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Long-range gene–gene interactions are biologically compelling models for disease genetics and can provide insights on
relevant mechanisms and pathways. Despite considerable effort, rigorous interaction mapping in humans has remained
prohibitively difficult due to computational and statistical limitations. We introduce a novel algorithmic approach to find
long-range interactions in common diseases using a standard two-locus test that contrasts the linkage disequilibrium
between SNPs in cases and controls. Our ultrafast method overcomes the computational burden of a genome 3 genome
scan by using a novel randomization technique that requires 103 to 1003 fewer tests than a brute-force approach. By
sampling small groups of cases and highlighting combinations of alleles carried by all individuals in the group, this
algorithm drastically trims the universe of combinations while simultaneously guaranteeing that all statistically significant
pairs are reported. Our implementation can comprehensively scan large data sets (2K cases, 3K controls, 500K SNPs) to
find all candidate pairwise interactions (LD-contrast p < 10�12) in a few hours—a task that typically took days or weeks to
complete by methods running on equivalent desktop computers. We applied our method to the Wellcome Trust bipolar
disorder data and found a significant interaction between SNPs located within genes encoding two calcium channel
subunits: RYR2 on chr1q43 and CACNA2D4 on chr12p13 (LD-contrast test, p = 4:6 3 10�14). We replicated this pattern of
interchromosomal LD between the genes in a separate bipolar data set from the GAIN project, demonstrating an example
of gene–gene interaction that plays a role in the largely uncharted genetic landscape of bipolar disorder.

[Supplemental material is available for this article.]

Genome-wide association studies (GWAS) have successfully iden-

tified hundreds of genetic markers associated with a wide range of

diseases and quantitative traits (Hindorff et al. 2009; Manolio et al.

2009). Unfortunately, for most common diseases, nearly all asso-

ciated variants have small effect sizes and taken together explain

very little of the genetically heritable variation of the phenotype

(Craddock 2007)—a phenomenon often posed as the conundrum

of ‘‘missing heritability’’ (Maher 2008). Furthermore, single-locus

association methods tend to implicate individual genes in a par-

ticular disease or trait, which in turn highlight a single biological

entity involved (Saunders et al. 1993; Hugot et al. 2001; Neale et al.

2010). They do not, by definition, seek to implicate links between

the functional elements of a system or elucidate pathway connec-

tions that may be broken. Investigation of joint gene–gene effects

can therefore improve the explanatory ability of genetics twofold.

Firstly, interaction—or statistical epistasis, as defined by Fisher

(1918)—is hypothesized to explain a part of disease heritability

(Marchini et al. 2005; Evans et al. 2006). Secondly, finding signif-

icant statistical links (epistatic or otherwise) between genes could

provide strong indications of molecular-level interactions that

differ between cases and controls.

However, an all-pairs (or all-triples) scan of SNPs genome-

wide still poses widely discussed computational challenges due to

the sheer size of the combinatorial space (Marchini et al. 2005),

both for data sets typed on genotyping arrays (;106 SNPs) and

sequencing technologies (;107 SNVs). Some methods address this

problem by restricting the analysis to a small subset of candidate

markers—those identified through single-locus analysis or those of

biological interest (Emily et al. 2009), or by only checking for in-

teractions between SNPs that are physically close to one another

(Slavin et al. 2011). Others like EPIBLASTER (Kam-Thong et al. 2010)

and SHIsisEPI (Hu et al. 2010) make use of specialized hardware like

multiple Graphical Processing Units (GPUs) to finish computation

on genome-wide data sets on the order of days, rather than weeks or

months. While it is known that reductionist, candidate SNP-based

approaches can miss many real interactions (Culverhouse et al.

2002; Evans et al. 2006) and fail to provide novel biological insights

in an unbiased manner, brute-force approaches that rely on hard-

ware for speedup may also scale poorly as data sets increase in size

and interaction tests increase in complexity.

For genome-wide interaction analysis to become pervasive,

there is a pressing need for algorithmic insights that make in-

teraction testing on large data sets a scalable proposition, without

placing undue computing or hardware demands on the inves-

tigator. The contribution of our work is such a method. Recently,

others had exploited the fact that contrasting the linkage dis-

equilibrium (Zhao et al. 2006), Pearson correlation (Kam-Thong

et al. 2010) and log-odds ratio (Plink ‘‘–fast-epistasis’’ option) be-

tween a pair of SNPs in cases and controls could be computed more

efficiently than maximum likelihood estimates in a logistic re-

gression. Usefully, these computationally efficient contrast tests

showed high congruence with statistical epistasis under a variety

of genetic models. In this study, we do not devise a new statistical

test; rather, we use a simplified version of the LD-contrast test for

interaction (Zhao et al. 2006) to demonstrate our computational

principles. Our version seeks pairs of physically unlinked (often

interchromosomal) SNPs that are in strong LD in cases, but in weak

LD, no LD, or reverse LD in controls.2
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2Disequilibrium between physically unlinked loci is also often called Gametic
Phase Disequilibrium (Wang et al. 2010), but for purposes of this study, we
consider both terms equivalent—in particular, we do not imply physical link-
age/proximity on the genome with the term LD.
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Our computational approach is driven by the intuition that

most genome-wide interaction methodologies only report SNP

pairs that are statistically significant (as per the test used) after

correcting for the number of tests. The question we ask is this:

Given a statistical test, is it possible to identify all the significant

SNP pairs with high probability (power), without actually applying

the test to all possible combinations genome-wide? In other words,

can we design a search algorithm that accepts an arbitrary signif-

icance cutoff (as input from the user), and then finds all SNP pairs

that will pass this cutoff without a brute-force search? We show

here that for some contrast tests, this is indeed possible. At this

juncture, it is imperative that we point out the two distinct mean-

ings of ‘‘power’’: Here, unless otherwise specified, we mean the power

of an algorithm to identify SNP pairs for which a test statistic is large

(i.e., significant), whereas in the broader context of genome-wide

interaction mapping literature, power is the ability of a statistical

test to detect a real interaction in the data set. Our work focuses on

addressing the computational issues that plague an exhaustive

search for interaction, leaving issues of statistical power for a sepa-

rate discussion.

The rest of this study is structured as follows. First, we briefly

review a simple LD-contrast test that compares LD between binary

allelic states (rather than 0/1/2 genotypes) in cases and controls.

Next, we present a novel computational framework—probably

approximately complete (PAC) testing—that quantifies the power

of a search done by an algorithm. PAC is an intuitive concept: For

example, a brute-force method that tests all-pairs of SNPs genome-

wide is considered fully powered at finding all significant pairs in

our framework (i.e., 100% probability of finding all pairs whose

test statistic clears the significance cutoff) and have no element of

approximation at all (i.e., 100% complete scan of the interaction

space in the case-control data set). In this study, we design a two-

stage PAC test for common complex diseases that is guaranteed to

find all significant pairwise interactions with high power (e.g.,

probability >95% of finding all pairs with a significant statistic) by

looking at almost the entire space of possibilities (e.g., ;99%

complete scan of interaction space). In return for accepting a small

loss of certainty and power, we show that algorithms that offer

tremendous computational gains can be designed. We evaluate the

performance of our implementation of this framework (SIXPAC)

on genome-scale data and then present the results of our analysis

on bipolar disorder (BD) in the Wellcome Trust Case Control

Consortium (WTCCC) data set (Craddock 2007).

Methods

Outline
The goal of our method is to efficiently identify the set of SNP pairs
that have vastly different LD in cases and controls from the uni-
verse of pairs genome-wide—if any such pairs exist at all. First, we
define the LD-contrast statistic and establish a minimum cutoff
value that determines whether a pair of SNPs has a statistically
significant contrast in a genome-wide study or not. Next, we devise
a stage 1 filtering step that identifies potential case–control dif-
ferences in LD by looking for LD in cases alone. We quantify the
losses that stage 1 incurs (false negatives) by applying this ‘‘ap-
proximate’’ version of the full LD-contrast test.

In stage 2, the candidates shortlisted based on their LD in
cases are tested using the full cases-versus-controls LD-contrast test
and either validated or discarded based on the difference. Stage 2 is
needed to distinguish stage 1 shortlisted candidates that are true
interactions from false positives. False positives may include SNP

pairs drawn by pure chance, and also pairs that show large LD in
cases, but also show large LD in controls in the same direction.
Such a systemic inflation of disequilibrium between alleles in cases
and controls might be due to other factors like population strati-
fication, technical artifacts, or ascertainment bias and is, by defi-
nition, not associated with phenotype.

The motivation for dividing the search into two stages is be-
cause the stage 1, case-only, ‘‘approximate’’ filtering step can be
processed extremely rapidly by exploiting computer bitwise op-
erations, making it much faster than a brute-force approach. We
present the novel randomization technique called group-sampling
with which we can efficiently find SNP pairs that are in strong LD
in cases. However, like every randomization algorithm, we need to
stop sampling when we are reasonably certain that all significant
(high LD) candidates have already been encountered and short-
listed. Consequently, at the end of stage 1, we are left with a
‘‘probably complete’’ list of pairs that demonstrate severe LD in cases.
Taken in conjunction, this design outputs a ‘‘probably approxi-
mately complete’’ (PAC) catalog of interacting SNP pairs at the end of
the filtering stage, which are subsequently screened by the full test.
We demonstrate that our software implementation of this PAC-
testing framework can find approximately all significant SNP pairs
in current GWAS data sets with arbitrarily high power (e.g., >99%
probability) at a fraction of the computational cost of an exhaus-
tive search.

Definitions and notation

For purposes of illustration, consider two binary matrices XN3M

and xn3M , representing the cohorts of N haploid cases and n
haploid controls typed at M polymorphic sites, respectively (we
extend this to the diploid human case below). Xi;v denotes the
allele carried by case i at variant site v (0 for major, 1 for minor),
while xj;v similarly denotes the allele carried of control j at that
site. Furthermore, we respectively denote X:v að Þ= fijXi;v = ag

�� �� and
x:v að Þ= fjjxj;v = ag

�� �� as the number of cases and controls that carry
allele a = f0;1g at v. Therefore, Pv að Þ = X:vðaÞ=N and pv að Þ = x:vðaÞ=n
are the corresponding allele a-frequencies of v in cases and con-
trols. Since we are only discussing binary 1� pv carrier states ð0=1Þ,
for ease of notation, we henceforth use Pv instead of Pv 1ð Þ, and
(1� PvÞ instead of Pv 0ð Þ (and analogously, pv and for controls).

We are interested in examining whether a haploid individual
carries a certain combination of alleles at two (or more) sites.
Consider s different binary sites ~v = v1; . . . ; vsð Þ, at which an in-
dividual can carry any one of 2s unique allelic combinations. We
say an individual carries allelic state ~a = a1; . . . ; asð Þ 2 0;1f gs at
these sites if she carries allele ai at each one of the respective sites vi.
Analogous to individual sites, we can also denote the 2s different
~a-frequencies of~v by P~v ~að Þ = X~vð~aÞ=N in cases and p~v ~að Þ = x~vð~aÞ=n
in controls, where X~v ~að Þ = jfijXi;~v =~agj and x~v ~að Þ = jfjjxj;~v = ~agj are
the number of ~a carriers at ~v in cases and controls, respectively.
For example, if an individual carries 1-alleles (i.e., minor alleles)
at each of the sites ~v = v1; . . . ; vsð Þ, then we say she is a ~1-carrier
of ~v. The ~1-frequency of ~v in cases (controls) is the fraction of
cases (controls) that are ~1-carriers of~v.

Binary representation of diploid genomes

For diploid genomes like humans, equivalent matrices of cohorts
would be GN 3 M for cases and gn 3 M for controls, where each entry
f0;1;2g in these matrices represents the number of minor alleles at
the site, rather than the presence or absence of a minor allele.
Depending on the model of interaction the investigator is in-
terested in, these may be transformed into an appropriate binary
representation in several ways. For our purpose, we represent each
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ternary genotype as two binary variables. The first variable asks
whether the individual carries $ 1 copies of the minor allele (i.e.,
is dominant) at this SNP, while the second asks whether the in-
dividual carries exactly 2 copies of the minor allele (i.e., is reces-
sive) at this SNP. In this format, cases and controls are represented
by the binary matrices XN 3 2M and xn 3 2M , respectively, where each
genotype Gi;v is recoded as two binary values fXi;2v�1;Xi;2vg for
cases,

Xi;2v�1 =
0 if Gi;v < 1
1 if Gi;v $ 1

�
and Xi;2v =

0 if Gi;v < 2
1 if Gi;v = 2

�

and gj;v is recoded equivalently as fxj;2v�1; xj;2vg for controls. For
example, case #6 is represented as a recessive carrier of SNP #12
(variable coordinates: row 6, column 2 3 12 = 24Þ by setting
X6;24 = 1. If case #6 is a dominant carrier of SNP #12, then we set
both X6;23 = 1 and X6;24 = 1. The notations for number of carriers
and frequency of variables (and combination of variables) all fol-
low analogously.

Statistical test for two-locus effect

We adapt the LD-contrast test for interaction between a pair of
unlinked genotypes (Zhao et al. 2006) into a similar two-tailed test
between a pair of unlinked binary variables~v = v; v0ð Þ,

LD
diff
~v

=
Dcase
~v � Dcontrol

~vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s case
~v

� �2
+ s control

~v

� �2
q ;N 0;1ð Þ; ð1Þ

where Dcase
~v and Dcontrol

~v represent the estimated LD between these
variables in cases and controls, respectively, while scase

~v and scontrol
~v

represent the standard error of these estimators (see Supple-
mental Section 1 for derivation and details) and LD

diff
~v

is their
LD contrast. This normalized statistic behaves as a Z-score, and
for variable pairs that pass the significance cutoff in a genome-
wide pairwise analysis (typically p < 10�10 or less on present day
data sets), this statistic will assume large values (typically 6 or
more).

Variable pairs with large differences in LD are of interest to
several genetic models, and their signal can be dissected to reveal
either statistical (epistatic) or biological interaction. Based on what
is known about the genetic architecture of a specific disease, the
relevant community of geneticists can bring different model as-
sumptions to bear on a test for interaction. Here, we do not attempt
to dictate a specific model that might cause such a difference in LD
between the cases and controls. Rather, we focus on presenting
a general method that can report all SNP pairs with a significant
contrast and provide expert users with the flexibility to filter the
results from such an analysis according to relevant assumptions.
This can be done either a priori (e.g., removing SNPs with marginal
signals before running a search for interaction), or a posteriori (e.g.,
discarding reported SNP pairs that do not provide evidence for
statistical epistasis).

Two-stage testing design

A widely used simplification (Piegorsch et al. 1994; Yang et al.
1999; Cordell 2009) in genome-wide interaction scans is to divide
the search effort into two stages: first filter candidates, and then
verify interaction. The crucial insight that permits this step is that
we can expect physically unlinked markers to be in (or almost
in) linkage equilibrium in large outbred populations. Even for
common diseases, the general population is mostly composed of
healthy controls (disease prevalence <50%). We show that in the
absence of confounding factors like population stratification,

a pair of physically unlinked variables showing large LD contrast
will be a pair that has large LD in cases rather than large LD in
controls. Without loss of generality, we focus our discussion on
identifying pairs with strong positive LD in cases LDcases

~v > 0
� �

.
Pairs with strong negative LD between variables are easily mod-
eled (with a trivial change in binary encoding) as strong positive
LD between the major allele at one and a minor allele at the other.
Alternative variable pairings of this kind would only require a
different binary encoding scheme but introduce more confusing
notation. A separate (but limiting) issue is that of the statistical
testing burden incurred by encoding alternate models, which we
address in the Discussion.

A sequential two-stage testing strategy is designed as follows.

Stage 1 (shortlisting)

The stage 1 null hypothesis states that any pair of distal variables
~v = ðv; v0 Þ should be in linkage equilibrium in cases.

H
0

0 : LDcase
~v =

Dcase
~v

s case
~v

= 0: ð2Þ

From Equation S1.1 (see Supplemental Section 1), we know
that the distribution of LDcase

~v is N 0;1ð Þ. We shortlist only those
variable pairs that reject the stage 1 null hypothesis at a signifi-
cance level of B0. In other words, for a pair to be shortlisted as
a candidate for follow-up, we require that the LD in cases be-
tween its variables should exceed some threshold, i.e., LDcase

~v $ z
0

B.
We determine this threshold to satisfy sensitivity/specificity con-
straints below.

Stage 2 (validating)

Next, we apply the LD-contrast test on candidates shortlisted by
stage 1. This helps us to determine, for each candidate, whether the
observed LD is indeed case-specific (and therefore a putative in-
dicator of interaction) or pervasive in the population (and hence
unrelated to disease). The stage 2 null hypothesis posits that there
is no LD difference between cases and controls:

H0 : LD
diff
~v

= 0: ð3Þ

Putative significant pairs will reject this null hypothesis at
a significance level of B (i.e., LD

diff
~v

$ zB).
To appreciate how such a two-stage design can capture almost

all significant pairs in the data set and what the appropriate sig-
nificance cutoff z

0

B in the stage 1 analysis must be, we now intro-
duce the concept of a probably approximately complete search. A
numerical example depicting the concepts that follow is provided
in Supplemental Section 9.

Probably approximately complete (PAC) search

Complete search

To find all significant variable pairs in the data set, current algo-
rithms would sequentially visit each pair of SNPs, genome-wide,
and check whether each LD contrast exceeds the user-prescribed
significance threshold LD

diff
~v

$ zB
� �

by comparing cases and
controls.

Approximately complete search

Here we ask, what threshold LDcase
~v $ z

0

B can we apply in the fil-
tering step, so as to capture almost all significant pairs by means of
their disequilibrium in cases alone? In other words, can most sig-
nificant pairs (pairs for which LD

diff
~v

$ zB) be captured without
explicitly determining Dcontrol

~v at all? Furthermore, we wish to de-
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termine the proportion of significant pairs that such an approxi-
mation might miss. We show that for most common diseases, an
adequate cutoff for LD in cases is usually z

0

B > zB (see Supplemental
Section 2)—i.e. SNP-pairs with a severe LD-contrast (difference in
LD between cases and controls) are usually observable from their
severe LD in cases alone.

Probably approximately complete (PAC) search

So far, our two-stage design has reduced the cumbersome task of
counting the number of carriers for all variable pairs (genome-
wide) in cases and then again in controls, to the simpler task
of shortlisting the small set of pairs that demonstrate LDcase

~v $

z
0

B $ zB. From a complexity standpoint, however, such a simplifi-
cation (restricting the stage 1 analysis to cases only) does not
change the order or magnitude of the number of tests: This is still
quadratic in the number of SNPs genome-wide. To address this
computational problem, we now introduce the novel randomiza-
tion technique called ‘‘group sampling,’’ which can rapidly per-
form the case-only shortlisting with arbitrarily high power, with-
out explicitly checking all pairs of variables.

Group sampling

Rationale

From our observation that the LD statistic in cases is usually more
severe than LD contrast (Supplemental Section 2), we deduce that
significant interacting pairs ~v will show a minimum number of
excess ~1-carriers in cases: Dcase

~v $ NzBscase
~v

. In a genome-wide
analysis, as the universe of variable pairs tested grows, so does the
burden of multiple test correction that is applied to characterize
statistical significance. Consequently, the number of excess of
~1-carriers required in order for~v to achieve statistical significance
in cases—Dcase

~v —grows commensurately. Group sampling over-
comes the computational burden of a genome-wide analysis by
using this ‘‘side effect’’ of multiple-test correction to its advantage:
The larger the number of variants typed, the larger is the universe
of pairs to be tested, and the larger the excess~1-carriers needed to
make statistically significant pairs stand apart from the crowd. This
observation allows us to quickly prune the universe of pairs into
a much smaller candidate set that is ‘‘guaranteed’’ to contain all
significant pairs with arbitrarily high probability.

For illustration purposes, let us consider a simplified version
of the problem at hand. In this version, we are only interested
in searching through pairs of distal variables ~v = v; v0ð Þ, where
both variables have 1-frequencies (Pv and Pv0 ) that lie within the
narrow frequency window w = ½~P; ~P + eÞ. Let the set of all variables
that lie within this frequency window be labeled V wð Þ. We wish
to determine whether there exists a pair ~v 2 V wð Þ 3 VðwÞ, such
that~v rejects H

0

0. We can compute a lower bound on Dcase
~v for all

such~v as:

min
w3w
ðDcase

~v Þ $ N min
w3w
ðŝcase

~v ÞzB =
ffiffiffiffi
N
p

:~Pð1� ~PÞzB : ð4Þ

This is because the excess ~1-carriers required for any
~v 2 V wð Þ 3 VðwÞ to reject H

0

0 is at least as many as the excess
~1-carriers required by the least frequent ~v in that set: when
Pv = Pv0 = ~P. Therefore, the ~1-frequency of all pairs that reject H

0

0 is
at least:

P~v $ ~P
2

+
min
w3w
ðDcase

~v Þ
N

= ~P
2

+ dw3w; ð5Þ

where dw3w =
~Pð1�~PÞffiffiffi

N
p zB is the minimum LD in cases for all sig-

nificant pairs~v 2 V wð Þ 3 VðwÞ.

Sampling a single group

Consider a group of k cases drawn randomly (with replacement). If
~v rejectsH

0

0, then the probability that all k cases in the group will be
~1-carriers of ~v has a lower bound P~vð Þk $ ~P

2
+ dw3w

� �
k
. On the

contrary, if ~v does not reject H
0

0, then the probability that such
a group will contain all ~1-carriers of ~v purely by chance has an
upper bound P~vð Þk # ð~P + eÞ2k—corresponding to the most fre-
quent variable pair in V wð Þ 3 VðwÞ. It is easy to see that if
dw3w > e, we are much more likely to observe a random group of
cases that are all ~1-carriers of~v when it rejects H

0

0.
The reason for drawing cases in groups (as opposed to one by

one) is that it allows us to rapidly find the subset of variables for
which all k cases are ~1-carriers. This is done with a native bitwise
AND operation using computers, which is very fast in practice. In
fact, the larger the group size, the exponentially smaller the subset
of variables carried by all cases in the group becomes. Furthermore,
long stretches of binary genotype data can be processed per CPU
clock cycle, making this step even more attractive. Subsequent to
finding this small subset of variables, it is computationally efficient
to enumerate all pairs (or indeed, triplets) among them, and pass
them on to stage 2.

Sampling multiple groups

If the group of cases we draw is sufficiently large (i.e., k is high),
then it is extremely unlikely to contain only ~1-carriers, not only
when ~v accepts H

0

0, but also when this null is rejected because
both ð~P + eÞ2k; ~P

2
+ dw3w

� �
k

<< 1. We can counter this by drawing
up to t independent groups (each containing k random cases),
so that the probabilities of not witnessing even a single group
containing only ~1-carriers decreases at diverging rates for the
two realities:

1� ð~P + eÞ2k
� �t

<< 1� ~P
2

+ dw3w

� �k
	 
t

:

In fact, if~v does reject H
0

0, then by varying the two parameters
k and t the probability of observing at least one group of all
~1-carriers can be driven arbitrarily high (type II error rate < b) while
keeping the probability of a chance observation relatively low
(type I error rate < a). In other words, given fixed specificity and
sensitivity constraints a and b (provided as input by the user),
when dw3w > e, we can always find group-sampling parameter
values k and t for which:

Sensitivity : 1� 1� ~P
2

+ dw3w

� �k
	 
t

$ 1� b

Specificity : 1� 1� ð~P + eÞ2k
� �t

# a: ð6Þ

An illustration to visualize this technique is provided in Fig-
ure 1, while the simple algorithm implied by our toy problem logic
is provided by Algorithm 1. The general formulation for PAC
testing across all frequency windows (genome-wide) is described in
Supplemental Section 4 and the logic provided by Algorithm 2.

This concludes our discussion of a probably approximately com-
plete search. PAC testing offers a powerful computational frame-
work: As we shall demonstrate next, we can find approximately
all significant SNP pairs genome-wide with high power in a fraction
of the time that an exhaustive search would require.

Results
The major methodological contribution of this work is a novel

randomization algorithm (group sampling), which can focus the

computational effort toward finding significant pairwise inter-
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action candidates, without testing all pairs genome-wide. To de-

termine whether a candidate SNP pair is significant or not and to

minimize the risk of false positives, in all our analyses, we subject

the results to the most conservative threshold for significance in

a genome-wide analysis—the Bonferroni corrected P-value of

0.05—unless otherwise stated. More sophisticated treatment of the

multiple testing issues in interaction testing (e.g., Emily et al. 2009)

is equally applicable and can be plugged into our method without

violating any of the principles or assumptions. We also restrict our

analysis to pairs of genetic markers (SNPs) only and choose to ig-

nore gene–environment interactions for the moment. These sim-

plifications serve to highlight the fundamental concepts of our

approach, without loss of interpretable results. Our software im-

plementation of this algorithm (SIXPAC) is available for download

at http://www.cs.columbia.edu/;snehitp/sixpac.

Data set

SIXPAC was used to analyze 1868 cases of the bipolar disorder

(BD) cohort in the WTCCC against 2938 combined controls

from the 1958 British birth cohort (58C) and UK national blood

service (NBS), all typed on the Affymetrix 5.0 platform, after

cleaning all data as per requirement (Craddock 2007). Each of

the remaining 455,566 SNPs remaining in the data set was en-

coded into two binary variables (dominant and recessive), giving

911,132 binary variables genome-wide and a universe of

455566
2

	 

3 4 = 4:15 3 1011 potential variable pairs to be tested.

Although we only report pairwise interactions that are significant at

the Bonferroni level in this data set ðp < 1:2 3 10�13Þ, investigators

who use less stringent multiple test correction can use SIXPAC to

discover interactions at a different cutoff as well.

To verify that the LD-contrast statistic follows a standard

normal distribution, we drew random variable pairs genome-wide

and constructed a QQ plot. Like others before (Liu et al. 2011), we

observed that WTCCC data cleaning was inadequate for in-

teraction analysis and systematically applied more stringent filters

to preemptively screen out false positives that can be a result of bad

genotype calls on a few individuals. Specifically, 81,085 additional

SNPs that had <95% confidence calls (CHIAMO) in >1% of the

Figure 1. Group sampling. A cohort of N cases is shown on the left, where the cases outlined in red—P, Q, R, and S—harbor an interacting pair of
recessive variables. In other words, more cases carry the recessive–recessive combination than would be expected by chance, given the marginal fre-
quencies of each recessive allele. By repeatedly drawing random groups of k cases (here k = 3), we are guaranteed to have drawn at least one group of
individuals that carries both the variables in t attempts with probability $ ð1� bÞ. These variables (and others) are quickly determined by a bitwise-AND
operation between the group of cases. Then, all pairs of cocarried variables are enumerated and tested against the stage 1 null hypothesis (case-only
analysis). Rejected combinations are shortlisted and followed up in stage 2 (case vs. control analysis), where an interaction is identified.

Algorithm 1. Group sampling toy problem

Given all variables within frequency range
V wð Þ = fvjPv 2 w = ½~P; ~P + eÞg

Calculate significance threshold dw3w

Calculate sampling parameters k and t
Repeat t times:

Randomly choose a group C of k cases (k rows from XN32M)
Cocarried variables CV)Bitwise AND ðCÞ

For all unique combinations ~v = v; v
0� �
2 CV 3 CV :

If LDcase
~v $ z

0

B do Shortlist)Shortlist [ ~vf g
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individuals (cases and controls combined) were removed. For the

cleaned data set of 374,481 SNPs that remain, we verified that

the LD-contrast statistic LD
diff
~v

for randomly drawn pairs of un-

linked variables >5 cM apart was indeed a Z-score (QQ plots and

additional cleaning details in Supplemental Section 5), in agree-

ment with our null hypothesis.

Power analysis on spiked data

Next, we tested SIXPAC’s computational sensitivity by searching

for synthetic interactions inserted into the bipolar cases while

keeping the joint controls unchanged. Eleven recessive–recessive

interaction pairs between 22 SNPs on successive autosomal chro-

mosomes (chr1 and chr2, chr3 and chr4, etc.) were simulated over

a range of different parameters. Interactions between each pair of

SNPs were simulated in a manner not to introduce a main effect,

but effectively introduce only interaction effects. Details of this

procedure are outlined in Supplemental Section 6.

Algorithm 2 configures the search parameters according to two

user inputs: (1) a significance cutoff (LD-contrast test P-value), and

(2) the minimum search power (defined as the power to discover all

variable pairs that exceed the given significance cutoff, assuming

such interactions exist). We tested SIXPAC on the synthetic data

sets over a range of different input value combinations, to check

whether we could discover the spiked interactions in accordance

with theoretical estimates, and confirmed finding all of them at (or

above) the power guaranteed to the user (Supplemental Section 7).

Computational savings from group sampling

To put the computational savings of our novel approach in con-

text, we reviewed the literature for published, high-performance,

genome-wide pairwise search methodologies that either (i) con-

trast a statistic for a pair of SNPs between cases and controls or (ii)

directly test for statistical epistasis between a pair of SNPs using

a regression model. Plink (Purcell et al. 2007) offers a –fast-epistasis

option that tests pairs of SNPs using a statistic similar to ours:

Specifically, it collapses each pair of SNPs completely into a 232

table of major versus minor allele counts, and subsequently con-

trasts the odds ratios of each combination between cases and

controls. On the other hand, EPIBLASTER (Kam-Thong et al. 2010)

operates on the entire 333 table of genotypes to contrast the exact

Pearson’s correlation of each SNP pair between cases and controls.

Like Plink, SHEsisEPI (Hu et al. 2010) also contrasts odds-ratios

of all SNP pairs reduced to a 232 table. Both EPIBLASTER and

SHEsisEPI achieve speedup through the use of a GPU stack.

Among the methods that directly test for statistical epistasis,

we report TEAM (Zhang et al. 2010a) and FastEpistasis (Schüpbach

et al. 2010). The authors of FastCHI (Zhang et al. 2009), FastANOVA

(Zhang et al. 2008), COE (Zhang et al. 2010b) and TEAM presented

a review (Zhang et al. 2011) in which TEAM was reported as the

most appropriate for handling human data sets, and was there-

fore chosen to represent the family of methods. TEAM achieves

computational speedup by a novel approach that allows it to

accurately identify interacting SNP pairs (for most statistical tests)

by checking only a small subset of individuals in the cohort.

Unlike EPIBLASTER, Plink –fast-epistasis, and SIXPAC, TEAM

works directly on the logistic regression framework—giving it the

ability to test a broader range of interaction models. The other

method, FastEpistasis, reports epistasis in the analysis of quanti-

tative traits (and is particularly built for gene-expression analysis)

by implementing a rapid linear regression that takes advantage

of multicore processor architectures. Notable among methods

omitted in this comparison are Multifactor Dimensionality Re-

duction (Ritchie et al. 2001) and the Restricted Partition Method

(Culverhouse et al. 2004), both of which partition the data ac-

cording to genotypic effect in a relatively model agnostic manner.

Consequently both methods test a variety of interaction models

(alternate parameterizations) that are not currently captured by

high-performance computational techniques like ours and others

previously discussed. Another widely cited method, BEAM (Zhang

and Liu 2007), does not scale to present day data sets (Cordell

2009) and was left out of this analysis. There are numerous other

methods that perform whole-genome interaction scans (Emily

et al. 2009; Zhang et al. 2009; Greene et al. 2010; Liu et al. 2011),

including some that utilize sampling subsets of individuals for

computational speedup (Achlioptas et al. 2011). An older review

of a few of these is provided elsewhere (Cordell 2009).

Except for SIXPAC, all the time scales presented in Table 1 are

performance figures as self-reported by the authors of each method

(or in the case of TEAM, extrapolated from performance figures

reported therein) on a data set of this size. Our synopsis does not

constitute a comprehensive methods comparison and is presented

solely to highlight the computational savings achieved by group

sampling (Fig. 2). The reason SIXPAC is able to achieve its speedup

without GPUs is because it does not need to exhaustively test all

pairs of SNPs to identify the significant combinations.3 On the

other hand, all other methods are burdened by a brute-force test of

all pairs to identify such combinations. In confirmation of our es-

timates, they also report that genome-wide testing on ordinary

CPUs requires several weeks of compute time (some report weeks

even on a small cluster of computers). The application of group

sampling was able to reduce this computational investment to ;8 h.

Novel significant interaction in bipolar disorder

We ran SIXPAC on the BD data set with >95% power to check

whether there exist any significant LD contrasts between pairs of

physically unlinked variables (SNPs >5 cM apart). We report the

presence of only one statistically significant two-locus contrast

(BD cases vs. NBS+58C controls LD contrast, p < 1:2 3 10�13) be-

tween SNPs lying within two calcium channel genes: rs10925490

Algorithm 2. Group sampling genome-wide (SIXPAC)

Assign all variables genome-wide to frequency windows
W = fw0; . . . ;wr�1g

For every pair of windows wA;wBf g 2 W 3 W :

Calculate significance threshold dA3B

Calculate sampling parameters kA3B and tA3B

Repeat tA 3 B times:
Randomly choose group C of kA3B cases
Cocarried variables CV)Bitwise AND ðCÞ
Identify variables CVA)VðwAÞ \CV
Identify variables CVB)VðwBÞ \CV
For all unique combinations ~v = v ; v

0� �
2 CVA 3 CVB:

If LDcase
~v $ z

0

B do Shortlist)Shortlist [ ~vf g
For all shortlisted variables ~v 2 Shortlist:

If LDdiff
~v $ zB output~v as an interaction

3However, we report that the SIXPAC implementation currently takes advan-
tage of multicore CPU architectures with large reserves of RAM to speed up
computation, as well as cluster computing infrastructures to distribute com-
putational burden across multiple nodes—all with little or no effort on the part
of the end user. Details are provided on the software web page.
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within RYR2 on chr1q43, and rs2041140 and rs2041141 within

CACNA2D4 on chr12p13.33. We successfully replicated the sig-

nal from this region at Bonferroni significance levels in a different

bipolar data set of Europeans (653 BARD cases, 1034 GRU con-

trols) from the GAIN initiative (The GAIN Collaborative Research

Group 2007; Smith et al. 2009) (also see http://www.genome.gov/

19518664), which were typed on a different platform (Affymetrix

6.0). Deeper investigation revealed that the SNP in CACNA2D4 is

200 kb away from CACNA1C—a known calcium channel gene

whose association to BD was only recently confirmed by com-

bining large GWAS data sets for meta-analyses (Ferreira et al. 2008;

Sklar et al. 2008). Functional experiments have also confirmed the

role played by genes at this locus in bipolar disorder (Perrier et al.

2011). Although channel ideopathies (and, more specifically, faults

in calcium channels and signaling) have long been known to play

a major role in bipolar disorder, single-locus association methods

were underpowered to implicate genes in these pathways without

considerably boosting their sample sizes (Craddock 2007; Ferreira

et al. 2008; Sklar et al. 2008). Neither gene that we report—either at

the known locus or novel locus—was identified as a candidate by

the original WTCCC analysis (Craddock 2007), which focused on

effects visible to single-locus association.

Specifically, we found that the dominance variable of

rs10925490 (one or more minor alleles) was in severe positive

linkage disequilibrium with the recessive variables of adjacent SNPs

rs2041140 and rs2041141 (two minor alleles each) in BD cases, and

slight negative disequilibrium with them in controls, giving an LD-

contrast p = 4:6 3 10�14. To verify that this signal was not due to

any unaccounted biases, we first confirmed that high LD between

the two variables was specific to BD cases only, even when con-

trasted against samples from all other WTCCC disease phenotypes

(six tests of BD vs. other-disease-cases all show LD-contrast p < 10�9).

Next, we performed a permutation analysis to characterize the em-

pirical distribution of the LD-contrasts statistic at the theoretical

significance level of p = 4:6 3 10�14 (i.e., to check if pcorrected # 0:05).

We ran SIXPAC on 100 phenotype per-

muted versions of the same data set (i.e.,

100 whole-genome, all-pairs scans for in-

teraction) and observed p # 4:6 3 10�14

between a pair of SNPs in only one such

permutation (pcorrected»0:01).

Finally, we sought to replicate the

observed difference in LD at these loci. In

the GAIN data set, we considered all LD

contrasts in an area of 1 SNP immediately

upstream and downstream of rs10925490

in the dominant allelic mode, against 1

SNP immediately upstream and down-

stream of rs2041140 in the recessive al-

lelic mode. In other words, we tested

3 3 3 = 9 pairs (around and including the

original interaction), to test if any pair in

this area bore an LD contrast that passed

the conservative Bonferroni signifi-

cance cutoff a = 0:05
9 »0:005. This roughly

translates to a region # 5 kb upstream

and downstream of each SNP in the

original pair. Although there was no ap-

preciable difference in LD between the

same SNPs (rs2041140/rs10925490 shows

LD-contrast p > 0:01), we observed a sig-

nificant LD contrast ðp = 4 3 10�5Þ be-

tween rs2041140 and rs677730 (the SNP immediately upstream of

rs10925490 on the Affymetrix 6.0 platform). To confirm that

this observation was not likely by chance, we randomly picked

5000 pairs of physically unlinked (>5 cM apart) SNPs genome-

wide and tested an equal neighborhood of 3 3 3 LD contrasts

around each pair in the GAIN data set. Only one out of 5000 random

areas contained a SNP pair with a more significant LD contrast

ðpcorrected = 0:0002Þ.
To get a better picture of the LD-contrast landscape between

SNPs in this region, we conducted a wider survey of the area

spanning 625 SNPs (upstream, downstream, and including both

rs2041140 and rs10925490) i:e: 51 3 51 testsð Þ. The scan reveals

several additional pairs of SNPs that show differences in LD going

in the same direction (strong LD in cases, weak negative LD in

controls), arranged in a strikingly similar pattern in both data sets,

presenting strong evidence of an interlocus effect. The two-

dimensional LD-contrast spectrum for this larger area is presented

in Figure 3, alongside the Manhattan plots for marginal associa-

tion at each locus. The top SNP pair in the area (rs677730, d 3

rs11062012, r) had LD-contrast p = 1:19 3 10�6 in GAIN: A similar

phenotype permutation analysis as earlier reveals that only 19 out

of the 5000 randomly chosen 51 3 51 areas genome-wide con-

tained a more significant pair ðpcorrected = 0:0038Þ. It can also be seen

that there is no marginally significant association at these loci in

either data set. Table 2 and Table 3 present a summary of these

results.

Discussion

In this study, we introduced a novel method that defuses the

computational challenge of a genome 3 genome interaction scan

by using the statistical constraint toward, rather than against, our

goal. Focusing only on interactions that have a chance of achiev-

ing statistically significant association, we developed a rapid filter

that does not require the naive arduous scan of all pairs of variants.

Table 1. Methods comparison

Method Type of test
Computational

approach

Approximate
time to process

data seta

Run on
specialized
hardware

Plinkb Odds-ratio contrast Brute force Weeks No
FastEpistasis Linear regression Brute force Weeks No
TEAM Logistic regression Check fewer individuals Weeksc No
EPIBLASTER Correlation contrast Brute force ;1 d Yes (4 GPUs)
SHEsisEPI Odds-ratio contrast Brute force ;1 d Yes (2 GPUs)
SIXPAC LD contrast Group sampling 8 hd No

We list the approximate times reported by five other recent pairwise interaction methods (all perform
an exhaustive, genome-wide search) to process a data set the size of WTCCC bipolar disorder (ap-
proximately 2K cases, 3K controls, 450K SNPs, 1 genetic model tested per distal SNP pair, �100 billion
pairwise tests). For methods that do not use a GPU cluster, reported times were measured on a com-
parable desktop computer configuration to the one that SIXPAC was benchmarked on (Intel i7 quad
core processor, 2.67 Ghz with 8 GB RAM). For TEAM, we extrapolated the run time based on perfor-
mance figures reported on a smaller data set. Graphical Processing Units (GPUs) are computing chips
that provide ;1003 speedup over regular CPUs and were therefore used by two recent high-perfor-
mance implementations. Despite not using such specialized hardware, SIXPAC is the only method that
can scan a GWAS data set of this size in a few hours. This is because while most methods effectively need
to test each pair to find the few significant combinations, group sampling allows SIXPAC to prune the
search space drastically while simultaneously guaranteeing that all the statistically significant pairs will
make it through such a pruning.
aAll times as self-reported by the authors of these tools, or extrapolated from performance
metrics provided therein.
bOperating in the –fast-epistasis mode.
c10K SNPs all-pairs test reported in 1000 sec, scaling linearly with the number of SNP pairs thereon.
dTime taken to find all pairs with LD-contrast p <1 3 10�12 with >90% power, multithreaded mode.
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To demonstrate its utility, we implemented an established test

for interaction that contrasts LD between cases and controls, to

demonstrate how an exhaustive genome-wide multilocus associ-

ation search is possible while saving an order of magnitude or more

in computational resources. Usefully, we are also able to provide

performance guarantees and quantify the approximate nature of

our output, and our algorithm brings genome-wide three-locus

scans into the realm of feasibility.

While the focus of this contribution is computational meth-

odology, we prove applicability in practice to a classical GWAS data

set. Among widely investigated common diseases, bipolar disorder

remains one of the most recalcitrant phenotypes to GWAS meth-

odology (Craddock and Sklar 2009), perhaps in part because of the

limitations of single-locus association analysis. We highlight the

power and utility of multilocus effects in terms of uncovering

molecular processes by exposing two calcium channel–coding

genes as affecting bipolar disorder, supporting recent discoveries

that were only made possible through a significant increase in data

set size. We have replicated this observation in an independent

data set, strongly suggesting a bona fide underlying interaction

between members of a gene family known to be functionally

associated with bipolar disorder, making it suitable for further

investigation.

Compared to the number of single-locus associations, GWAS

of common phenotypes in humans have uncovered very few re-

producible gene–gene effects so far. This is partly because in-

teraction analyses for human populations are difficult to design

and interpret (Cordell 2002; Phillips 2008). A conventional test

for statistical epistasis is expected to only identify loci whose

combined effect on phenotype is not explained by the addition

of their individual effects, for an appropriately chosen scale. In

case–control studies, this typically involves applying a logistic

regression to check for significance of the interaction term(s)

after accounting for main effects (Wang et al. 2010), which is

equivalent to a test for deviation from multiplicative odds

(or additive log-odds). However, there are several limitations to

this approach—scale of choice (Mani et al. 2008), assumption of a

genetic model by which two loci combine their effects (Hallander

and Waldmann 2007), limited models of interaction that can be

tested (Li and Reich 1999; Hallgrı́msdóttir and Yuster 2008), and

limited sensitivity of logistic regression to non-normal residuals,

among others. How these factors might cumulatively affect a test

for other models of genetic interaction has not yet been decisively

established.

Furthermore, true biological interaction between two or more

loci may or may not manifest itself as a departure from additivity.

Two loci whose main effects appear to combine in an additive

manner might also indicate their biological co-involvement (and

hence ‘‘interaction’’) underlying the disease (Wang et al. 2011). In

general, two-locus association tests are known to contribute signal

independently from what is seen by conventional single-locus as-

sociation tests (Marchini et al. 2005; Kim et al. 2010), and com-

prehensive multilocus association strategies may be worth un-

dertaking despite the increased multiple testing burden (Evans et al.

2006). Indeed, recent work (Zuk et al. 2012) showing that alterna-

tive models of biological interaction could confound estimates of

heritability has redirected the attention of the genetics community

to the potential of interaction studies.

A previous genome-wide scan for statistical epistasis on

the same bipolar disorder data set had reported Bonferroni sig-

nificant epistasis between rs10124883 and four other SNPs (Hu

et al. 2010). As expected, all four pairs approached (but did not

clear) Bonferroni significance levels as per the LD-contrast test as

well ðp » 10�12Þ—and could therefore be captured simply by

lowering the significance cutoff. This congruence between tests

for statistical epistasis and contrast tests has been exploited by

others (Plink, EPIBLASTER) and, indeed, also holds for the bi-

nary LD-contrast test (see tables in Supplemental Section 6). But

whereas other methods would use a brute-force testing strategy

to identify candidate SNP pairs, PAC testing will accomplish

the same result much quicker by looking at a small fraction of

the pairs.

Our findings do suggest that unlike stepwise regression ap-

proaches that sequentially attribute residual variance/deviance to

each of their components, tests that make fewer assumptions re-

garding scale may, indeed, be more powerful at capturing a wider

range of interactions. Conversely, a distinct advantage of regres-

sion over our LD-contrast test remains its clear interpretation and

measurement of effect size; although the difference in LD between

cases and controls is consistent and reproducible across data sets, it

does not immediately suggest a clear causal genetic model un-

Figure 2. Computational efficiency. Our implementation of the two-
stage PAC-testing framework (SIXPAC, orange line) was benchmarked on
the cleaned WTCCC bipolar disorder data set (approximately 2K cases, 3K
controls, 450K SNPs, four genetic models tested per distal SNP pair, 400
billion pairwise tests genome-wide). (A) The factor reduction in the universe
of SNP pairs achieved by stage 1, for each power setting. Note that unlike
brute force, this does not mean down-sampling the universe of SNP pairs,
but rather involves reducing the probability of identifying any one of them.
For example, a brute-force method would presumably test 40 billion pairs
(and ignore the remaining 360 billion) to achieve 10% power on this data
set. However, PAC testing scans all 400 billion pairs, but simply reduces the
probability of finding the significant interactions among them to 10%. This
results in shortlisting ;683 fewer combinations through stage 1. (B) The
efficiency of our software implementation of this method. We compare the
performance of SIXPAC against the time taken by a brute-force approach of
applying the LD-contrast test directly to all pairs (green line). All tests were
benchmarked on a common desktop computer configuration (Intel i7
quad-core processor, 2.67 GHz with 8 GB RAM). The last data point shows
the 90% power benchmarks, followed by dotted lines that illustrate how
these estimates may continue as we approach 100% power. SIXPAC, like
any randomization algorithm, will require infinite compute time to achieve
100% power but can approach very close at a small fraction of the brute-
force cost. Lastly, we note that these measurements only reflect the per-
formance of our Java program rather than what might be feasible with
a different implementation of the algorithm.
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derlying this signal. We dissected this interaction using the stan-

dard logistic regression, lnð P
1�PÞ; b1X1 + b2X2 + b12X1X2, where

X1 = f0;1g codes for dominance carrier status at rs10925490

while X2 codes for recessive carrier status at rs2041140. The main

effects b1; b2 were observed to be not significant, while the

epistasis term b12 was considerable (p » 10�9), suggesting devia-

tion from multiplicative odds is one option. We also considered

the standard full genotype model (0/1/2 parameterization of

predictor variables) with 8 degrees of freedom (Cordell and

Clayton 2002) as implemented by INTERSNP (Herold et al. 2009),

where the most significant test (Test 6, p » 10�9) was the one

comparing the full model against a model that accounts for just

within-SNP additive and dominance effects. In a genome-wide

search for interaction using logistic regression, these levels are

Figure 3. Bipolar disorder interaction. In a genome-wide scan of all 400 billion variable pairs (four genetic models tested per SNP pair) in the WTCCC
bipolar disorder data set (Affymetrix 500K), SIXPAC found one significant interaction ðp < 1:2 3 10�13Þ between SNPs >5 cM apart that satisfied all our
filtering criteria. The SNPs rs10925490 and rs2041140 lie within the RYR2 gene on chr1q43 and the CACNA2D4 gene on chr12p13.33, respectively.
Each figure shows the �log(P-value) from a standard single-locus association test (allelic model) of the two SNPs as well as 25 SNPs immediately
upstream and downstream from each of them, along the x-axis and y-axis. Also shown in the grayscale area is the�log(p) from the pairwise LD-contrast
test of all 51 3 51 = 2601 variable pairs. As suggested by the original finding, SNPs around rs10925490 were considered in dominant allelic mode, while
SNPs around rs2041140 were in recessive mode. We replicated this signal by similarly testing 2601 dominant–recessive pairs of variables around the very
same SNPs in a much smaller bipolar disorder data set from the GAIN Consortium (Affymetrix 6.0). In the replication data set, we observe several pairs
that cross the significance threshold and a strikingly similar visual pattern in the LD-contrast landscape (see main text for a permutation analysis). The
top pair (rs677730–rs11062012) in this area is pinpointed with dashed lines (see main text for permutation analysis). Standard single-locus association
analysis does not yield any significant result in either data set, as seen in the marginal Manhattan plots (the gray dashed line represents the genome-
wide significance level).

Table 2. Bipolar disorder interaction

Data set

1q43 (RYR2) 12p13 (CACNA2D4)

LD-cases
(Z-score)

LD-controls
(Z-score)

Interaction P-value

SNP, mode
P-value

(marginal) SNP, mode
P-value

(marginal) LD-contrast test
Logistic

regression

WTCCC rs10925490, d 0.5974 rs2041140, r 0.6594 + 7.7 �2.3 4.61310�14 1.28310�09

GAIN rs677730, d 0.17 rs11062012, r 0.05 + 5.1 �1.2 1.19310�06 0.0001

The table lists the most significant LD-contrast SNP-pair spanning two calcium channel genes RYR2 and CACNA2D4, in both the original (WTCCC) as well
as the replication data sets (GAIN). Columns 2 and 3 present the apparent mode of action for this SNP-pair (represented as SNP rsID, allelic mode:
dominant d, recessive r), and the P-value for each SNP using single-locus association analysis. Columns 4 and 5 show the LD between these SNPs in cases
and controls (each normalized into a Z-score), which are derived by comparing the expected to the observed cocarriers in cases and controls (see Table 3).
Column 5 reports the LD-contrast significance. Although LD-contrast does not seek or imply statistical epistasis, we can see that the pair is also a nominally
significant candidate as per a logistic regression–based 1 d.f. test for interaction term, as shown in column 6.
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likely to fall short of significance cutoffs after correcting for

hundreds of billions of tests performed, which explains why

other methods seeking statistical epistasis on the same BD data

set did not report LD between the RYR2-CACNA2D4 as a signifi-

cant finding. A true etiological understanding of this persistent

difference in LD may require sequencing at each locus to identify

the interacting variants.

Limitations and extensions

The major contribution of this work is a computational tech-

nique to rapidly identify SNP pairs with large values of a test

statistic without performing a brute-force search. While we

assessed the issue of power with regard to our randomization

algorithm, we left the separate (but equally important) concept

of statistical power unaddressed—i.e., the ability of an in-

teraction test to spot a true biological interaction in the data set.

Although contrasting LD, correlation, and odds-ratios between

cases and controls have all separately been characterized as

powerful tests for interaction, each test makes specific model

assumptions and is powerful only under its own regime. Con-

sequently, the absence of interaction reported by SIXPAC (or,

indeed, by any other software) does not imply the absence of

interaction itself, but could simply mean lack of statistical power

of the test, inadequate number of samples, or, simply, incorrect

model assumptions. During the course of publishing this method,

minor corrections were suggested for a range of contrast statistics

to improve their power and decrease type I error rate (Ueki and

Cordell 2012). Again, we note that modifications to these tests can

be easily adopted into our computational methods—which are

agnostic of statistics.

In contrast to the performance gains offered by group sam-

pling are its two notable weaknesses. First—like any other ran-

domization algorithm—group sampling can never achieve 100%

power (probability of completion), whereas brute-force approaches

will. Second, by virtue of limiting itself to binary features, testing

for genetic models that incorporate allelic dosage and trend effects

using group sampling does not appear straightforward. Although

extending our computational principles to implement rapid cor-

relation and odds-ratio contrast tests (among others) may be ap-

pealing, the loss of statistical power from increasing the number of

tests is less easily addressed. Where we currently encode recessive

and dominance binary status, each additional test may require a

different encoding of features (genotypes, or combinations thereof),

thereby adding to the multiple testing burden. Overcoming these

limitations appears nontrivial, and increases in sample size will al-

most certainly play a crucial role in discovering these hidden genetic

connections.

Extrapolating from the hardware speedups reported by

others (Hu et al. 2010; Kam-Thong et al. 2010) may suggest that

a high-performance GPU-enabled implementation of our method

might offer a scan of all-pairwise interactions in a few minutes, and

all three-way interactions on the order of a day(s) in large GWAS

data sets. But a more immediate concern related to testing three-

way interactions would be the statistical power and semantic

interpretation of such a test (conceivably devised on a 23232 bi-

nary table). In conclusion, we note that while the transition of

association studies from SNP arrays to full ascertainment of vari-

ants may have led to analytical emphasis on rarer alleles, it has

only increased the impetus to examine the spectrum of multilocus

effects. With so many more variants to consider, the computa-

tional limitations will only become more severe, but the solutions

reported will be ever more essential.
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