

clearance is approximately that of someone 4–5 years younger

who does not carry the A allele. In the BLSA population, the

genotype of rs1711437 explains 2.1% of the variation in creatinine

clearance and in the InCHIANTI population, the genotype

explains 0.9% of the variation. Similar results were found for the

second SNP rs1784418, which is in linkage disequilibrium with

rs1711437.

Both rs1711437 and rs1784418 are associated with variation in

kidney aging, but the functional SNP is not known. The eSNP

rs2245803 identified by allele-specific expression analysis is not

linked to rs1711437 and rs1784418 (Figure 5). Thus, some other

Table 1. Characteristics of kidney aging study samples.

BLSA InCHIANTI

Mean (SD) or n Mean (SD) or n

Age 57.6 (17.1) 68.4 (15.5)

Date of Birth 1932 (13.5) 1931 (15.5)

No. Subjects 1066 1130

No. GFR measurements per subject 3.4 (2.6) 1 (0)

No. Male datapoints 2313 515

No. Female datapoints 1359 615

24-hour Creatinine Clearance 112.9 (42.4) 82.4 (30.2)

doi:10.1371/journal.pgen.1000685.t001

Figure 3. Allele-specific expression analysis. The red lines indicate the 95% confidence interval surrounding the normalized genomic DNA
allelic ratio. Each bar represents one heterozygous individual at the particular SNP listed. Individuals above the upper bound or below the lower
bound display allele-specific expression. (A) Allele-specific expression was observed at SNP locus rs2245803 in the gene MMP20 in 11 of 12
heterozygotes tested. The A allele was expressed higher than the C allele in all the individuals displaying allele-specific expression. (B) Allele-specific
expression was observed at SNP locus rs8643 in the gene TXNDC5 in 14 of 15 heterozygotes tested. The G allele was expressed higher than the A
allele in all the individuals displaying allele-specific expression. (C) Boxplot of TXNDC5 total expression according to genotype at the 39 UTR SNP
rs8643 (p = 1.261024). The boxes define the interquartile range and the thick line is the median. Open dots are possible outliers.
doi:10.1371/journal.pgen.1000685.g003

eQTLs and Kidney Aging
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SNP in this linkage disequilibrium block, such as a coding SNP or

a different eSNP, may cause differences in activity of MMP20 and

be responsible for association with the kidney aging phenotype.

Interestingly, two nonsynonymous coding SNPs, rs1784424

(Asn281Thr) and rs1784423 (Ala275Val) are contained within

this linkage disequilibrium block (Figure 5). These amino acid

differences might affect MMP20 function and these coding

changes may be causal for differences in kidney aging among

individuals.

Discussion

The goal of our approach was to converge on genes that

influence human kidney aging through sequential genomic

analyses. We began with a genome-wide transcriptional profile

of aging in the human kidney, which gave an unbiased view of

gene expression changes that occur with age [18]. Then, we used

total expression analysis and allele-specific expression analysis to

determine which alleles are differentially expressed. We identified

101 age-regulated eQTLs. SNPs in one of these genes, MMP20,

showed a statistically significant association with normal kidney

aging. Although significant by combining the data from two

independent populations, the best way to confirm our gene

association with renal aging is to replicate the findings in

additional populations.

The populations used to identify aging SNPs, BLSA and

InCHIANTI, stand out for their usefulness in studying normal

kidney aging. Both of these studies were purposefully designed to

study healthy individuals, instead of those harboring diseases

associated with old age. The BLSA study includes longitudinal

Table 2. Top SNPs that show association with kidney aging in two populations.

Gene SNP Model BLSA P InCHIANTI P Fisher’s Meta P* Permuted P

MMP20 rs1711437 DOM 0.0017 0.0015 3.661025 1.061022

IGF1R rs11630259 REC 0.0001 0.0443 7.861025 NS

RGS6 rs8007684 ADD6AGE 0.0165 0.0009 1.961024 NS

FAM83F rs3021274 DOM6AGE 0.0063 0.0234 1.461023 NS

MMP25 rs1004792 REC6AGE 0.0038 0.0427 1.661023 NS

ADCY1 rs11766192 REC6AGE 0.0352 0.0054 1.861023 NS

ADAMTS5 rs10482979 REC 0.0169 0.0211 3.261023 NS

GPC5 rs342693 REC6AGE 0.0325 0.0149 4.261023 NS

MTR rs2275568 ADD 0.0286 0.0319 7.361023 NS

RPL15 rs2360610 DOM 0.0469 0.0226 8.361023 NS

GLRB rs17035648 DOM6AGE 0.0252 0.0474 9.261023 NS

GPC6 rs4612931 DOM6AGE 0.0496 0.0270 1.061022 NS

SOHLH2 rs9593921 DOM6AGE 0.0380 0.0419 1.261022 NS

*Calculated only if individual p-values from each population were ,0.05.
doi:10.1371/journal.pgen.1000685.t002

Figure 4. A SNP in MMP20 associates with a kidney aging phenotype. Loess smoothing lines through a scatter plot of creatinine clearance
versus age stratified by genotype at rs1711437 in the BLSA (A) and InCHIANTI (B) populations. (corrected p = 0.01).
doi:10.1371/journal.pgen.1000685.g004

eQTLs and Kidney Aging
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measurements of traits associated with normal aging, which added

considerable power to the analysis.

Two SNPs in MMP20 significantly associated with age-

related decline in GFR of the kidney. Matrix metalloproteinases

are involved in the breakdown of extracellular matrix in normal

physiological processes, such as embryonic development,

reproduction, and tissue remodeling, as well as in disease

processes, such as arthritis and metastasis [34,35]. Matrix

metalloproteinases degrade extracellular matrix proteins in-

cluding laminin, elastin, proteoglycans, fibronectin, and colla-

gens [36]. A role for MMP20 in renal function has not been

described before, although previous studies show that MMP20

plays an important role in tooth development [37]. The finding

that a matrix metalloproteinase is involved in kidney aging is

striking because changes in the extracellular matrix play a key

role in aging of the kidney. The glomerular basement

membrane thickens, and the mesangial matrix increases in

volume with age [38]. Interstitial fibrosis occurs during aging

because of an increase in matrix and fibrillar collagen

accumulation in the subintimal space [39].

MMP20 was included in our candidate aging gene set not

because the gene itself is significantly age-regulated in the kidney.

Instead, MMP20 was included because it is a component of the

extracellular matrix, one of the pathways that coordinately

increased expression with age in three human tissues including

the kidney [19]. Therefore, polymorphisms in MMP20 may not

only associate with aging of the kidney, but may associate with

phenotypes of aging in other tissues as well. Additionally, if

MMP20 is a common regulator of aging, certain alleles may also

be enriched in centenarians.

The second-highest scoring gene in our kidney aging association

study is the insulin-like growth factor 1 receptor. Although the

SNP in this gene did not reach statistical significance in this study,

this result is interesting because this gene is part of the insulin-like

signaling pathway that has been shown in be involved in aging in

worms, flies and mice [40]. Specifically, reduced signaling in this

pathway results in longer lifespans for these model organisms. In

worms, the orthologous gene is called daf-2 (GeneID 175410), and

daf-2 mutants can have lifespans that are 100% longer than wild-

type worms [33]. In humans, rare variants in the IGF1R gene in

centenarians are associated with reduced IGF1R levels and

defective IGF signaling [3].

Sequential use of transcriptional profiling and eQTL mapping

could be used as a general method to increase the statistical power

for any human gene association study. Like candidate gene

approaches, an advantage of our approach to identify variants

associated with kidney aging is that it increases the statistical power

of the gene association study by decreasing the number of SNPs

that are tested to potentially functional SNPs. An advantage of our

sequential approach over a candidate gene approach is that the

entire genome was screened for genes that are age-regulated in the

first step.

Several groups have used DNA microarrays to measure gene

expression in lymphoblastoid cell lines and have found polymor-

phisms that associate with expression level [21,23,41–47]. In a

total expression analysis of human brain cortical tissue, 21% of

genes have SNPs that associate with expression levels [22]. Other

groups have used the allele-specific expression approach to identify

differentially-expressed genes in lymphoblastoid cell lines [48–51],

brain [52], white blood cells [53], fetal kidney and fetal liver [54].

These studies found that 20–50% of the genes in the genome are

differentially expressed. Sixteen of the genes showing allele-specific

expression found by our study were also found in previous studies

(Table S5) [50,53–55]. Thus, 77 of the 93 allele-specifically

expressed genes identified in this work represent novel findings.

Our finding that 41% of tested genes showed allele-specific

expression is similar to the percentage found in previous studies

[48–54].

Of the expression-associated SNPs we identified, most were

found using allele-specific expression measurements within

heterozygotes. Specifically, 41% of genes assayed contained

eSNPs using the allele-specific expression method, whereas only

2% of genes assayed contained eSNPs using the total expression

method. The statistical cutoff for finding eSNPs using the allele-

specific method was more stringent than the one used for the total

expression method. Thus, our results may underestimate the

improved sensitivity of the allele-specific method over the total

expression method.

Unlike the total expression method, the allele-specific method

examines alleles within the same cellular environment in

heterozygous individuals. This maximizes the sensitivity of the

assay because the alleles are expressed from the same environment

and genetic background. Previous work with a smaller set of 64

genes also showed that allele-specific analysis in heterozygotes was

more sensitive than total expression methods for finding SNPs

associated with expression levels in cis [48]. The results from the

allele-specific analysis demonstrate that differential expression is

widespread across the human genome and suggest that differential

expression could be a major factor contributing to differences in

phenotype among individuals. As the Genotype-Tissue Expression

(GTEx) project [56] moves forward, it will be important to

Figure 5. Linkage disequilibrium pattern of MMP20. The two
SNPs (green) for which we found significant associations with kidney
aging are located in introns of MMP20. They are linked to each other
and to two nonsynonymous SNPs (black) located in exon 6 of MMP20.
Pairwise r2 LD values (darker boxes correspond to higher r2 values) from
the HapMap CEU population are displayed. These four SNPs are not
linked to the SNP (red) in exon 1 that associated with expression level of
the gene.
doi:10.1371/journal.pgen.1000685.g005
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consider allele-specific expression data to maximize sensitivity to

detect differential expression.

Finding new human aging genes, possibly MMP20, contributes

to our understanding of molecular mechanisms underlying the

human aging process. Among young individuals, an unfavorable

SNP genotype may indicate risk for rapid decline in kidney

function and this information could be extremely useful to identify

patients who may require early intervention. Among older

individuals, a favorable SNP genotype may indicate that they

may still be eligible as kidney donors even though they are over the

current upper age limit. As more aging genes are confirmed, the

alleles belonging to a patient can be combined to better predict the

aging trajectory of the kidney.

Methods

Ethics Statement
Ethical approval for the study was obtained from the Stanford

University Institutional Review Board (IRB). All subjects provided

written informed consent for the collection of samples and

subsequent analysis. This study was conducted according to the

principles expressed in the Declaration of Helsinki.

Stanford Kidney Samples
Normal kidney tissue was obtained from Stanford University

Medical Center with informed consent either from biopsies of

kidneys from transplantation donors or from nephrectomy patients

with localized pathology. Kidney tissue from nephrectomy patients

was harvested meticulously with the intention of gathering normal

tissue uninvolved by the tumor. Samples that showed evidence of

pathological involvement or in which there was only tissue in close

proximity to the tumor were not used. Kidney sections were

immediately frozen on dry ice and stored at 280uC until use.

RNA and DNA Preparation
Frozen kidney samples were weighed (25–50 mg), cut into small

pieces on dry ice, and then placed in 1 ml of TRIzol Reagent

(Invitrogen, Carlsbad, California, United States) for RNA

extraction or 600 ml of Buffer RLT Plus (Qiagen, Valencia,

California, United States) for DNA extraction. The tissue was

homogenized using a PowerGen700 homogenizer (Fisher Scien-

tific, Pittsburgh, Pennsylvania, United States). Total RNA was

isolated according to the TRIzol Reagent protocol and genomic

DNA was isolated according to the Qiagen AllPrep DNA/RNA

Mini Kit protocol.

SNP Selection
Candidate aging genes were chosen from previous transcrip-

tional profiling studies and include 447 age-regulated kidney

genes [18] as well as the genes in the four pathways that are

commonly age-regulated in the kidney, muscle and brain:

extracellular matrix, ribosome, chloride transport and electron

transport chain [19]. The candidate kidney aging genes were first

searched for mRNA SNPs that could be used in an allele-specific

expression assay. In addition to being within the transcript on an

autosome, the SNPs had to have a minor allele frequency greater

than 0.05 in the HapMap CEU population, an Illumina SNP

score greater than 0.4, and be greater than 30 bp from an exon

boundary (NCBI Build 36.1) to ensure the Illumina genotyping

assay would work properly for both genomic DNA and cDNA.

For genes that had multiple assayable mRNA SNPs, those closest

to the 59 end of the gene were chosen, with a maximum of two

SNPs per gene. These criteria were met for 386 SNPs in 276

genes. For candidate aging genes that did not have an

appropriate mRNA SNP, promoter region (defined as 5 kb

upstream or downstream of the transcription start site) SNPs

meeting the same minor allele frequency (.0.05) and SNP score

(.0.4) criteria were chosen. One to four SNPs were chosen per

gene for analysis, totaling 1041 promoter SNPs in 354 candidate

aging genes.

Genotyping
The candidate aging SNPs were genotyped using a GoldenGate

Custom Panel from Illumina (San Diego, California, United

States). Oligonucleotides specific for each allele of each SNP were

designed for use in a multiplex PCR. A standard protocol designed

by Illumina and implemented at the Stanford Human Genome

Center was used to determine the genotypes of the 96 individuals

for whom we had kidney tissue. Samples were hybridized to

custom Sentrix Array Matrices and scanned on the Illumina

BeadStation 500GX. Allele calls were determined using the

Illumina BeadStudio clustering software. The genotyping was

successful (.90% call rate, HWE p.0.001) at 1341/1427 of the

SNP loci in 599/630 genes (95%). The 1341 SNPs are listed in

Table S1.

Total Expression Quantification
Most of the microarrays (68 cortex and 59 medulla samples)

used in our total expression association study were previously

analyzed [18]. The same Affymetrix (Santa Clara, California,

United States) HG-U133A and HG-U133B high-density oligonu-

cleotide arrays used in Rodwell et al. were used here to measure

total expression levels in 26 additional cortex samples. The

samples were processed at the Stanford Genome Technology

Center using their standard protocol [18]. Eight micrograms of

total RNA was used to synthesize cRNA for each sample, and

15 mg of cRNA was hybridized to each microarray. Using the

dChip program [57], microarray data (.cel files) were normalized

according to the stable invariant set, and gene expression values

were calculated using a perfect match model. All arrays passed the

quality controls set by dChip. The raw microarray data are

available at the Stanford Microarray Database (http://smd.

stanford.edu).

Ancestry Analysis
Because our kidney tissue samples were from individuals living

in the diverse San Francisco Bay Area, we needed to control for

population structure. Most of the individuals in our study self

reported their ancestry (84/96). Genetic clustering analysis has

been shown to highly correlate with self-identified ancestry [58].

To determine the ancestry of the 12 unknown individuals, we used

the clustering program STRUCTURE [59]. We used the

genotypes of 839 unlinked SNPs from our 96 samples and from

the CEU, YRI, and JPT+CHB HapMap populations in our

analysis. Using the STRUCTURE admixture model, we deter-

mined our Stanford samples cluster with the greatest probability

into three populations, each clustering with one of the HapMap

populations. Because most of the Stanford samples were

predominantly of Caucasian genetic ancestry and because it is

simplest to use a Boolean covariate value in regression analysis

when chronological significance of the state (genetic ancestry in

this case) is unknown, we chose to divide the individuals into two

groups. In the first group we included individuals with an average

percent CEU ancestry .75%. This group included 72 individuals.

The second group contained the other 24 individuals. The 84 self-

reported ancestries matched the ancestries calculated with

STRUCTURE.
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Total Expression Regression Models
We used a linear regression model to determine which SNP

genotypes showed a statistically significant association with gene

total expression levels:

Yij~b0jzb1jgijzb2jageizb3j tizb4jancizb5jsizeij ð1Þ

In equation 1, Yij is the base 2 logarithm of the expression level for

the gene of SNP j in kidney sample i, gij is the genotype (0,1,2 for

AA, AB, BB) of individual i at SNP j, agei is the age in years of the

individual i, ti is 0 if sample i was from kidney cortex and 1 if

sample i was from kidney medulla, anci is 0 if the individual

contributing sample i has .75% CEU ancestry and 1 for other

ancestry proportions, si is 0 for males and 1 for females, and eij is a

random error term. The coefficients bkj for k = 0–5 were estimated

by least squares from the data. Our primary interest was b1j values

that significantly differed from zero, indicating that SNP j

associates with total expression level. Because our microarrays

were processed on two different scanners three years apart, we

analyzed the two sets of data separately. The first set comprised

the 127 samples previously analyzed in Rodwell et al. and the

second set comprised the 26 additional samples processed here.

We combined the results from the two regression analyses using

Fisher’s combined probability test [31]. The b1j p-values from each

of the two analyses were combined into one test statistic (x2)

having a chi-square distribution and four degrees of freedom using

the formula:

x2~{2
X2

i~1

loge pið Þ ð2Þ

Using Fisher’s method, we found 11 promoter SNPs in seven

genes and five mRNA SNPs in five genes that associated with total

expression level (p,0.001).

Allele-Specific Expression Quantification
Total RNA was reverse transcribed into cDNA using the

SuperScript Double-Stranded cDNA Synthesis Kit (Invitrogen,

Carlsbad, California, United States). The same Illumina

GoldenGate Custom Panel used for genotyping was used to

measure cDNA levels according to which allele of the SNP is

present in the transcript. Only SNPs for which the DNA

genotyping was successful were analyzed. After the cDNA PCR

products were hybridized and scanned, the raw allelic

intensities were first used to determine which transcripts were

expressed. The expression threshold was defined by the absent

allele in normal homozygotes. That is, for an AA genotype, the

intensity of the B allele was taken to be background. The

expression threshold was calculated for each SNP as the mean

of the background intensity plus two standard deviations. SNPs

with five or more heterozygotes showing expression of at least

one of the two alleles were carried through the rest of the

analysis. Of the SNPs measured, 309 of them in 225 genes were

genotyped correctly (call rate.90%, HWE p.0.001) and

expressed above a background threshold in at least 5

heterozygotes. To determine which alleles were associated with

expression level, a confidence interval was calculated for each

SNP using the DNA allele intensities of heterozygotes. The

confidence interval for each SNP was defined as the mean of the

normalized DNA allele A/B raw intensity ratios plus or minus

two standard deviations. If the cDNA allele intensity ratio for

more than 50% of individual heterozygotes fell outside the 95%

confidence interval and the meta p-value [31] was less than

1026, the SNP was considered to be an eSNP. eSNPs were not

observed simply due to low, noisy transcript levels because the

relative abundance of each gene in the total cDNA sample

(calculated from whole-genome microarray data) was greater

than the relative abundance of the gene in the genomic DNA

sample.

BLSA Samples
The Baltimore Longitudinal Study of Aging (BLSA) is an

intramural research program within the National Institute on

Aging [28]. Healthy volunteers aged 18 and older were enrolled in

the study starting in 1958. BLSA participants are predominantly

Caucasian, community-residing volunteers who tend to be well-

educated, with above-average income and access to medical care.

These subjects visit the Gerontology Research Center at regular

intervals for two days of medical, physiological, and psychological

testing. Each participant has a health evaluation by a health

provider (physician, nurse practitioner, or physician assistant).

Currently, the study population has 1450 active participants, aged

18–97 years (http://www.grc.nia.nih.gov/branches/blsa/blsa.

htm). The level of kidney function in the participants has been

measured longitudinally in each individual between 1 and 16 times

over a 10 to 50 year time period. The kidney aging phenotype of

glomerular filtration rate (GFR) was measured by calculating

creatinine clearance. Specifically, serum creatinine and 24-hour

urinary creatinine levels were obtained from participants using

standard clinical procedures [60], and were used to calculate

creatinine clearance as follows:

CCr~
UCr|VU

PCr|1440
ð3Þ

where CCr is creatinine clearance in ml/min, UCr is urinary

creatinine concentration, VU is the volume of urine collected over

24 hours, PCr is the plasma concentration of creatinine, and 1440

is the number of minutes in 24 hours. We were granted access to

genotype and GFR data for 1066 individuals. The genotype data

comprised the 2038 SNPs genotyped on the Illumina Human-

Hap550 Genotyping BeadChip that are within the 101 genes that

contain SNP associations with expression and have minor allele

frequencies .0.01 (Table S4). The GFR data included 3672

creatinine clearance measurements.

InCHIANTI Samples
The participants in the InCHIANTI study consist of residents of

two small towns in Tuscany, Italy [30]. The study includes 1320

participants (age range 20–102 yrs), who were randomly selected

from the population registry of Greve in Chianti (population

11,709) and Bagno a Ripoli (population 4,704) starting in 1998

[30]. Over 90% of the population that were over the age of 65

participated in this study, and thus the cohort is a good

representation of normal aging (http://www.inchiantistudy.net).

GFR was calculated using creatinine clearance from 24-hour

urine collection as in the BLSA study. In this study, the

measurement for creatinine clearance was performed at one age

only. The genotype data generated by HumanHap550 Genotyp-

ing BeadChip consisted of the same 2038 SNPs in 101 candidate

aging genes obtained from the BLSA (Table S4). The sample size

was 1130 individuals.

Glomerular Filtration Rate Regression Models
Due to the longitudinal nature of the BLSA data, we used a

mixed-effect regression analysis to search for SNP associations
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with creatinine clearance. Because the creatinine clearance

measurements within one subject over time are correlated, the

regression coefficients are allowed to vary between individuals.

First, we developed the following model using a likelihood ratio

approach to explain how creatinine clearance changes with time:

Yia~b0izb1iaizb2ia
2
i
zb3idiazb4id

2
i
zb5isizb6irizeia ð4Þ

In equation 4, Yia is the creatinine clearance of subject i at age a, ai

is the age of subject i, dia is the date in decimal years of the visit of

subject i at age a, si is the sex of subject i, ri is the self-reported race

of subject i, and eia is a random error term. Most of the data points

(84%) came from self-reported Caucasian individuals. These

individuals were coded 0 for the ri term and everyone else was

coded 1. The coefficients bki of each subject i for k = 0–6 were

estimated by maximum likelihood from the data using the ‘‘lmer’’

function from the ‘‘lme4’’ package of R version 2.8.0. Next, to

determine if the genotype of any of our candidate aging genes can

account for some of the variance in creatinine clearance, we added

two terms to the model:

Yia~b0ijzb1ijaizb2ija
2
i
zb3ijdiazb4ijd

2
i
zb5ij si

zb6ijrizb7ijgijzb8ij gij|ai

� �
zeija

ð5Þ

In equation 5, gij is the genotype of SNP j in subject i. We

obtained estimates for three different inheritance models:

additive, recessive and dominant. In the additive model g is 0,

1, or 2 for homozygous dominant, heterozygous, and homozy-

gous recessive genotypes, respectively. In the recessive model, g

is 0 for the homozygous dominant and heterozygous genotypes

and g is 1 for the homozygous recessive genotype. In the

dominant model, g is 0 for the homozygous dominant genotype

and g is 1 for the heterozygous and homozygous recessive

genotypes. For each SNP and each inheritance model, we

compared the results from equation 5 to the results from

equation 4 using a likelihood ratio test to generate a p-value for

each SNP. Even though we included a self-reported race term in

our models, we also confirmed the rs1711437 association with

GFR by analyzing only the data points from Caucasian

individuals (p = 0.0010).

For the InCHIANTI data, we used a simple linear regression

model because the data are not longitudinal to search for SNP

associations with creatinine clearance. We tested the three

inheritance models for SNP association with creatinine clearance

at every age (equation 6) and for SNP association with the rate of

creatinine clearance decline with age (equation 7):

Yi~b0jzb1jgijzb2jaizb3j sizeij ð6Þ

Yi~b0jzb1jgijzb2jaizb3j gij|ai

� �
zb4jsizeij ð7Þ

In equations 6 and 7, Yi is the creatinine clearance of subject i, gij is

the genotype of subject i at SNP j, ai is the age of subject i, si is the

sex of subject i, and eij is a random error term. The coefficients

were estimated by least squares from the data. In equation 6, our

primary interest was b1j values that significantly differed from zero,

indicating that SNP j associates with creatinine clearance at every

age. In equation 7, our primary interest was b3j values that

significantly differed from zero, indicating that SNP j associates

with the rate of creatinine clearance decline with age.

Testing for Evidence of SNP Association with GFR in Both
Datasets

In order to be confident of a SNP association with GFR, we

required the SNP to show evidence of association in both the

BLSA and InCHIANTI populations. That is, we combined the p-

values from the BLSA and InCHIANTI data using Fisher’s

method (equation 2) only if the individual p-values for a particular

SNP and inheritance model in each population were both less than

0.05. We used the p-value from the likelihood ratio test for the

BLSA data and the p-value from the b1j estimate from equation 6

or the b3j estimate from equation 7 for the InCHIANTI data to

calculate the meta p-value.

Permutation Analysis
To correct for multiple hypothesis testing, we performed

permutations to test how often our results could appear by

chance. We resampled the data for each population and each

model 1000 times, keeping the genotypes together, but swapping

the sample labels. The creatinine clearance, age, date and sex

information remained together, but the 2011 SNP genotypes

connected to each individual were changed in each permutation.

Therefore, only the phenotype-genotype relationship was altered

by permutation, the linkage disequilibrium patterns between SNPs

remained the same. For each permutation, we calculated Fisher’s

meta p-values only when both individual p-values from each

population were less than 0.05, as we did in the observed data.

Then, for each model, we determined how many of the

permutations met or exceeded the number of SNPs we found in

the observed data at meta p-value thresholds. The permuted p-

value was the number of permutations that met these criteria

divided by 1000. Permuted p-values less than 0.05 were

considered significant.
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