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Abstract: Patients with higher genetic West African ancestry (GWAA) have hypertension (HTN) that
is more difficult to treat and have higher rates of cardiovascular diseases (CVD) and differential
responses to antihypertensive drugs than those with lower GWAA. The mechanisms underlying
these disparities are poorly understood. Using data from 84 ancestry-informative markers in US
participants from the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) and
PEAR-2 trials, the GWAA proportion was estimated. Using multivariable linear regression, the
baseline levels of 886 metabolites were compared between PEAR participants with GWAA < 45% and
those with GWAA ≥ 45% to identify differential metabolites and metabolic clusters. Metabolites with
a false discovery rate (FDR) < 0.2 were used to create metabolic clusters, and a cluster analysis was
conducted. Differential clusters were then tested for replication in PEAR-2 participants. We identified
353 differential metabolites (FDR < 0.2) between PEAR participants with GWAA < 45% (n = 383)
and those with GWAA ≥ 45% (n = 250), which were used to create 24 metabolic clusters. Of those,
13 were significantly different between groups (Bonferroni p < 0.002). Four clusters, plasmalogen and
lysoplasmalogen, sphingolipid metabolism and ceramide, cofactors and vitamins, and the urea cycle,
were replicated in PEAR-2 (Bonferroni p < 0.0038) and have been previously linked to HTN and CVD.
Our findings may give insights into the mechanisms underlying HTN racial disparities.

Keywords: African ancestry; metabolomics; hypertension; blood pressure

1. Introduction

Overall, Black individuals with hypertension (HTN) have a disease that is more severe
and resistant to antihypertensive treatment, poorer blood pressure (BP) control, higher
rates of target organ damage and higher mortality rates compared to White individuals
with HTN [1,2]. Evidence also suggests that Black patients achieve a better BP response
to diuretics and calcium channel blockers, whereas White patients respond better to β-
blockers, angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor
blockers (ARBs) [3]. The mechanisms underlying these racial disparities in HTN and BP
response remain poorly understood.

Hypertension is a complex disease with several heterogeneous pathophysiological
pathways. These pathways are believed to be regulated by complex interactions between
genetic and environmental factors [4–6]. Over 1000 genetic loci associated with BP have
been previously identified from numerous genome-wide association studies, with some
linked to environmental factors such as obesity, sedentary hours, diet, smoking status
and alcohol intake [5–8]. Metabolomics, the study of the intermediates or products of
metabolism within cells, is an emerging promising tool that can reflect both genetic and
environmental factors, thus enriching our understanding of the dynamic complex metabolic
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pathways underlying a disease [9]. Over the past few years, numerous studies have shown
that various metabolites and metabolic pathways, including fatty acids, phospholipids and
metabolites involved in leucine, isoleucine and valine metabolism; tryptophan metabolism;
glycine, serine and threonine metabolism; and the urea cycle, are altered in patients with
HTN compared to healthy controls [10–18]. Additionally, several studies have shed light on
metabolic changes that occur upon treatment with antihypertensive agents [19–24]. Among
these metabolic changes, treatment with thiazide diuretics, β-blockers and calcium channel
blockers was associated with increased uric acid and urea cycle metabolites, decreased
levels of medium- and long-chain fatty acids, and decreased levels of acyl-carnitines and
hexadecanedioate, respectively [19–21,23]. Collectively, these studies provide insights on
the diverse pathways underlying HTN but have not significantly improved our under-
standing of HTN racial disparities.

Only a few studies with relatively small sample sizes have explored metabolomic
differences between healthy Black and White individuals or between Black and White
patients with HTN [25–27]. However, these studies reported self- or investigator-defined
race, which is a social rather than biological construct and is confounded by racism, socioe-
conomic inequality and environmental disparities [28,29]. Because US Black and White
individuals represent a mixture of West African and European geographic ancestries with
diverse frequencies, the biological mechanisms that contribute to racial disparities in HTN
may be better informed by using genetically defined ancestry [29,30]. In this study, we
aimed to identify the differential metabolites and metabolic clusters between US hyper-
tensive participants with genetic West African ancestry (GWAA) < 45% and those with
GWAA ≥ 45%, followed by replication in an independent cohort. We also sought to further
test the association between the metabolites within the replicated clusters and the propor-
tion of GWAA among hypertensive patients with GWAA ≥ 45% to assess whether the
metabolomic differences are driven by ancestral biological disparities or by other extrinsic
and social factors that are different between the two ancestry groups.

2. Results
2.1. Study Population

The analysis in the current study included baseline data from participants enrolled in
the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) trial (discovery
cohort) and in the PEAR-2 trial (replication cohort). For the 125 participants enrolled
in both studies, only data from PEAR-2 were included (Figure S1a). In addition, for
PEAR-2 participants who had baseline metabolomics data at two different time points
(pre-metoprolol (first time point) and pre-chlorthalidone (second time point)), only the pre-
metoprolol data were included in the replication analysis. A total of 633 participants from
PEAR and a total of 411 participants from PEAR-2 were included (Figure S1b). The baseline
characteristics of the participants from both cohorts are presented in Table 1. Overall, the
participants were about 50 years old, on average; a majority were overweight or obese
with a mean body mass index of about 31 kg/m2, and 50% were women. In both trials,
participants with GWAA ≥ 45% had lower baseline plasma renin activity (PRA) compared
to those with GWAA < 45%, consistent with the prior literature [3,31,32]. Among PEAR
and PEAR-2 participants with lower GWAA, the median GWAA proportion was 1.6%
(interquartile range (IQR), 1–3.5%). Of these participants, 2.6% self-identified as Asian
or another race. In contrast, among PEAR and PEAR-2 participants with higher GWAA,
the median GWAA proportion was 85.1% (IQR, 79–90.6%). Of these participants, 2.3%
self-identified as White or other (Figure S2a–d).

2.2. Data Processing and Quality Control of PEAR Metabolomics Data

Of the 1223 metabolites (971 known and 252 unknown) detected in the PEAR plasma
samples at baseline, 337 metabolites were excluded, including xenobiotics (n = 191) and
metabolites with >60% missing data (n = 146). The remaining 886 metabolites (699 known
and 187 unknown) were included in the quality control (QC) steps and final analyses.
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Principal Component Analysis (PCA) and Standard Euclidean Distance (SED), performed
for QC, indicated that 25 participants were considered outliers based on their metabolomics
data (Figure S3). The Bland–Altman (BA) method flagged 24 metabolites, each having >5%
of the values as outliers (Table S1). Lastly, the top 10% of metabolites with the largest
Coefficient of Variation (CV) values (metabolites with the highest variability among PEAR
participants) (n = 36) were flagged (Table S2). More details on the data processing and QC
work are illustrated in Supplementary Material.

Table 1. Baseline characteristics of participants included from PEAR and PEAR-2 studies.

PEAR PEAR-2

Variable
Participants with

GWAA < 45%
(n = 383)

Participants with
GWAA ≥ 45%

(n = 250)
p-Value

Participants with
GWAA < 45%

(n = 224)

Participants with
GWAA ≥ 45%

(n = 187)
p-Value

Age, years 50.0 ± 9.8 47.3 ± 8.9 0.0005 50.8 ± 9.0 50.2 ± 9.1 0.5
Females, N (%) 163 (42.6%) 165 (66%) <0.0001 98 (43.8%) 100 (53.5%) 0.05
BMI, kg/m2 30.5 ± 5.4 31.5 ± 6.0 0.02 30.8 ± 5.0 31.1 ± 5.4 0.5
GWAA (%) 1.6% (1–3.4%) 85.4% (78.8–90.6%) <0.0001 1.5% (0.9–3.6%) 84.8% (79.2–90.5%) <0.0001
Baseline PRA,
ng/mL/h 0.9 (0.5–1.5) 0.4 (0.2–0.6) <0.0001 0.9 (0.5–1.8) 0.4 (0.2–0.7) <0.0001

Baseline SBP, mmHg 151.2 ± 12.2 151.4 ± 12.9 0.9 149.9 ± 12.4 150.6 ± 13.1 0.5
Baseline DBP, mmHg 98.0 ± 5.7 99.1 ± 6.7 0.03 98.0 ± 5.3 98.7 ± 6.0 0.2

All normally distributed continuous variables are summarized as mean ± SD and were compared using the
independent t-test. Exceptions are the baseline PRA and % GWAA, which are not normally distributed; they are
summarized as median with IQR and were compared using the Mann–Whitney U test. Discrete variables are
summarized as N (percentage) and were compared using the Chi-square test. Abbreviations: PEAR, Pharmacoge-
nomic Evaluation of Antihypertensive Responses; GWAA, Genetic West African ancestry; BMI, body mass index;
PRA, plasma renin activity; SBP, systolic blood pressure; DBP, diastolic blood pressure; SD, standard deviation;
IQR, interquartile range.

2.3. Untargeted Metabolomics Analysis

Partial least-squares discriminant analysis (PLS-DA) using the baseline log-transformed
levels of the 886 metabolites showed a separation between PEAR participants with
GWAA < 45% and those with GWAA ≥ 45% (Figure S4). The overall study results are
summarized in Figure 1. The baseline log-transformed levels of each of the 886 metabo-
lites were compared between PEAR participants with lower GWAA and those with
higher GWAA. Based on a false discovery rate (FDR) < 0.2, a total of 423 metabolites
were significantly different between the two ancestry groups (Table S3). Of those,
209 metabolites were more abundant in participants with higher vs. lower GWAA,
mainly including amino acids involved in tyrosine metabolism, as well as plasmalo-
gens and lipids involved in bile acid metabolism. Conversely, 214 metabolites were
more abundant in participants with lower vs. higher GWAA, mainly including amino
acids involved in glutathione metabolism, lysine metabolism and methionine, cysteine,
S-Adenosylmethionine (SAM) and taurine metabolism, as well as diacylglycerols and
acyl carnitines. Similar results were obtained after conducting a sensitivity analysis,
excluding PEAR participants flagged by PCA (n = 2), SED (n = 21) and both PCA and
SED (n = 2) QC steps.

2.4. Cluster Analysis Using the Top Signals

Because many of the 423 metabolites identified in the screening phase were highly
correlated, we grouped metabolites into metabolic clusters using the Modulated Modu-
larity Clustering (MMC) approach and based on the biological pathways to which these
metabolites were mapped. Of the 423 metabolites, a total of 70 (unknown metabolites
(n = 45), known unclassified metabolites (n = 20), an amino acid involved in guanidino and
acetamido metabolism (n = 1), amino acids involved in polyamine metabolism (n = 2) and
energy metabolites (n = 2)) were excluded since they did not cluster well with any of the
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known classified metabolites. The remaining 353 metabolites were used to create a total of
24 metabolic clusters (Table S4).
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Cluster analysis using multivariable linear regression showed that 13 of the 24 metabolic
clusters achieved Bonferroni-corrected p < 0.002. The principal component 1 (PC1) values
for each of these 13 metabolic clusters were significantly different between PEAR partic-
ipants with lower GWAA and those with higher GWAA. Although all 13 clusters were
moved forward to the replication phase, the PC1 distribution of four clusters was either
highly skewed or bimodal and was flagged. The remaining nine significant non-flagged
clusters were diacylglycerol and monoacylglycerol, plasmalogen and lysoplasmalogen,
sphingolipid metabolism and ceramides, gamma-glutamyl amino acid, primary and sec-
ondary bile acid metabolism, cofactors and vitamins, pyrimidine and purine metabolism,
glutathione metabolism and histidine metabolism (Table 2 and Figure 2).

2.5. Replication of the Top Metabolic Clusters

Of the 13 metabolic clusters tested for replication in PEAR-2, 4 were successfully repli-
cated. These clusters were plasmalogen and lysoplasmalogen, sphingolipid metabolism
and ceramides, cofactors and vitamins and urea cycle–arginine–proline metabolism. The
cluster analysis showed that the PC1 values for each of these four metabolic clusters were
significantly different between PEAR-2 participants with lower GWAA and those with
higher GWAA (Bonferroni-corrected p < 0.0038) (Table 3 and Figure 3). In addition, at
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least 90% of the metabolites included in each of these four replicated clusters had the same
direction of effect as in the PEAR study (Table S5).

Table 2. Results of the cluster analysis conducted using PEAR discovery cohort on the 24 meta-
bolic clusters.

Metabolic Cluster
Number of PEAR

Metabolites Identified
from Screening Phase

% Variability
Explained by PC1

Regression p (Comparing
PC1 Values between PEAR

Participants with
GWAA < 45% and Those

with GWAA ≥ 45%)

Diacylglycerol and monoacylglycerol 19 54.7% 0.0013 *
Plasmalogen and lysoplasmalogen 17 44.3% <0.0001 *
PC, PE, PI, lysophospholipid and
phospholipid metabolism 48 27.4% 0 0.0034

Sphingolipid metabolism and ceramides 33 30.6% <0.0001 *
Steroid and sterol 12 34.6% 0.036
Gamma-glutamyl amino acid 9 44.3% 0.0017 *
Leucine, isoleucine and valine metabolism 14 42.5% 0 0.0007 *
Primary and secondary bile acid metabolism 24 21.6% <0.0001 *
Cofactors and vitamins 23 22.6% <0.0001 *
Pyrimidine and purine metabolism 14 27.4% <0.0001 *
Urea cycle; arginine and proline metabolism 12 37.1% 0 <0.0001 *
Tyrosine metabolism 7 64.8% 0 <0.0001 *
Glutamate metabolism 5 43.4% 0.039
Glycine, serine and threonine metabolism 9 40.4% 0.11
Glutathione metabolism 5 59.6% 0.0014 *
Methionine, cysteine, SAM and taurine
metabolism 7 37.9% 0.0026

Lysine metabolism 8 47.4% 0 <0.0001 *
Alanine and aspartate metabolism 4 50.3% 0.03
Histidine metabolism 4 52.9% <0.0001 *
Carbohydrate 5 41.9% 0.0043
Creatine metabolism 3 54.0% 0.07
Fatty acid 41 23.9% 0.16
Fatty acid metabolism (acyl carnitine) 21 31.8% 0.0086
Tryptophan metabolism 9 45.3% 0 0.36

* This metabolic cluster has a Bonferroni-corrected p < 0.002 (0.05/24). 0 The PC1 distribution of this metabolic
cluster is either highly skewed (degree of skewness is >+1 or <−1) or bimodal (flagged). Abbreviations: PEAR,
Pharmacogenomic Evaluation of Antihypertensive Responses; PC1, principal component 1; GWAA, Genetic West
African ancestry.

Table 3. Results of the cluster analysis conducted using the PEAR-2 replication cohort on the
13 metabolic clusters.

Metabolic Cluster
Number of

Metabolites in
PEAR-2

% Variability
Explained by PC1

Regression p (Comparing PC1
Values between PEAR-2

Participants with
GWAA < 45% and Those with

GWAA ≥ 45%)

Diacylglycerol and monoacylglycerol 5 58.8% 0.05
Plasmalogen and lysoplasmalogen 15 47.2% <0.0001 *
Sphingolipid metabolism and ceramides 14 42.3% 0.0008 *
Gamma-glutamyl amino acid 7 64.0% 0 0.19
Leucine, isoleucine and valine metabolism 12 56.2% 0.57
Primary and secondary bile acid metabolism 22 26.6% 0.05
Cofactors and vitamins 22 28.0% <0.0001 *
Pyrimidine and purine metabolism 13 27.4% 0.28
Urea cycle; arginine and proline metabolism 12 37.5% 0 <0.0001 *



Metabolites 2022, 12, 783 6 of 17

Table 3. Cont.

Metabolic Cluster
Number of

Metabolites in
PEAR-2

% Variability
Explained by PC1

Regression p (Comparing PC1
Values between PEAR-2

Participants with
GWAA < 45% and Those with

GWAA ≥ 45%)

Tyrosine metabolism 5 57.6% 0.009
Glutathione metabolism 4 59.1% 0.6
Lysine metabolism 7 53.8% 0.23
Histidine metabolism 4 46.3% 0.03

* This metabolic cluster has a Bonferroni-corrected p < 0.0038 (0.05/13). 0 The PC1 distribution of this metabolic
cluster is either highly skewed (degree of skewness is > +1 or <−1) or bimodal (flagged). The only replicated
flagged cluster was (urea cycle; arginine and proline metabolism), which was also significantly different between
PEAR-2 participants with GWAA < 45% and those with GWAA ≥ 45% using the Mann–Whitney U test (p <
0.0001). Abbreviations: PEAR, Pharmacogenomic Evaluation of Antihypertensive Responses; PC1, principal
component 1; GWAA, Genetic West African ancestry.
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Figure 2. Violin plots comparing PC1 values of each of the 13 significant metabolic clusters be-
tween PEAR participants with GWAA < 45% and those with GWAA ≥ 45%. Gray bars represent
PEAR participants with GWAA < 45%, whereas the black bars represent PEAR participants with
GWAA ≥ 45%. The adjusted p-values (Bonferroni-corrected) were calculated using multivariable
linear regression models adjusted for age, sex, recruitment site, baseline log-transformed PRA and
batch effect. * Metabolic clusters with highly skewed or bimodal PC1 distribution (n = 4) (flagged):
leucine, isoleucine and valine metabolism; urea cycle/arginine and proline metabolism; tyrosine
metabolism and lysine metabolism. Abbreviations: PC, principal component; PEAR, Pharmacoge-
nomic Evaluation of Antihypertensive Responses; GWAA, Genetic West African ancestry.
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Figure 3. Violin plots comparing PC1 values of each of the 4 replicated metabolic clusters between
PEAR-2 participants with GWAA < 45% and those with GWAA ≥ 45%. Gray bars represent PEAR
participants with GWAA < 45%, whereas black bars represent PEAR participants with GWAA ≥ 45%.
The adjusted p-values (Bonferroni-corrected) were calculated using multivariable linear regression
models adjusted for age, sex, recruitment site, baseline log-transformed PRA and batch effect. * The
metabolic cluster (urea cycle; arginine and proline metabolism) with highly skewed PC1 distribution
was flagged. Abbreviations: PC, principal component; PEAR, Pharmacogenomic Evaluation of
Antihypertensive Responses; GWAA, Genetic West African ancestry.

Only the urea cycle–arginine–proline metabolic cluster was flagged due to its highly
skewed PC1 distribution. However, a sensitivity analysis using the Mann–Whitney U
test showed that the PC1 values for this cluster were also significantly different between
PEAR-2 participants with lower GWAA and those with higher GWAA (p < 0.0001). Within
the replicated clusters, a total of six metabolites were flagged by the BA and CV QC steps.
The details of these results are presented in Supplementary Material.

Within the plasmalogen and lysoplasmalogen cluster, 14 of 15 metabolites were more
abundant in hypertensive participants with higher vs. lower GWAA in both PEAR and
PEAR-2 (Table S5). Although not statistically significant, our estimates show that as the
proportion of GWAA among PEAR and PEAR-2 participants with higher GWAA increases,
the levels of 11 of these metabolites also increase (Table S6).

Within the sphingolipid metabolism and ceramides cluster, 13 of 14 metabolites had
the same direction of effect in both PEAR studies: 7 were higher in hypertensive participants
with higher GWAA, whereas 6 were higher in those with lower GWAA (Table S5).

Within the cofactors and vitamins cluster, 20 of 22 metabolites had the same direction
of effect in both PEAR studies. Participants with lower GWAA had higher levels of the
three metabolites involved in tocopherol metabolism and the three metabolites involved in
nicotinate and nicotinamide metabolism (Table S5 and Figure S5). In contrast, participants
with higher GWAA had higher levels of the three sulfate isomers of piperine (Table S5).

Within the urea cycle–arginine–proline metabolism cluster, all 12 metabolites had
the same direction of effect in both PEAR studies. This included arginine, homoarginine,
hydroxyproline and homocitrulline, which were all more abundant in participants with
higher GWAA than those with lower GWAA (Table S5 and Figure S6).
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3. Discussion

Racial disparities in HTN are believed to be multifactorial, involving genetic factors,
psychosocial stressors, socioeconomic status and other structural or environmental fac-
tors [33]. To our knowledge, this is the first study undertaken to explore the metabolomic
differences between hypertensive participants with lower and higher GWAA, with findings
that might reflect some of these underlying factors. Using data from two independent
cohorts, we were able to identify and replicate four metabolic clusters (plasmalogen and
lysoplasmalogen, sphingolipid metabolism and ceramides, cofactors and vitamins and
urea cycle–arginine–proline metabolism) that differed based on GWAA. We found distinct
cluster profiles by comparing hypertensive participants with lower vs. higher GWAA, as
well as differences in the abundance of metabolites within each cluster.

Our data showed that the plasmalogen and lysoplasmalogen cluster was significantly
different between hypertensive participants with lower and those with higher GWAA in
both PEAR and PEAR-2. Within that cluster, 14 of 15 metabolites were present at higher lev-
els in participants with higher GWAA compared to those with lower GWAA. Plasmalogens
are a class of membrane glycerophospholipids, which represent up to 20% of total phos-
pholipids in humans. Lysoplasmalogens are produced via degradation of plasmalogens
by the action of phospholipase A2 [34]. In a prior study investigating metabolite differ-
ences after a dietary intervention, several of these lipids, including 1-(1-enyl-palmitoyl)-2-
arachidonoyl-GPC (P-16:0/20:4)*, 1-(1-enyl-palmitoyl)-2-linoleoyl-GPE (P-16:0/18:2)* and
1-(1-enyl-stearoyl)-2-linoleoyl-GPE (P-18:0/18:2)* (all were more abundant in participants
with higher vs. lower GWAA in our study), were found to be lower among participants
randomly assigned to the Dietary Approaches to Stop Hypertension (DASH) diet com-
pared to those randomly assigned to the control diet [35]. In addition, Spears et al. showed
that decreased circulating plasmalogens in mice were associated with decreased BP [36].
Additionally, in a population-based Chinese cohort, two plasmalogens within this cluster,
1-(1-enyl-oleoyl)-GPE (P-18:1)* and 1-(1-enylpalmitoyl)-GPE (P-16:0), were shown to be
involved in BP regulation [37]. These studies suggest a potential positive relationship
between these metabolites and BP. We also found that most of the metabolites within the
plasmalogen and lysoplasmalogen cluster were positively associated with the proportion
of GWAA, which might indicate potential biological differences that complement other
differential environmental or social factors between the two ancestry groups.

We demonstrated that the sphingolipid metabolism and ceramides cluster was sig-
nificantly distinct between hypertensive participants with lower GWAA and those with
higher GWAA in both PEAR studies. Among healthy subjects, Hammad et al. showed
that African Americans had higher levels of most sphingomyelins and ceramides tested
compared to White Americans [38]. Sphingolipids and ceramides were found to be
involved in the regulation of vascular contractility via regulation of nitric oxide (NO)
and have also been positively linked to HTN, resistant HTN and BP in several previous
studies [24,37,39–41]. In addition, among the metabolites within our replicated sphin-
golipid metabolism and ceramides cluster, sphingomyelin (d18:2/24:2)*, sphingomyelin
(d18:1/21:0, d17:1/22:0, d16:1/23:0)*, sphingomyelin (d18:2/14:0, d18:1/14:1)*, sphin-
gomyelin (d18:2/16:0, d18:1/16:1)* and sphingomyelin (d18:1/14:0, d16:1/16:0)* have been
previously significantly positively associated with BP [37]. Additionally, we and others
previously demonstrated that N24:2 sphingomyelin, sphingosine 1-phosphate and sphin-
gomyelin C24:1 were associated with BP response to the thiazide diuretic hydrochloroth-
iazide (HCTZ) [21,42,43]. These studies reflect the relevance of these lipids to HTN patho-
physiology and HCTZ BP response.

Moreover, our data indicate that the cofactors and vitamins cluster was significantly
different between hypertensive participants with lower GWAA and those with higher
GWAA in both PEAR cohorts. Within that cluster, three of four metabolites tested within
the tocopherol (vitamin E) metabolic pathway (including alpha-tocopherol) and all three
metabolites tested within the nicotinate and nicotinamide (vitamin B3) metabolic pathway
were higher in participants with lower GWAA than in those with higher GWAA. Con-
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sistently, data from the National Health and Nutrition Examination Survey (NHANES)
(1999–2000) showed that White Americans had significantly higher levels of serum alpha-
tocopherol compared to African Americans [44]. Previous animal and human studies also
showed that the metabolites within these two pathways were inversely correlated with
HTN, BP and cardiovascular disease (CVD)-related mortality [16,45–49]. Alpha-tocopherol
has been previously shown to be associated with a decreased risk of incident HTN as
well as overall mortality [16,46]. In addition, nicotinamide resulted in a decrease in BP
in endothelial nitric oxide synthase (eNOS)-null mice, which might indicate its potential
beneficial effect in hypertensive patients with impaired eNOS [48]. Further studies are
warranted to assess whether these metabolites contribute to racial disparities in HTN
severity and outcomes, as well as in antihypertensive response [1]. Interestingly, our data
suggest that alpha-tocopherol levels were also negatively associated with the proportion
of GWAA, which might reflect biological differences between the two ancestry groups. In
line with this finding, several genetic variants (located within genes involved in vitamin E
uptake and catabolism) that have been associated with lower alpha-tocopherol levels have
higher frequencies in African Americans than in Europeans [50–52].

We also replicated the urea cycle–arginine–proline metabolism cluster. Participants
with higher GWAA had a higher abundance of arginine and homoarginine compared to
those with lower GWAA. Previous studies yielded inconsistent results on the levels of
these metabolites in Black vs. White participants [53–55]. Both arginine and homoargi-
nine increase the bioavailability of the vasorelaxant NO. However, the literature shows
controversial findings on the beneficial effects of arginine on BP and other CVD risk
factors [10,14,54,56–59]. Additionally, homoarginine was previously associated with an
increased risk of HTN, dyslipidemia, insulin resistance and elevated BP [54,60]. Due to
the controversy of the relationship of arginine and homoarginine with HTN, BP and CVD,
the role of these metabolites in HTN pathophysiology remains unclear, and future studies
are warranted.

Within the replicated urea cycle cluster, we found that participants with higher GWAA
had a higher abundance of hydroxyproline and homocitrulline compared to those with
lower GWAA. Consistent with our findings, Mels et al. showed that Black participants had
higher hydroxyproline levels compared with White participants [26]. Another study demon-
strated that methylation of the upstream gene to hydroxyproline (prolyl 4-hydroxylase
subunit alpha 3 or P4HA3) was associated with systolic and diastolic BP in South Asians [61].
Moreover, studies demonstrated that hydroxyproline was linked to heart failure in patients
with HTN, and that homocitrulline was associated with an increased risk of CVD, renal
damage and death [62–66]. We previously showed that increased hydroxyproline levels
upon treatment with the β-blocker atenolol were associated with poorer BP response in
Black individuals but not White individuals with HTN [23,67]. Future studies are necessary
to assess whether these metabolites contribute to racial disparities in HTN severity and
outcomes, as well as in BP response.

Our study has several strengths. First, the results were generated using data from
two independent cohorts of highly phenotyped patients with HTN who did not have
other chronic diseases, thus reducing potential confounding effects on our findings.
We also used genetically defined ancestry, rather than using self-identified race, which
may be a more accurate reflection of ancestry. Our study also has several limitations.
First is the unavailability of several PEAR metabolic signals in the PEAR-2 dataset.
This might have resulted in missing important metabolomic differences between the
two ancestry groups. Second, the sample size of PEAR and PEAR-2 participants with
higher GWAA was relatively small, which might have limited our power to identify
the biological relevance of the metabolites identified within replicated clusters. Third,
we identified several unnamed metabolites within our replicated clusters that have
unknown implications, and thus, we are not currently able to speculate on insights
pertaining to these metabolites.
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4. Materials and Methods
4.1. Study Design and Participants

The primary analysis in the current study included baseline data from participants
recruited as part of the PEAR clinical trial (discovery cohort) and as part of the PEAR-2
trial (replication cohort). Both PEAR studies were prospective, multicenter clinical trials
conducted in accordance with the Declaration of Helsinki. The protocols were approved
by the institutional review boards at all participating US sites (University of Florida in
Gainesville, FL; Mayo Clinic in Rochester, MN; and Emory University in Atlanta, GA). All
participants provided voluntary written informed consent prior to participation. Further
details about study designs are described below and in Supplementary Material.

PEAR and PEAR-2 have been previously described in detail [68,69]. Briefly, adult
participants of any race and ethnicity with uncomplicated mild-to-moderate primary HTN
were recruited. Participants with secondary HTN, isolated systolic HTN, CVD, diabetes
mellitus, or renal or hepatic dysfunction were excluded. Pregnant and lactating women
were also excluded. For participants receiving HTN treatment at the time of enrollment, all
antihypertensive drugs were discontinued prior to treatment with the protocol-specified
antihypertensive drugs (β-blockers and thiazide diuretics), with a washout period of
4–6 weeks. In both trials, pre- and post-treatment BPs were measured, and blood samples
were collected at baseline to conduct genotyping and global metabolomics profiling.

PEAR was a randomized, open-label clinical trial (clinicaltrials.gov identifier:
NCT00246519), where participants were randomly assigned to either atenolol (β-blocker)
followed by HCTZ (thiazide diuretic) as an add-on therapy or HCTZ followed by atenolol
as an add-on therapy. PEAR-2 was an open-label, sequential clinical trial (clinicaltrials.gov
identifier: NCT01203852), where participants were sequentially treated with metoprolol (a
β-blocker) monotherapy, followed by chlorthalidone (a thiazide-like diuretic) monotherapy,
with a 4-week washout in between.

4.2. Genotyping and Estimation of GWAA

In PEAR, DNA samples were genotyped for ≈1 million single nucleotide polymor-
phisms (SNPs) using the Illumina Human Omni 1MQuad BeadChip (Illumina, San Diego,
CA, USA), and DNA samples from PEAR-2 participants were genotyped for ≈2.5 million
SNPs using the Illumina Human Omni2.5S BeadChip (Illumina) [70]. The QC procedures
conducted on the genetic data from both studies have been previously described [71].

The global proportion of West GWAA for each PEAR and PEAR-2 participant was
estimated using genetic ancestry-informative markers (AIMs), which are defined as SNPs
that have largely different frequencies between populations. Evidence suggests that using
as few as 64 AIMs can accurately estimate individual genetic ancestry [72]. In this study, we
used genome-wide directly genotyped data of 84 AIMs, selected from two sets of previously
validated AIMs [72,73]. Our AIMs were selected based on at least 30% difference in allele
frequency between the African and the European populations and on the availability
of their genotype data in PEAR and PEAR-2 (Table S7) [74]. Using the genotype data
of 90 Yoruba individuals (representing GWAA) and 90 European American individuals
from the HapMap database, who served as the parental reference populations, the global
proportion of GWAA was estimated for each PEAR and PEAR-2 participant [30] using
STRUCTURE software with the parameter K set to two populations [75]. The software
models the probability of the observed genotypes given the individual ancestry proportions
and the ancestral population allele frequencies using traditional Bayesian methods [76].

4.3. Untargeted Metabolomics Profiling

Baseline fasting plasma samples from PEAR and PEAR-2 participants were used to
perform untargeted/global metabolomics profiling by Metabolon, Inc., Durham, NC, USA,
using ultrahigh-performance liquid chromatography–tandem mass spectroscopy (UPLC-
MS/MS) (Waters, Milford, MA, USA) [77]. This process has been previously described in
detail [43]. Briefly, samples were divided into aliquots and stored at −80◦ Celsius until
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processed. At the time of the analysis, an aliquot was thawed, extracted and centrifuged
to recover the metabolites. The extract was then divided into five aliquots. Two aliquots
were analyzed by two separate reverse phases (RP)/UPLC-MS/MS with positive ion mode
electrospray ionization (ESI); one was chromatographically optimized for more hydrophilic
compounds, and the other was optimized for more hydrophobic compounds. The third
aliquot was analyzed by RP/UPLC-MS/MS with negative ion mode ESI. The fourth aliquot
was analyzed using hydrophilic interaction liquid chromatography (HILIC)/UPLC-MS/MS
with negative ion mode ESI. The fifth aliquot was reserved for backup. The peaks of each
metabolite were quantified using the area under the curve. Metabolites were then identified
by comparison to library entries of purified authenticated standards or recurrent unknown
entries. All molecules present in this library have information on the retention time/index
(RI), mass-to-charge ratio (m/z) and chromatographic data. Each metabolite was corrected
in run-day blocks by normalizing each data point proportionately.

4.4. Data Processing and QC of PEAR Metabolomics Data

MetaboAnalyst 5.0, an open-source R-based program for metabolomics, and Galaxy
Southeast Center for Integrated Metabolomics (SECIM) tools were used to perform data
processing and QC [78,79]. This work is presented in detail in Supplementary Material. In
brief, all xenobiotics and metabolites with greater than 60% missingness were excluded.
Non-imputed data of the remaining metabolites were included in the QC steps and in the
main analysis. Imputation was conducted using the K-nearest neighbor (KNN) algorithm
only to perform the PCA, which was used to identify clustering or extreme outliers among
PEAR participants based on their metabolomics data. Potential outliers were also identified
using SED values. The concordance of the metabolomics data between pairs of PEAR
participants within each subgroup was assessed using the BA method [80]. In addition, CV
was calculated to assess the consistency of metabolites across participants.

4.5. Statistical Analyses

Baseline characteristics of the PEAR and PEAR-2 participants are presented using
descriptive statistics. Data for continuous variables are summarized as means with standard
deviations (SDs), except for baseline PRA and the proportion of GWAA, which were
not normally distributed and are instead summarized as median with IQR. Normally
distributed continuous variables were compared between participants with GWAA < 45%
and those with GWAA ≥ 45% using the independent t-test, whereas the non-normally
distributed variables were compared using the Mann–Whitney U test. Data for categorical
variables were summarized as numbers and percentages and were compared between the
two ancestry groups using the Chi-square test. Metabolomics data in the PEAR studies
were not normally distributed. Therefore, log-transformed metabolomics data were used
in all analyses. In this study, we used a 3-phase analytic approach, as outlined below. All
statistical analyses were conducted in SAS (version 9.4; SAS Institute Inc., Cary, NC, USA)
and R Statistical Software (Foundation for Statistical Computing, Vienna, Austria).

4.5.1. Untargeted Metabolomics Analysis (Screening Phase)

After data processing, using the baseline log-transformed levels of the remaining
metabolites, multivariate analysis was performed using PLS-DA to detect whether there is
a separation between PEAR participants with GWAA < 45% and those with GWAA ≥ 45%.
We used the 45% GWAA cutoff based on two criteria: (1) based on prior published work that
studied the genetic ancestry of over 5000 self-reported US African Americans and found
that ~90% of that population had African ancestry of 44–46% [81] and (2) based on our
PEAR data, which showed that the highest GWAA proportion among the PCA-identified
White participants was about 40%. Then, the baseline log-transformed levels (in terms
of raw area counts, non-imputed data) of each metabolite included in the analysis were
compared between PEAR participants with GWAA < 45% and those with GWAA ≥ 45%.
This comparison was conducted using multivariable linear regression models adjusted
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for sex, age, recruitment site, baseline log-transformed PRA and batch effect. Missing
values for each tested metabolite were ignored, resulting in a different sample size for
each metabolite. Metabolites with FDR < 0.2 were identified and moved forward to the
next phase. We used a less stringent FDR threshold since this was a screening phase,
in which we were more concerned about type II rather than type I error. A sensitivity
analysis was also conducted, excluding PEAR participants flagged by the PCA and SED
QC steps. Metabolites flagged by the BA or CV QC steps were included in the analyses but
planned to be further investigated if any of them were included within any of the replicated
metabolic clusters.

4.5.2. Cluster Analysis Using the Top Signal(s) (Discovery Phase)

To reduce the number of correlated metabolites identified in the screening phase, we
used two different approaches to cluster these metabolites into metabolic clusters. The first
approach was based on the MMC, which was used to assess pairwise Pearson correlations,
mainly between the unknown and known classified metabolites [82]. The second approach
was based on biology (the biochemical pathways to which the metabolites are mapped).
For example, all of the metabolites involved in the same metabolic pathway based on the
biochemical pathway information provided by Metabolon, Inc. (sphingolipid metabolism,
tyrosine metabolism, etc.) were grouped within the same metabolic cluster. Additionally,
we grouped biologically related metabolites/pathways within the same clusters (grouping
diacylglycerols with monoacylglycerols, grouping ceramides with metabolites involved
in sphingolipid metabolism, etc.). A cluster analysis was then performed on each of the
created metabolic clusters. This process entailed first conducting PCA on each of these
clusters by using the KNN-imputed baseline log-transformed metabolomics data and then
by comparing the PC1 values between PEAR participants with lower GWAA and those with
higher GWAA. This comparison was made using multivariable linear regression, where
PC1 for each metabolic cluster was the dependent variable, and the categorical GWAA was
the independent variable of interest, while adjusting for the covariates sex, age, recruitment
site, baseline log-transformed PRA and batch effect. The normality and skewness of the
PC1 values for each cluster were checked by using histograms and the Shapiro–Wilk test
and by assessing the degree of skewness. Linear regression models are relatively robust to
the violation of the normality assumption, except if the distribution is highly skewed [83].
Therefore, only metabolic clusters with a highly skewed PC1 distribution (determined
by a degree of skewness of > +1 or <−1) or a bimodal PC1 distribution were flagged.
Violin plots were generated using the ggplot2 R package (https://cran.r-project.org/web/
packages/ggplot2/index.html) (accessed on 25 July 2022) to represent the comparison of
PC1 values between PEAR participants with lower GWAA and those with higher GWAA.
Metabolic clusters with a Bonferroni-corrected p were identified and moved forward to the
replication phase.

4.5.3. Replication Phase of the Top Metabolic Cluster(s)

The metabolic clusters identified in the discovery phase were tested for replication
in an independent cohort (PEAR-2 study). Replication was performed using the same
cluster analysis described above by conducting PCA on the identified clusters and then
comparing the PC1 values for each cluster between PEAR-2 participants with lower GWAA
and those with higher GWAA. Data normality and skewness of the PC1 values for each
cluster were also checked as previously described. Additionally, the direction of effect
of each metabolite within each cluster tested for replication was assessed by comparing
baseline log-transformed levels of metabolites between PEAR-2 participants with lower
GWAA and those with higher GWAA using multivariable linear regression, adjusting for
sex, age, recruitment site, baseline log-transformed PRA and batch effect. Violin plots
were also used to represent the comparison of PC1 values between PEAR-2 participants
with lower GWAA and those with higher GWAA. Metabolic clusters were considered
successfully replicated if they reached the Bonferroni-corrected p and had at least 90% of
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their metabolites with the same direction of effect as in the PEAR discovery cohort. A
sensitivity analysis was also performed on successfully replicated clusters that were flagged
due to a highly skewed or bimodal PC1 distribution. This was carried out by comparing
the PC1 values between PEAR-2 participants with lower GWAA and those with higher
GWAA using the Mann–Whitney U test.

Additionally, for the replicated metabolic clusters, we tested whether these metabolomic
differences are mainly driven by ancestral biological disparities or by other extrinsic and
social factors that are different between the two ancestry groups. To do so, we tested the
association between each metabolite within each replicated cluster and the proportion of
GWAA among both PEAR and PEAR-2 participants with higher GWAA using multivariable
linear regression, adjusted for sex, age, recruitment site, baseline log-transformed PRA and
batch effect. We restricted this analysis to participants with higher GWAA because the
proportion of GWAA was only normally distributed in these participants (Figure S2).

5. Conclusions

In conclusion, our study sheds light on several metabolites and metabolic pathways
that are significantly distinct between US hypertensive patients with lower GWAA and
those with higher GWAA. The prior literature along with our novel findings indicates that
many of these metabolomic differences might be involved in the mechanisms underlying
HTN. Further studies on the identified metabolites and metabolic pathways are needed to
confirm our findings and to explore their potential role in the underlying observed racial
disparities in HTN severity, outcomes and BP response. A better understanding of these
disparities might result in a more effective personalization of antihypertensive treatment for
patients with lower vs. higher GWAA. This could help in eliminating the racial disparities
currently seen in HTN, leading to better BP control and a reduction in CVD.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12090783/s1. Figure S1: Diagrams showing participants
included in this study; Figure S2: Distributions of GWAA proportion among PEAR and PEAR-2
participants with GWAA < 45% and those with GWAA ≥ 45%; Figure S3: PCA scatter plots showing
clustering of PEAR participants (n = 633) based on the first three PCs; Figure S4: Partial least-
squares discriminant analysis (PLS-DA) of the 886 plasma metabolites in PEAR participants with
GWAA < 45% (n = 383) and PEAR participants with GWAA ≥ 45% (n = 250); Table S1: Metabolites
flagged by the BA measures and plots in PEAR (n = 24); Table S2: The top 10% of metabolites with
the largest CV values in PEAR (n = 36); Table S3: Classifications of the differential 423 metabolites
(FDR < 0.2) between PEAR participants with GWAA < 45% and those with GWAA ≥ 45% (screening
phase); Table S4: The 24 metabolic clusters created using the 353 PEAR metabolites identified in the
screening phase; Table S5: Metabolites within each of the 4 replicated metabolic clusters; Table S6:
Metabolites within replicated clusters having the same direction of effect using the proportion of
GWAA among PEAR participants with GWAA ≥ 45% (n = 250) and PEAR-2 participants with
GWAA ≥ 45% (n = 187); Figure S5: The KEGG nicotinate and nicotinamide metabolic pathway;
Figure S6: The KEGG arginine and proline metabolic pathway; Table S7: The 84 AIMs used to
estimate the proportion of GWAA for each PEAR and PEAR-2 participant.
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