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Abstract

Background

Prevention and control of wildlife disease invasions relies on the ability to predict spatio-tem-
poral dynamics and understand the role of factors driving spread rates, such as seasonality
and transmission distance. Passive disease surveillance (i.e., case reports by public) is a
common method of monitoring emergence of wildlife diseases, but can be challenging to
interpret due to spatial biases and limitations in data quantity and quality.

Methodology/Principal findings

We obtained passive rabies surveillance data from dead striped skunks (Mephitis mephitis)
in an epizootic in northern Colorado, USA. We developed a dynamic patch-occupancy
model which predicts spatio-temporal spreading while accounting for heterogeneous sam-
pling. We estimated the distance travelled per transmission event, direction of invasion,
rate of spatial spread, and effects of infection density and season. We also estimated mean
transmission distance and rates of spatial spread using a phylogeographic approach on a
subsample of viral sequences from the same epizootic. Both the occupancy and phylogeo-
graphic approaches predicted similar rates of spatio-temporal spread. Estimated mean
transmission distances were 2.3 km (95% Highest Posterior Density (HPDgs): 0.02, 11.9;
phylogeographic) and 3.9 km (95% credible intervals (Clgs): 1.4, 11.3; occupancy). Esti-
mated rates of spatial spread in km/year were: 29.8 (HPDgs: 20.8, 39.8; phylogeographic,
branch velocity, homogenous model), 22.6 (HPDgs: 15.3, 29.7; phylogeographic, diffusion
rate, homogenous model) and 21.1 (Clgs: 16.7, 25.5; occupancy). Initial colonization proba-
bility was twice as high in spring relative to fall.

Conclusions/Significance

Skunk-to-skunk transmission was primarily local (< 4 km) suggesting that if interventions
were needed, they could be applied at the wave front. Slower viral invasions of skunk rabies
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in western USA compared to a similar epizootic in raccoons in the eastern USA implies host
species or landscape factors underlie the dynamics of rabies invasions. Our framework pro-
vides a straightforward method for estimating rates of spatial spread of wildlife diseases.

Author summary

Rabies is a deadly zoonotic infection with a global distribution. In 2012, an epizootic of
skunk rabies established in northern Colorado, USA and spread rapidly through three
counties. The epizootic was documented through reports of dead skunks by the public.
We examined the reports to determine how rapidly rabies was moving and which factors
could explain the patterns of spread. We compared these estimates of spatial movement of
rabies to those obtained from analyzing rabies genetic sequences that we obtained from
some of the dead skunks reported by the public. By both methods, we found the virus

was moving south at a little over 20 km/year and that most transmission between skunks
occurred at short distances (< 4 km). Rabies was most likely to spread to new areas during
the first half of the year, when skunk populations were producing new offspring. Our
genetic model suggested that roads and rivers in the study landscape did not affect move-
ment speed of rabies. We developed a framework that used the spatial data in the public
reports to predict where and when skunk rabies would occur next. This framework could
be used on public health surveillance data for other diseases or countries.

Introduction

A central focus for disease ecologists and epidemiologists is to quantify processes that deter-
mine geographic spread of disease [1]. Surveillance systems, which rely on reporting by the
public [2-5], provide data that can improve understanding disease dynamics and planning
interventions. However, passive surveillance data are challenging to interpret because the
underlying sampling design is opportunistic. Raw patterns may depend on observation pro-
cesses that produce a biased representation of disease occurrence. Interpretation of passive
surveillance data from wildlife populations can be especially challenging because the underly-
ing ecological processes, such as host population density, distribution, and demographic
dynamics, are often unknown [e.g., 6]. In these cases a phenomenological method that does
not rely on explicit representation of often unavailable host ecological data, may be valuable
for quantifying disease spread—especially when surveillance data are too sparse, or disease
prevalence too low, to enable estimation of multiple unknown parameters representing non-
linear processes from both the host and disease dynamics.

Rabies virus (RABV) is a globally-distributed zoonotic pathogen that circulates naturally
in a variety of carnivore and bat host species and has among the highest case fatality rate of
known infectious diseases [7]. The principal burden of human and animal cases is associated
with domestic dog populations [8], but emergence in wild carnivores has been observed, espe-
cially in areas where domestic dog rabies has been managed or controlled [9,10], or in areas
with a long history of disease absence [11]. Risk of rabies transmission from wildlife is tradi-
tionally monitored through public health surveillance systems, which involve voluntary
reports by the public of domestic animal or human exposures to potentially sick wildlife
(appearance of atypical behavior, and especially signs of neurologic illness), followed by diag-
nostic testing [7]. Animal movement can have significant consequences on geographic spread
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of RABV [12], but the transmission distance during individual infections, an important com-
ponent of geographic spreading, is poorly documented. Analysis of spatial public-health sur-
veillance data have the potential to improve our understanding of the geographic spreading
processes of RABV's, which will in turn help with planning prevention and response strategies,
and prioritizing resources in space and time.

In the United States of America (USA), rabies infections of humans and animals became
nationally reportable during 1938 [13]. There are several distinct enzootic lineages of
RABVSs circulating in bats and wild carnivores in the USA [14], though most control and
management efforts are focused on raccoon RABV [15]. The South Central Skunk (SCSK)
variant of RABV was likely first detected in Texas as early as 1953 [16], although typing
methods which could detect and identify this particular variant were not reported until
1986 [17]. Recent studies have documented that this variant of RABV has been expanding
in geographic distribution [18] and recently invaded novel areas in the USA, causing epizo-
otics in the northern part of Colorado for the first time [19]. This well-documented invasion
presents an opportunity to quantify spatial emergence dynamics of skunk RABVs, and
assess the validity of estimating spatial epidemiological parameters from surveillance data
reported by the public.

Ecologists have developed occupancy models for quantifying species invasion processes
[20], which are essentially the same phenomena as the emergence and geographic spread of
novel pathogens. Occupancy is the process of a target species or pathogen being present or
absent across space. Dynamic occupancy processes additionally consider a time component.
Occupancy frameworks can incorporate an ecological process(es) of geographic spread and
observation error separately, allowing for clearer interpretation of the influence of factors driv-
ing each process. Recently, occupancy models have begun to be applied to disease systems for
estimating pathogen prevalence [21-23] but are under-utilized for quantifying parameters that
describe the spatial spread of disease.

Using surveillance data from the SCSK epizootic in Colorado, we developed a dynamic
patch-occupancy model to jointly estimate parameters describing the spatial spread of rabies
while accounting for variable sampling effort. Considering surveillance data from dead skunks,
we used the framework to: 1) quantify the rate of geographic spread and transmission distance
per infection; 2) quantify effects of local infection density, seasonality and direction on the
probability of geographic invasion; and 3) predict the occupancy probability and prevalence of
RABV on the landscape through space and time. We also conducted a phylogeographic analy-
sis of viral genetic data from a subset of the reported rabies positive skunks to validate the esti-
mated rates of spatial spread and transmission distance that we estimated using the occupancy
model. The occupancy framework we present is simple to implement and can be used for
inferring rates and direction of geographic spread in a variety of emerging disease systems,
providing basic insight for understanding disease emergence and practical insight for risk
assessment and response planning.

Methods
Ethics statement

The decision and implementation of euthanasia of animals was conducted by county authori-
ties, before samples were received for the current study (i.e., we had no role in this). For the
current study, the State of Colorado Department of Natural Resources issued annual Scientific
Collection Licenses (14SALV2060, 15SALV2060) in order for us to receive a subset of dead
carcasses for testing.
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Fig 1. Map of study area. Each dot represents the location where a dead skunk was reported and subsequently tested for rabies. Grid cells
show the scale at which the study area was gridded (8 x 8 km sites, i=1, ..., M).

https://doi.org/10.1371/journal.pntd.0005822.9001

Surveillance data

The study area included 8448 km? (88 x 96 km; Fig 1) of Larimer, Boulder and Weld counties,
Colorado, USA. Skunk samples were obtained by reports made by public to local health
departments, which decided whether to submit a skunk for rabies testing to one of two diag-
nostic laboratories in the state. The decision and implementation of euthanasia of animals was
conducted by county authorities, before samples were received for the current study. For the
current study, the State of Colorado Department of Natural Resources issued annual Scientific
Collection Licenses (14SALV2060, 15SALV2060) in order for us to receive a subset of dead
carcasses for testing. There was no vaccination campaign (trap-vaccinate-release or oral rabies
vaccination) targeting wildlife during the epizootic, but there were alerts through local public
media and leash laws in effect.

Strange-acting or dead mammals found on the landscape with no reported human or
domestic animal contact were not typically tested by the local health departments—especially
later in the study period when the perceived risk of rabies infection was much lower and fund-
ing for testing had decreased. Because of the ongoing epizootic, these samples were referred
for testing by United States Department of Agriculture, Animal and Plant Health Inspection
Service, Wildlife Services, National Wildlife Research Center (NWRC); hereafter referred to as
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‘enhanced surveillance’. Enhanced surveillance accounted for 0%, 1% and 47% of surveillance
data in 2012, 2013 and 2014 respectively (Table SM1.1 in S1 Text). Enhanced surveillance sam-
ples were identified through the public health surveillance system by the local health depart-
ments, but with carcass referral to NWRC for rabies testing. Carcasses were referred to NWRC
when the perceived risk to public health was low (i.e., due to a lack of contact with humans or
pets). Because the rabies epizootic was waning in 2014, the high proportion of enhanced sur-
veillance in 2014 relative to 2012 and 2013 did not contribute much extra information (except
for improving uncertainty levels) using the occupancy model. Thus, typical surveillance sys-
tems could likely make the same type of inferences, but would show greater uncertainty as
sampling decreased. An address matching-geocoding technique, using ArcGIS 10.3 (Environ-
mental Systems Research Institute, Redlands, CA, USA), was used to convert street addresses
of the case reports to UTM (Universal Transverse Mercator) coordinates.

Before 2012, carnivore rabies had not been detected in the study area for several decades.
From 2012-2014 there were 246 skunk reports and 379 non-skunk terrestrial animal reports
tested for rabies (Fig 1, Table SM1.2 in S1 Text), with a total of 139 rabies-positive skunks (raw
prevalence ~ 57%, Table SM1.2 in S1 Text), and 21 rabies-positive cases from the 379 non-
skunk terrestrial species tested (5.5% positive; Table SM1.2 in S1 Text) including: raccoons (6),
bison (2), foxes (6) cats (2), horses (2), cows (2), coyotes (1). All non-skunk terrestrial animals
were excluded from the analysis because they comprised such a small proportion of the sam-
ples and because surveillance efforts may have differed in some of these hosts—especially rac-
coons which are higher density and more peridomestic, and were experiencing an ongoing
epizootic of canine distemper virus. Human population data from 2013 [24] were organized at
the grid-cell scale (8 x 8km) to be included in the occupancy model as a potential factor con-
tributing to reporting rate.

Occupancy model formulation

We used a discrete-time, dynamic, patch-occupancy model to quantify the occurrence proba-
bility of skunk rabies in space and time. In a typical occupancy framework, there is the partially
observable occupancy process and an observation process that is conditional on the occupancy
process. For this dynamic model the occupancy process describes the probability of rabies
being present by site (grid cells) and time (months). The ecological process of rabies occur-
rence changed over grid cells and months due to the local component processes of coloniza-
tion, local extinction, and persistence. Within the latent ecological process, we estimated
important parameters describing the initial colonization dynamics (i.e., spatial invasion) of
skunk rabies, specifically: direction of invasion, distance to nearest infected grid cell, and den-
sity of infection in the local neighborhood. Conditional on the latent ecological process of
occupancy, we modeled the observation process as the probability that an animal sampled has
rabies, given that rabies is present (prevalence given rabies occupancy). Within the observation
process, we considered the effects of human population size on the proportion of skunks that
were rabies positive. Thus, our approach allowed us to quantify parameters underlying the spa-
tio-temporal dynamics of geographic spread while accounting for imperfect detection. For the
occupancy model, we assumed the landscape was homogenous because our genetic model sug-
gested that spread rates were homogenous across the landscape and we did not have enough
degrees of freedom to incorporate more parameters in our occupancy model.

We used a monthly time step to scale with the incubation period for rabies virus in skunks
[25,26]. We divided the study area (much of Larimer, Weld and Boulder Counties in Northern
Colorado, USA) into 8 x 8 km grid cells (“patches” in occupancy modeling terms; Fig 1). This
spatial scale was much larger than a skunk home range size [27,28] suggesting that local
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transmission (i.e., due to skunk movements alone) should be primarily within grid cells or
nearest-neighbor grid cells. Also, at this spatial scale, there were multiple samples collected
within grids (Fig 1) at a given time step (mean number of samples in grids with samples: 3.6
sampled skunks, range 1-19 sampled skunks), which is necessary for estimating grid-cell
level prevalence and informing the observation process, but at finer spatial scales multiple
samples per grid cell and time step were rare. Thus, because of the sparse sampling intensity
in our study area, the 8 x 8 km grid cell size was the smallest size we could choose for approxi-
mating the skunk home range (~ 2 x 2 km; [25, 26]) and hence skunk-to-skunk transmission
distances.

Data on the presence of rabies in dead skunks (sampling unit = 1 skunk) were collected
repeatedly in grid cellsi =1, ..., M during each month t = 1, .. ., T (spanning January 2012
through December 2014). We modeled the true occupancy status z; , conditioned on the previ-
ous time step z; ;;, as a latent Bernoulli variable defined by parameter ¥; , (occupancy proba-
bility), where z; ; = 0 indicates that grid cell i is not occupied (no rabies in skunks) in time step
t,and z; , = 1 indicates that grid cell i is occupied (at least one skunk with rabies) in time step ¢.

Zi,t|Zi,t71 ~ Bern( 'Pi,t) (1)

We assumed the initial occupancy state for each grid cell (z; ;) was also a Bernoulli random
variable described by occupancy probability ¥'; ;, which had a Uniform prior distribution
(¥; ;~Unif(0, 1)). We allowed occupancy probability in grid cell 7 at time ¢ (¥; ) to be deter-
mined by three types of local dynamic processes: initial colonization (y;,), recolonization (; )
and persistence (¢;,), which were conditional on the latent occupancy status in the previous
time step (z; 1.p)-

lIli,r = ’yi‘t—l(z - Zi.t—])(‘z - Atltfl) + Qﬁt—](‘z - Zi,t—I)Ai,t—I + ¢Ltflzi,t—1 (2)

We used parameter A; , to distinguish an initial colonization event from subsequent coloni-
zation events. Although it is more typical to consider only occupancy and extinction dynamics
in occupancy models, we further distinguished initial colonization from recolonization (as in
[29]) because we were most interested in factors (described below) driving spatial invasion
into new sites. We quantified the effects of multiple different factors (direction, distance to
nearest infected neighbor, neighborhood infection density (Eqs 3-8) on initial colonization
probability (v;.1), and treated the other processes as inherent contributors to occupancy prob-
ability (¥;,) without quantifying their potential drivers (i.e. we used a global parameter for
persistence- ¢;, ~ Beta(ag, By) and recolonization—{;; ~ Beta(ay, B;). For v; .1, an intercept
term (B,) absorbed non-spatial effects (Eq 3). Direction (north-south (N) or east-west (E)) was
modeled as increasing integers (1 representing the southernmost grids and 12 representing the
northernmost grids for N; and 1 representing the westernmost grids and 11 representing the
easternmost grids for E; Eq 4, B, where k=1, . . ., K for the number of initial colonization
effects considered). East-west direction was represented similarly but using columns in the
grid. We modeled an interaction between direction and a trend in time (T) by multiplying the
direction covariate data by the time step (N; - T or E; - T). We calculated distance to the nearest
infected grid cell by taking the minimum distance for all pairwise distances between the cen-
troid of target grid cell i* in time ¢ and all other grid cell centroids (i) in time #-1 (d;;+). We esti-
mated the relationship of initial colonization probability and distance using an exponential
decay function which included a parameter describing the decay rate of initial colonization
probability (o) with distance and a scaling parameter relative to maximum initial colonization
probability (B, Eq 5). We estimated the local neighborhood infection density for grid cell i* in
time ¢ using the occupancy prevalence in all immediate grid-cell neighbors (queen’s neighbors;
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j=1,...]; note j’s are a special subset of i—restricted to the closest neighbors of i) in time
step t-1 and estimated its effect with parameter By (Eq 6). We incorporated a seasonal effect as
a factor where one level represented spring/summer (Feb.—Aug.) and the second level repre-
sented fall/winter (Sept.-Jan.) (Eq 7). We chose these time frames because the literature and
surveillance data suggest peaks of rabies in spring and summer following arousal and mating
activities, and subsequent peaks in fall and winter associated with dispersal and contact involv-
ing susceptible young of the year [16, 25]. We modelled the infection density (Eq 6) and dis-
tance effects (Eq 5) separately because we were interested in the separate effects of distance
versus infection intensity. Together these effects describe the spatial kernel for local transmis-
sion. Additionally, we modelled a weighted spatial kernel (Eq 8) which accounted for the
density of neighbors with infections but discounted the impact an infected cells at further dis-
tances from the grid of interest (d;;- represents the distance between grid cell ‘7 and the grid
cell of interest 7*’).

logit(yis.1) =

B, (non spatial) (3)

BN+ B,T+ p,NxT (direction by time) (4)

B,e ™" %) (transmission distance) (5)
g1/ i1z, ] (local neighborhood effect) (6)
BsS (season — Feb. — Aug. vs Sept. — Jan.) (7)
B i iil1/dy]  (weighted spatial kernel) (8)

We considered these effects (Eqs 4-8) separately and additively (up to three effects includ-
ing the Eq 3) in our model selection procedure (described below). We did not present the
fullest model because parameter estimates became inconsistent when more than three addi-
tional effects were in the model. Persistence and recolonization were important processes in
the occupancy dynamics, thus we modeled them explicitly using Beta prior distributions with
shape and scale parameters (a4 = 1, B, = 1, ay = 1, B; = 1). We did not include covariates that
could potentially drive persistence and recolonization because we were only interested in the
process of spatial spread (i.e., initial colonization). Prior distributions for all B parameters
were: B ~ Norm(0, 1), except for the scaling parameter for the exponential decay model (Eq 5)
which was modeled as a Gamma(5, 1).

For the observation layer of our model, we represented the number of skunks that were pos-
itive for rabies, y, in grid cell i at time t when rabies was present as the observed data using a
binomial distribution where p was the estimated prevalence of rabies in dead skunks (given
occupancy) and the number of trials (R; ;) were the observed number of samples collected in
grid cell i at time ¢.

Vi, =10.forz,, = 0,i=1,...,M;Bin(p,R,,),forz;,, = 1,t = 1,..., T} 9)

To account for variation in rabies detection due to variation in human population size, we
examined prevalence as a linear function of human population size (N).

logit(p;) = n, + n,log,,(N,) (10)
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We only investigated this effect in the intercept-only model (Eq 3) and the two-effect model
we were most interested in (Table SM2.1 in S1 Text for list of all models that were fit). The gen-
eral model specification is given in section SM2.1 in S1 Text.

To calculate the posterior distribution for the parameters of interest, we fit models using a
Markov chain Monte Carlo (MCMC) algorithm with a Gibbs sampler including Metropolis-
Hastings steps [30] custom written in program R [31]. Posterior estimates for the data are
based on 50,000 iterations of the MCMC algorithm with the first 5,000 iterations discarded as
burn-in. Convergence and mixing were assessed graphically. Example MCMC chains and pos-
terior distributions are given in SM2.1 in S1 Text. Convergence of the best predictive model
was additionally assessed using the Gelman-Rubin statistic [30]. The joint and conditional dis-
tributions are specified in SM2.3 in S1 Text. We evaluated the ability of our models to recover
parameters by simulating data from known parameter values and estimating the parameter
values using our fitting framework (Model Validation Method in SM5 in S1 Text).

Model selection and evaluation

We used a combination of Watanabe Akaike Information Criterion (WAIC) [32, 33], Area
Under the receiver operator Curve (AUC) [34], and leave-one-out cross validation (looCV)
[31] to compare the importance of different effects on y and p and assess goodness-of-fit (pre-
sented in Table 1, schematic of work flow shown in Fig. SM3.1). WAIC is a model selection
criterion based on the posterior predictive distribution, and was used to compare fits of mod-
els. WAIC was not used to compare models with human population modelled on prevalence
(p) because the data were different and thus the WAIC values would not be comparable.
AUC is a measure of how well variation is explained by the model—in our case, the ability to
distinguish a presence from an absence—and was used to assess how well a particular model
explained the data (i.e. a measure of goodness of fit as in [35]). LooCV is a measure of the mod-
el’s ability to predict out of sample, and thus was used to compare predictive ability among
models. When comparing predictive ability between models we used both AUC and looCV.
We calculated WAIC and AUC (Section SM4 in S1 Text) for fits to the full data as well as
the looCV predictions. WAIC is preferable to DIC (Deviance Information Criterion—another
Bayesian method for model selection) for model selection using hierarchical models [32]
because it considers the posterior predictive distribution explicitly and penalizes for complex-
ity of model structure, not just the number of parameters. Similar to DIC, lower values of
WAIC indicate a better model of the data. However, in contrast to DIC [36], there is no stan-
dard quantitative difference between WAIC values from alternative models that indicates a sig-
nificant difference between them (i.e., the only criterion is that lower is better). We presented
two AUC scores: 1) AUC1 measured predictive ability of p using predicted y’s from posterior
values of z and observed y’s, 2) AUC2 measured predictive ability of ‘¥ using the posterior val-
ues of z and the observed y’s transformed to binary data. For the out-of-sample predictions, we
conducted looCV for each point in the data (using all other points as the training data) and
presented means of AUCI and AUC2 as measures of predictive ability.

Out-of-sample prediction

To further evaluate the predictive ability of our approach we predicted occupancy status over
space and time using only parameters estimated from the “best predictive model” (i.e., consid-
ering out-of-sample statistics for AUCIL, AUC2 and looCV) and the sample size data. First, we
fit the best model to the full data and then predicted all y; , from the posterior predictive distri-
bution [30]. Each predicted y; ; depended on the predicted y; , ;, rather than the data, but the
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Table 1. Model selection and fit statistics for within- and out-of-sample predictions.

#

= =
o

N o o~ W N

15
16*
9b

11b**
16b

*Model used to estimate effects in Fig 2;
**Best predictive model, used to make predictions in Figs 4 and 5; - = intercept only, - = no effect, Pop = log human population size effect on prevalence
parameter p, Distance = effect of distance to nearest infection, Neighborhood = local neighborhood infection density effect, N-T = north-south by time
directional effect, Season = factor with two levels (spring/summer: Feb.-Aug. and Fall/Winter: Sept.-Jan.), E-T = east-west by time directional effect,
-WAIC = Watanabe Akaike Information Criteria (section SM4.1 in S1 Text), AUC1 = Area Under the Curve for observed positive counts (section SM4.2 in
S1 Text), AUC2 = Area Under the Curve for latent occupancy process (section SM4.3 in S1 Text), looCV = leave-one-out cross validation score (section
SM4.4 in S1 Text), NA = not available; we did not display these WAIC values because they cannot be compared to the WAIC values from the models

without Pop.

https://doi.org/10.1371/journal.pntd.0005822.t001

Effects on initial colonization probability (y) | p Within sample Out of sample
WAIC AUC1 AUC2 AUC1 AUC2 looCV

- 0.804 0.95 0.64 0.78 0.62 -205.71
Pop NA 1 0.64 0.81 0.62 -218.22
Distance - 0.803 0.96 0.7 0.78 0.69 -205.72
NxT - 0.803 0.96 0.66 0.78 0.66 -205.72
ExT - 0.804 0.95 0.66 0.78 0.67 -205.72
Neighborhood - 0.803 0.96 0.72 0.78 0.7 -205.71
Season - 0.802 0.95 0.71 0.78 0.7 -205.72
Kernel - 0.804 0.96 0.72 0.78 0.7 -205.72
Distance + NxT - 0.804 0.96 0.68 0.78 0.7 -205.95
Distance + Neighborhood - 0.804 0.96 0.76 0.78 0.74 -205.99
NXT + Neighborhood - 0.804 0.96 0.71 0.78 0.69 -205.79
Distance + Season - 0.804 0.96 0.76 0.78 0.75 -205.77
NXT + Season - 0.804 0.96 0.66 0.78 0.71 -205.84
Neighborhood + Season - 0.804 0.95 0.73 0.78 0.71 -205.72
Kernel + N*T - 0.804 0.96 0.71 0.78 0.69 -205.79
Kernel + Season - 0.804 0.97 0.75 0.78 0.68 -205.99
Neighborhood + Season + Distance - 0.804 0.96 0.76 0.78 0.73 -205.88

Distance + Neighborhood Pop NA 0.99 0.75 0.8 0.74 -218.7
Distance + Season Pop NA 0.99 0.78 0.81 0.72 -219.71
Neighborhood + Season + Distance Pop NA 0.99 0.74 0.8 0.72 -218.05

actual data for sample size (R; ;) were used in the prediction in order to scale y; ; predictions
appropriately.

Rates of spatial spread from occupancy model

Using the model with the best out-of-sample looCV score, we predicted grid cell occupancy
over time (z; ; rabies presence -1, or absence -0), and estimated the rate of southerly spread of
the predictions using regression. First, we obtained the z; ; values from each MCMC iteration
(minus the burn in) for grids across time. Each grid cell corresponded to a distance in kilome-
ters from the southernmost border of the study area (e.g., 1, . . ., 88 km; “North value”).

For z; ;= 1 values, we ran a simple linear regression where the independent values were the
months in time and the dependent values were the north values. The slope of this regression
represents the monthly rate of southerly spread. We then converted this to an annual rate of
southerly spread by multiplying the monthly rate by 12. We calculated the annual variance
using the delta method [37].
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Genetic sequencing

To verify spatial patterns indicated by our occupancy model, we sequenced the whole or partial
glycoprotein (G, 1575 base pairs [bp]) and the non-coding region between the glycoprotein
and polymerase genes (GL, 560 bp) for 53 viruses collected in Colorado between August 2012
and December 2014 (Table SM1.3 in S1 Text). We added sequence data from 20 viruses col-
lected through May 2015 (27.4% of the total genetic dataset) to increase the precision of
parameters of the molecular evolutionary models. We confirmed that these additional
sequences comprised an extension of the same epizootic though preliminary phylogenetic
analysis and the absence of changes in the inferred rate of spread in 2015 which could have
biased our overall spread rate. Rabies virus RNA was extracted from brainstem tissue samples
of rabies positive skunks using Trizol reagent following the manufacturer’s protocol. The con-
version of RNA to cDNA (RT) and primary PCR amplification was accomplished using a
Superscript III One-step RT-PCR system with Platinum Taq DNA Polymerase (Invitrogen),
targeting a 2,135bp region including the full glycoprotein gene with previously published
primers [18,38]. PCR products were visualized by UV-light on a 2% agarose gel with ethidium
bromide, and cleaned using ExoSap-IT (Affymetrix) following the manufacturer’s protocol.
Sequencing reactions were performed using Big Dye Terminator v.3.1 (Applied Biosystems),
with flanking and internal primers as previously described [18,38]. Sequencing products were
cleaned using Sephadex G-50 columns (GE Healthcare) and run on a 3130 or 3500 analyzer
(Applied Biosystems). Forward and reverse sequences were aligned in Sequencher v.5.2.4
(Gene Codes Corporation), and ambiguities were resolved visually. Alignment of full or partial
glycoprotein sequences was performed using BioEdit v.7.2.0.

Phylogeographic analysis of viral spread

Continuous phylogeographic analysis was conducted in BEAST v. 1.8.4 [39]. Briefly, this
method estimates the phylogenetic history connecting samples and conducts ancestral state
reconstruction of the latitudes and longitudes of inferred nodes using time and location-anno-
tated sequence data. Phylogenetic uncertainty is accommodated by summarizing estimates
across the posterior distribution of trees from a Bayesian search. Analyses in TempEst
(software that analyzes correlations between the temporal and genetic distances between
sequences) showed evidence of a molecular clock signal in the coding (G) and non-coding
(GL) regions of the RABV genome, but faster evolution in the G-L region compared to G [40].
Our BEAST analysis therefore modeled a single tree topology (given that the samples represent
the same underlying epidemic history) using different molecular clock and substitution mod-
els to allow for differences in evolutionary rates in different parts of the RABV genome. Pre-
liminary BEAST runs using the lognormal relaxed molecular clock indicated little variation

in rates among branches, indicating the use of the strict molecular clock for both partitions,
which was supported by equivocal differences in Bayes Factors (BF) between models
assuming strict or relaxed molecular clocks (BF = 1.5 in favor of strict clocks) [41]. Final runs
used customized substitution models for the following data partitions: G codon positions

1+2 = TPM1uf; G codon position 3 = TIM1+G, GL = TPM1uf+], as suggested by AIC in jMo-
deltest2 [42]. Among the 3 random walk phylogeographic models tested (homogenous, Cau-
chy and gamma), marginal likelihoods estimated by the stepping stone method were highest in
the homogenous model (-3574.86) followed by the gamma (-3577.27) and Cauchy (-3594.05)
models, suggesting relatively little variation in spread rates among branches or little power to
detect such variation. To account for the possibility of among branch variation, we present the
results of the gamma model, but note that parameter estimates were nearly identical in the
similarly supported homogeneous rate model. All analyses used the Bayesian skyline model of
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demographic growth. MCMC chains were run for 100 million generations which generated
effective samples sizes >200 after removal of burn-in.

We used the Seraphim package of R to calculate viral diffusion rates from 500 randomly
selected (post burn-in) trees from the posterior distribution of the BEAST analysis [43]. We
estimated viral spread rates as (i) the “mean branch velocity” calculated as the average velocity
across the branches of each tree, averaged across all trees and (ii) the weighted “diffusion rate”,
obtained by summarizing distances and times spanning each tree and taking the average of
that value across all trees (i.e., sum distances/sum time lengths over entire tree). To calculate
the transmission distance per viral generation (i.e., per infected animal), we divided the dis-
tance traversed along each branch by the expected number of infections along that branch,
assuming a generation time of 30 days, which corresponds to the incubation period of rabies
virus in skunks [25,26]. However, the substitution rates that we estimated (G: 4.1x10™* substi-
tutions per site per year (95% highest posterior density (HPD) = 2.3-6.05x10*); GL: 8.7x10™*
[HPDys = 4.1-13.4 x10™*]), imply that some transmission events would be expected to occur
without detectable evolution in the partial genomes that we sequenced. This led to branch
lengths that were less than the assumed generation time of RABV, which caused an upward
bias in inferred transmission distances per infection. We corrected for this bias by forcing all
branches to have a minimum generation time of 1 infection.

Results
Model selection

The probability of initial colonization (y) was best explained by the minimum distance to
infections, infection density in the local neighborhood, season, and spatial kernel (see AUC2
of Models 1-7; Table 1). Similarly, the best two-effect models included pairs of these effects
(distance + neighborhood, distance + season, kernel + season; Models 9, 11, 15; Table 1).
Accounting for direction (i.e., N-T or E-T) provided more minor improvements to quantifying
initial colonization probability (AUC2 Table 1). The inclusion of human population size on p
(rabies prevalence in occupied grid cells) significantly improved predictive power of the model
(see AUCI and looCV in Table 1, Models 1b, 9b, 11b, 16b) because it explained some of the
prevalence variation due to differences in the number of samples reported by humans. We
considered Model 11b to be the best predictive model because it had the lowest looCV, and we
used this model for prediction. However, in order to study the effects of the most significant
single predictors (neighborhood, season and distance), we fit Model 16 to quantify the relative
importance of these factors (results presented in Fig 2).

Effects on initial colonization probability

We modeled the effect of distance to nearest infection using an exponential decay function.
Using the estimated decay rate parameter, we calculated the distance at which initial coloniza-
tion probability decayed to half its maximum (referred to as “transmission distance”) using the
asymptotic limit as the minimum (see section SM54 in S1 Text for calculation). We interpreted
the transmission distance as a measure of skunk-to-skunk transmission distance. Transmis-
sion distance was 3.9 km (95% credible intervals (Clys): 1.4, 11.3; Fig 2A). Similarly, using the
genetic data independently, the mean distance per viral generation (another proxy for skunk-
to-skunk transmission distance) was estimated to be 2.3 km (95% Highest Posterior Density
(HPDys) = 0.04-5.7; Fig 3C).

Initial colonization probability increased exponentially with local neighborhood infection
density, especially after 0.2 (i.e., > 1grid cell occupied; Fig 2B, Model 16, Table 1). Initial colo-
nization probability was substantially higher during the spring/summer season relative to the

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005822 July 31,2017 11/22


https://doi.org/10.1371/journal.pntd.0005822

@‘ PLOS NEGLECTED
Z) : TROPICAL DISEASES Spatio-temporal spread of skunk rabies

A) B)
it 1
v )
> = 2
s 2
E =
£ S £ S
g © g
g 3
.E 8
< s 8
S 81 O S
s ° =
£ £
S
O
| | [ | [ | O ! 1 ! 1 I I! ! ]\ : T T
0 10 20 30 40 50 0.0 0.2 0.4 0.6 0.8 1.0
Distance to infected neighbor (km) Local neighborhood infection density
Q@ _ R
iy = 0.46
41
E o ] 3 -
B < : 3 <
8 | &
e | o
M~ o | i B @ |
g S 5 5 ©
: | 2
= - : o
g 3 . @ g
S | 2
£ o | 5 _ 0.11
g s ' , % 3-
- : ’ 0.02
< : , g J
Fall Spring Intercept Nehlghgor- Distance  Season
00

Fig 2. Effects of covariates on initial colonization probability. Predicted y as a function of different factors using Model 16 Transmission
distance = 3.9 km 95% ClI (1.4, 11.3) (neighborhood+distance+season, Table 1). A) Decay of initial colonization probability with distance to nearest
infected grid cell in km. B) Proportion of local neighborhood (“queen’s neighbors”) infected. C) Season factor with two levels. Median values of
initial colonization probability are indicated by the horizontal black line. D) Relative contribution of different effects (see section SM5 in S1 Text for
calculations). Shading in A and B indicates 95% credible intervals.

https://doi.org/10.1371/journal.pntd.0005822.9g002

fall/winter season (Fig 2C, Model 16). Of the 76% of variation in occupancy probability that
was explained by the three-factor model (AUC2, Model 16, Table 1), 57% of initial coloniza-
tion probability was explained by local effects (distance or neighborhood), 41% was explained
by season and 2% was explained by other factors (which could include translocation or other
unknown factors; Fig 2D). Although direction explained less variation in initial occupancy
probability relative to other factors (Table 1, Models 3 and 4 versus Models 2, 5, 6, and 7),
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Fig 3. Phylogeographic inference of viral spatial dynamics. A) Spatio-temporal projection of the maximum clade credibility tree from the
phylogeographic analysis. Transparent polygons indicate the 80% HPD of infected area through time. Grey shading on the left indicates
landscape that is above 1829 m. Grey lines indicate major highways. Blue lines indicate all waterways, including very minor and ephemeral
ones. Stars indicate the centers of major cities (as in Fig 1). B) Spatial expansion of RABV in skunks, displayed as the distance from the
inferred epizootic origin in the phylogeographic analysis. Grey shading indicates the HPDgs. The solid black line is the median distance. C)
The distance traversed by each branch in the phylogenetic tree divided by the expected number of infections along that branch, assuming a
generation time of 30 days. The histogram shows distances calculated from the 144 branches of 500 randomly-selected trees from the
posterior distribution of the phylogeographic analysis. Grey bars are the inner HPDgs.
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there appeared to be a significant increase in initial colonization probability in the southerly
direction with time during the study period indicating southerly spread of the disease (Fig
SR1.1in S1 Figures). However, east-west movement over time did not show significant visual
trends (Fig SR1.2 in S1 Figures).

Prediction

The “best” predictive model we examined (Model 11b, Table 1) performed very well at predict-
ing rabies cases in space and time using parameters trained on different data than the data
being predicted (Table 1, out-of-sample prediction AUC1 & AUC2). The model also per-
formed very well at out-of-sample prediction using only the initial conditions, sample size data
and parameters fit to the full data (Fig SR2.1 in S1 Figures). Average occupancy probability
across the study area was low over time (Fig 4, top row, mean: 0.034, Clys: 0.006-0.24) but
prevalence in sampled dead skunks in occupied grid cells was high (Table 2, mean: 0.91, Clgs:
0.86, 0.95). Occupancy probability was predicted to decrease substantially in the north and
increase in the south during the time course of the study period (Fig 4, Figs SR3.1 & SR3.2 in
S1 Figures). Also, earlier during the time course occupied patches were larger and more con-
tiguous whereas later occupied patches became more fragmented and isolated (Fig 4). The
overall rate of southerly spread estimated by the occupancy model was predicted to be 21.1
km/year (Clys: 16.7, 25.5, Fig 5). This was similar to the phylogeographic diffusion rate assum-
ing either gamma 21.8 [HPDgs: 14.9-29.0] or homogenous rate 22.6 [HPDgs: 15.3-29.7]
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https://doi.org/10.1371/journal.pntd.0005822.g004

models. Mean branch velocities from the phylogeographic models were slightly higher but had
overlapping HPDgss with the genetic and occupancy-based models (gamma: 28.4 [HPDys:
19.6-39.8] or homogenous 29.8 [HPDys: 20.8-39.8]).

Discussion

We used an occupancy modeling framework to understand and predict the spatial spread
dynamics of an important zoonotic disease in a reservoir host species. The framework pro-
duced good out-of-sample predictions of spatial dynamics despite our relatively small dataset,
suggesting it can be useful for predicting spread in other surveillance systems that rely on pas-
sive surveillance data. We converted occupancy probabilities into rates of directional spread,
which is useful for planning interventions and allocating resources for disease management.
The rates of spatial spread predicted by the occupancy model appeared similar to those pre-
dicted by phylogeographic analyses. Thus, our phenomenological approach for estimating
rates of spatial spread may provide accurate prediction of spatial spread rates based on param-
eters estimated in the recent past for a particular region. While the phylogeographic method
incorporates additional information regarding connectivity between cases (i.e., genetic
sequence similarity), the occupancy model produces similar results with only the spatial and
temporal information. The phylogeographic method has the advantage of not requiring nega-
tive samples, while the occupancy approach has the advantage of not requiring genetic data.
Each may therefore be suited to address alternative data gaps typical to surveillance systems.

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005822 July 31,2017 14/22


https://doi.org/10.1371/journal.pntd.0005822.g004
https://doi.org/10.1371/journal.pntd.0005822

®'PLOS |

NEGLECTED

TROPICAL DISEASES

Spatio-temporal spread of skunk rabies

Table 2. Parameter estimates from the best predictive model of occupancy probability (Model 11b,

Table 1) and the phylogeographic model.

Occupancy probability

Persistence probability

Initial colonization probability

Re-colonization probability

Prevalence

AUC1

AUC2

Local neighborhood parameter ()

Increase in y for 1 additional infected neighbor®
Mean transmission distance in km® (occupancy)
Mean transmission distance in km
(phylogeographic)

Rate of southerly spread in km/year (occupancy)
Mean branch velocity (phylogeographic)

Diffusion rate (phylogeographic)

Total number of positives

Parameter Estimates (uncertainty)
0.034 (0.006, 0.236)
0.22(0.15, 0.31)
0.018 (0.01, 0.06)
0.032 (0.02, 0.04)
0.91 (0.86, 0.95)
0.96
0.76
1.15 (-0.53, 2.86)
0.002 (-0.000, 0.016)
3.9(1.4,11.3)
2.3(0.02,5.7)

21.1(16.7, 25.5)
28.4 (19.6-39.8) (gamma) 29.8 (20.8-39.8)
(homog)

21.8 (14.9-29.0) (gamma) 22.6 (15.3-29.7)
(homog)

140

Rate of southerly spread = slope of relationship between kilometers moved south and time Fig 5); Numbers
in brackets (uncertainty) indicate 95% credible intervals for occupancy results and 95% highest posterior

density for phylogegraphic results;

2See section SM5 in S1 Text for derivation of these values; Gamma and homogenous (homog) refer to
different assumptions about the level of branch heterogeneity in the phylogeographic models. Models using
Cauchy distributed rates were less supported (BF = 16.8 and 19.2 in favor of homogeneous and gamma,

respectively) and are omitted from the table.

https://doi.org/10.1371/journal.pntd.0005822.t002

Both the phylogeographic and occupancy approaches can be sensitive to sampling intensity
and scale, such that interpretation of results should consider sampling design.

Our approaches also present an alternative to detailed mechanistic models of disease trans-
mission which may require more data than are available, such as knowledge of host population
sizes and connectivity (e.g., [44]) (although we did not have host demographic data to explic-
itly test for differences between our phenomenological approach and a more mechanistic
approach). The occupancy framework is flexible for testing the role of different contact hetero-
geneities. Any desired connectivity pattern could be incorporated by modifying the spatial
terms using another description of spatio-temporal connectivity between rabies-positive cells.
Similarly, if geographic barriers are important [45], or if there are data on ecological processes
of known importance such as host density, additional terms could be added to occupancy pro-
cesses to quantify these effects and improve prediction. In addition, some surveillance systems
(e.g., the National Rabies Management Program of the United States Department of Agricul-
ture, Animal and Plant Health Inspection Service, Wildlife Services) are comprised of multiple
types of surveillance data (e.g., passive methods such as: public health reports, road kill reports,
landowner reports of nuisance animals, or active methods such as: trapping), which each
introduce their own sampling biases. The occupancy framework is flexible for incorporating
multiple methods of surveillance simultaneously and, in the observation model, allowing for
quantification of effects due to the type of surveillance data, which can in turn inform the

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005822 July 31,2017

15/22


https://doi.org/10.1371/journal.pntd.0005822.t002
https://doi.org/10.1371/journal.pntd.0005822

®'PLOS |

NEGLECTED

TROPICAL DISEASES Spatio-temporal spread of skunk rabies

21.1 km south/year (16.8, 25.2)

)
O e e @ ° ° .
p—
e O o o 0 [ J L ]
~
)
£ ®
o
Z
o
=
£ o
O\O
N
N
wn
—
]
=
L o |
g <
o
=
N
S
(@\
o0 oo 'Y )

| [ [ [ [ [
Jan2012  Jul 2012 Jan 2013 Jul 2013 Jan 2014  Jul 2014

Month

Fig 5. Rates of spatial spread. Model 11b was used to predict spatial spread of rabies. Points are the
predicted distance in km of new colonizations from the southern-most grid-cell row. Size of the points
corresponds to numbers of new colonizations at a given distance from the southern-most row. The slope (red
line) gives a monthly rate of southerly spread (21.1 km/yr). Shaded area gives the 95% confidence intervals of
the slope. The 6-month intervals shown on the X-axis correspond to those in Fig 4.

https://doi.org/10.1371/journal.pntd.0005822.g005

design of surveillance. In situations where vaccination or other interventions are applied,
effects of the intervention could be quantified by incorporating those data as a covariate in the
latent ecological process. Thus, our framework could be used to identify the magnitude of
intervention effects and facilitate planning of where additional interventions are needed.

The directional rates we estimated by both the occupancy and phylogeographic models
were twice as high as those estimated for SCSK RABV by [18] using a phylogeographic
approach (10 km/year; range 4-12 km) on data from south-central USA. One reason for this
discrepancy could be that the analysis of [18] averaged rates over a long time period and large
geographic area (multiple US states), whereas our study covered a short time period within
three counties in a single state. From a level IV ecoregion perspective, our study site included
only 4 distinct ecoregions (Rolling sand plains, Flat to rolling plains, Front range fans and
Foothill shrublands), while that of [18] included 50-100 ecoregion types. Thus, the landscape
within our study area was less heterogeneous than the landscape within the study of [18],
which could partly explain differences in rates of spatial spread of rabies. Also, estimates from
longer time scales may have included re-emergence dynamics in addition to initial invasion
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dynamics (reducing inferred rates of spatial spread). However, the rates we estimated are sig-
nificantly lower than those found during the initial emergence of RABV in raccoons in the
eastern USA (~38 km/year) [43,46], suggesting that skunk ecology, at least in south and west-
ern USA, leads to slower geographic spread of RABV. This is consistent with a previous study
which used landscape resistance models and showed that skunks and raccoons used different
movement corridors on the landscape [47]. Also, skunk rabies variants are 8.1 times less likely
to be transmitted to foxes relative to raccoon rabies variants [14]-their lower propensity to
spillover into longer-ranging hosts could contribute to slower spatial spreading.

Our mean estimates of individual-level transmission distance (~ 3.9 km by the occupancy
model and 2.3 km by the phylogeographic model) were higher than the mean transmission
distance estimated for dogs in the Serengeti, Tanzania (0.88 km) [48]. This estimate, which
was based on infection reports, suggest a much closer mean transmission distance than was
estimated in study of canine rabies in South Africa which was conducted using genetic data
[mean distance between the most probable linked cases = 14.9 km; [49]. The latter study sug-
gests a significant influence of anthropogenic movement of dogs, which is unlikely for skunks,
and no rabies-positive dogs were reported. Although there were some canine species (6 foxes
and 1 coyote) found to be positive for SCSK in our study area, these reports only comprised
5% of the rabies-positive reports suggesting that these longer-ranging hosts may only have
made minor contributions to spatial spreading. Thus, our estimates of mean transmission dis-
tance likely reflect distances at which skunks move naturally during the contact and transmis-
sion process. Our approach required that multiple samples were collected in the same grid cell
at the same time step in at least some of the grid cell/time steps (here we had a total of 180 grid
cells with > 1 sample in the same time step over a total of 132 grid cells x 36 time steps = 4752
(3.8%)). Based on this requirement, we used a larger spatial scale (8 x 8 km) than skunk home
range size (~ 2 x 2 km, would have been preferable). Thus, our estimates of transmission dis-
tance were likely biased high. For example, the transmission distance estimated in the occu-
pancy model (3.9 km) was about half the width of a gird cell. As we used grid-cell centroids to
calculate distances between cells, our approach may not have allowed for smaller resolution of
transmission distance (relative to the phylogenetic model) even though the rate of spread on
the landscape was slower in the occupancy model. Although local transmission explained
the majority of the occupancy probability, seasonality effects were also substantial (41% of
explained variation). We found initial colonization probability to be approximately twice as
high in the spring/summer months relative to the fall winter months, which is consistent with
other studies of rabies seasonal prevalence in skunks [16].

Some previous studies of spatial spread of RABV in raccoons showed that landscape barri-
ers such as major rivers, highways or mountains influence the direction and speed of spread
[45,50], while other studies have not observed a strong effect of rivers and major roads [47,50].
In certain landscapes, the presence of suitable host habitat was observed to influence spread
[51] and presence [52] of skunk RABV. Another study on spatial spread of skunk RABV in the
mid-western USA observed differential impacts of river barriers depending on the skunk
RABV variant [53]. Most of our study area was comprised of relatively flat terrain east of the
Rocky Mountains. There were only two samples on the west side in the Rocky Mountains
(none above 2509 meters), and our study area did not include the other side of the Rocky
mountains, thus our models were unable to test effects of high-altitude barriers explicitly. In
addition, there were no major rivers (e.g., Colorado River) in our study area, but there were
two moderately sizes rivers (Poudre River and Big Thompson River) and one major road
(Interstate 25). Although the rivers and roads could have been easily incorporated into our
occupancy framework, we did not include them because: 1) the phylogenetic analysis sug-
gested minimal heterogeneity in rates of spatial spread across the rivers and roads in our study
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area, and 2) our dataset was small relative to the number of parameters we wanted to estimate
(i.e., we prioritized quantification of spatial parameters). Also, maps of the genetic data showed
closely related rabies variants on both sides of the most major road (Interstate 25) and rivers
(Poudre River, Big Thompson River) throughout the study. Thus, although we did not explic-
itly test for effects of rivers and roads with our occupancy model, plots of the genetic data and
the phylogenetic analyses suggested that the rivers and roads in our study area may not have
presented major barriers that could reinforce controls against geographic spread [54]. If an
intervention were deemed to be a necessary and/or cost-effective response, the primarily local
transmission suggested that potential interventions could be applied as a relatively thin barrier
(10-20 km) at the wave front to curb invasion, which is less than half the ~40km width typi-
cally used during aerial vaccination operation against raccoon rabies in the USA (Rich Chip-
man, National Rabies Management Program, personal communication). The strong seasonal
difference in initial colonization probability suggests that interventions in the spring may be
more effective than interventions in the fall.

Our model predicted that geographic spread tended to be mostly local and north-south,
resulting in a wave-like pattern of geographic invasion. The phylogeographic analyses sug-
gested that the invading viruses were new to Northern Colorado, such that the skunk popula-
tion in Northern Colorado had not seen this virus in the recent past and was likely to be highly
susceptible to invasion. We hypothesize that the reason we found a stronger tendency for
movement of rabies from north to south instead of east to west, may be due to the underlying
distribution of the skunk population. In our study area (called the Colorado Front Range), the
human population forms a north-south belt, sandwiched by lower density regions to the west
(in the mountains) and the east (in the plains). Although the literature does not suggest a con-
sistent relationship of increasing skunk density across the rural to urban gradient [55, 56], it is
possible that skunk abundance was higher running north-south than east-west, which could
partly explain our directional effects.

Forecasting spatio-temporal disease spread in any system is challenging, but especially so
for wildlife diseases due to an often poor understanding of host population abundance and
ecology. Occupancy models present an alternative to approaches that rely on host demo-
graphic data, while quantifying rates and patterns of geographic spread based on underlying
ecological processes. Although we accounted for observation error (by modeling the effect of
human population size on prevalence), we did not have detailed data informing the observa-
tion process. For example, the study area included many natural areas spanning large regions
where there are no human residents, but potentially heavy public usage, year-round. Account-
ing for reporting bias through collection of system-specific appropriate metadata (e.g. tempo-
ral usage patterns of the landscape by humans, geographic differences in the likelihood of
human reporting) could improve geographic spread predictions using occupancy modeling.
Our study showed how quantifying spatial parameters governing geographic spread can pro-
vide important ecological insights for understanding spatial epidemiology of rabies, conduct-
ing risk assessment and planning interventions—contributing to the toolbox of approaches for
guiding management of disease invasions [57].
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