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MicroRNAs (miRNAs) are well known for their ability to regulate the expression of specific
target genes through degradation or inhibition of translation of the target mRNA. In various
cancers, miRNAs regulate gene expression by altering the epigenetic status of candidate
genes that are implicated in various difficult to treat haematological malignancies such as
non-Hodgkin lymphoma by acting as either oncogenes or tumour suppressor genes.
Cellular and circulating miRNA biomarkers could also be directly utilised as disease
markers for diagnosis and monitoring of non-Hodgkin lymphoma (NHL); however, the
role of DNA methylation in miRNA expression regulation in NHL requires further scientific
inquiry. In this study, we investigated the methylation levels of CpGs in CpG islands
spanning the promoter regions of themiR-17–92 cluster host gene and the TET2 gene and
correlated them with the expression levels of TET2mRNA and miR-92a-3p and miR-92a-
5p mature miRNAs in NHL cell lines, tumour samples, and the whole blood gDNA of an
NHL case control cohort. Increased expression of both miR-92a-3p and miR-92a-5p and
aberrant expression of TET2 was observed in NHL cell lines and tumour tissues, as well as
disparate levels of dysfunctional promoter CGI methylation. Both miR-92a and TET2 may
play a concerted role in NHL malignancy and disease pathogenesis.
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INTRODUCTION

Non-Hodgkin Lymphoma (NHL) is a class of cancer that originates in the lymphatic system, caused
by an over-proliferation of malignant B-cells. NHL is one of the most common cancers in the
United States, and lymphoma is the fifth most common cancer in Australasia (Abba et al., 2016),
therefore posing a significant health burden (Calin et al., 2002; Cancer Council, 2020). The five-year
survival rate is an estimated 71% (Allemani et al., 2018); however, both outcomes and pathogenesis
vary greatly between NHL subtypes. Of the more than 40 subtypes of NHL, the two most common
subtypes consist of the indolent follicular lymphoma (FL), and the more aggressive diffuse large
B-cell lymphoma (DLBCL). Aggressive subtypes account for approximately 60% of cases, and a
significant number of NHL patients suffer relapse on various treatments, with refractory NHL having
a much poorer prognosis despite access to extensive chemotherapy and immunotherapy regimes
(Michot et al., 2018; Sarkozy and Sehn, 2018; Ayers et al., 2020). Overall, this makes NHL an
intractable disease to manage and treat, highlighting the need for reliable and subtype-specific
diagnostic and prognostic biomarkers.
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Understanding the cell of origin also plays a significant role in
understanding NHL classification, progression, and prognosis
(Alizadeh et al., 2000). B-cell lymphomas account for
approximately 80% of NHL cases (Shankland et al., 2012),
with DLBCL making up 25% of NHL diagnoses (Teras et al.,
20162016; Siegel et al., 20192019). In 2000, gene expression
profiling further defined DLBCL into two molecular subtypes;
germinal centre B-cell like (GCB) and activated B-cell like (ABC)
(Alizadeh et al., 2000). Also known as non-GCB, ABC
demonstrated a poorer response to standard
immunochemotherapy when compared to DLBCL cases with
no specific subtype. This has been in part attributed to two
oncogenic mechanisms seen in this subtype, encompassing the
prevention of apoptosis and blockage of terminal differentiation
(Blenk et al., 2007). These new subtypes of DLBCL, termed high-
grade B-cell lymphoma, double-hit lymphoma, or triple hit
lymphoma are associated with MYC and BCL2 and/or BCL6
rearrangements (Blenk et al., 2007) which are believed to
contribute to their more aggressive oncogenesis.

Dysregulation of miRNAs is a hallmark of both cancer
initiation and metastasis, through the regulation of gene
expression via post-transcriptional repression and mRNA
degradation (Di Lisio et al., 2012; Martin-Guerrero et al.,
2015; Bradshaw et al., 2016; Getaneh et al., 2019). It is well
established that miRNAs can act as both oncogenes and tumour
suppressors in several cancers (Esquela-Kerscher and Slack, 2006;
Di Lisio et al., 2012; Caramuta et al., 2013; Martin-Guerrero et al.,
2015; Bradshaw et al., 2016; Getaneh et al., 2019), including NHL,
via targeted repression of regulatory factors involved in processes
such as cellular proliferation and migration (Xiao et al., 2008;
Lawrie et al., 2009; Culpin, 2010). Previous studies have identified

numerous miRNAs as having oncogenic potential in NHL
(Amodio et al., 2015; Gado et al., 2019), as well as several
being identified to be differentially expressed in tissues and
fluids of individuals with these diseases. It has been previously
established that miR-92a-3p has oncogenic potential, implicated
in several cancers, including NHL, proposing that dysregulation
of this miRNA may play a role in disease development (Culpin,
2010; Amodio et al., 2015; Gado et al., 2019). In both leukemia
and DLBCL, miR-92 was seen to be downregulated, raising the
question of whether this same downregulation is seen in indolent
NHL subtypes such as FL (Amodio et al., 2015; Gado et al., 2019).
The oncogenic miR-17–92 cluster, which includes miR-92a-3p, is
a known driver of Burkitt lymphoma (BL), wherein miR-17 is
associated with a poor prognosis and decreased overall survival
rate (Robaina et al., 2016). miR-17–92 regulates multiple cellular
pathways within NHL subtypes that favour malignant
transformation, cellular proliferation, and cell survival (Dal Bo
et al., 2015). In GCB DLBCL, the mir-17–92 microRNA cluster
has been shown to be over-expressed when compared to ABC
DLBCL (Lenz et al., 2008). Comparatively, the miR-92a-5p
mature miRNA is not well described in NHL. With these
relationships in mind, oncogenic or tumour suppressive
miRNAs may be feasible targets for therapeutic agents, with
the possibility of slowing or even halting malignancy (Wang
and Wu, 2009), (Arif et al., 2020; Otoukesh et al., 2020). As
recently reviewed in an earlier publication by our group, miRNAs
can be epigenetically regulated, and even self-mediate these
epigenetic modulations in various cancers (Arif et al., 2020).
Aberrant DNA methylation in cytosines and adenines of mature
miRNAs can lead to downregulation and suppression of the
specific miRNA and, in NHL, a greater likelihood of
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lymphomagenesis (Calin and Croce, 2006; Esquela-Kerscher and
Slack, 2006; Abba et al., 2017; Arif et al., 2020). These
relationships support the possibility of miRNAs as being both
functionally relevant in NHL and possible therapeutic targets.

The TET2 gene primarily functions as a tumour suppressor gene,
immune regulator, and driver of DNA repair, as well as playing a key
role in DNA demethylation (Fang et al., 2012). The TET2 protein
catalyses the conversion of 5-methylcytosine (5mC) to 5-
hydroxymethylcytosine (5-hmC), playing an integral role in
transcriptional regulation. It is plausible that a hypermethylated
genome may be due to a combination of factors that include high
expression of DNA methyltransferases (DNMTs) or low expression
of TET proteins (Fang et al., 2012; Asmar et al., 2013). TET2 is also
involved in the recruitment of O-GlcNAc transferase OGT to CpG-
rich sites to promote histone H2B GlcNAcylation (Asmar et al.,
2013; Wang et al., 2018). TET2 is highly expressed in stem and
progenitor cells, and in T-helper cells, whereas loss of TET2 gene
function in bone marrow cells leads to increased immature B-cells
resulting in lymphomagenesis (Fang et al., 2012; Asmar et al., 2013;
Chiba, 2017). In NHL, TET2 expression is often reduced and
regulated by methylation (Chiba, 2017). Various pathways are
hypothesised to be regulated by miR-92a-TET2 including; JAK-
STAT signalling, human pluripotent stem cells (hPSCs)

differentiation, balanced B-cell terminal differentiation, and
oxidative demethylation (miRTarBase, 2021; mimirna, 2021). To
date, the prognostic significance of TET2 dysregulation in NHL is
still not well characterised and further understanding of epigenetic
drivers of TET2 regulation in lymphoma requires additional
investigation.

MATERIALS AND METHODS

An Australian NHL and Healthy Volunteer
Cohort
A case-control cohort was previously recruited (Bradshaw et al.,
2015), and a sub-cohort consisting of the peripheral blood gDNA
of 80 retrospective case samples of Caucasian origin with
Australian/British/European grandparents and with no family
history of a haematological malignancy was assembled for this
study. Details on the clinical diagnosis of individuals in the NHL
patient cohort are listed in Table 1. The healthy control cohort
consisted of 80 healthy individuals of similar age who had not
been diagnosed with and cancer, nor did they have a family
history of haematological malignancy. Cases were matched
according to age (within ±5 years), sex, and ethnicity with the
healthy control samples. For the 80 cases and controls, 26 (32.5%)
were male and 54 (67.5%) were female. The mean age of the NHL
diagnosed individuals was 66.56 years at collection in 2013, with a
standard deviation of 12.40 years; the mean age of the control
cohort was 64.54 years at collection in 2013, with a standard
deviation of 11.61 years.

Snap-frozen lymph node tumour biopsies were obtained
from BioOptions (California United States), with tumour
tissue from 11 NHL cases (4 female and 7 female) with a
confirmed diagnosis of NHL (5 DLBCL and 6 FL) (Table 2).
A cohort of healthy volunteers was used for controls to compare
with cell lines and tumours, using PB-derived leukocytes from 6
individuals aged between 23 and 38 years, with a mean age of
30 years and a standard deviation of 5.65, who had not been

TABLE 1 | GLP NHL case cohort with subtypes and number of cases for each
subtype listed.

NHL Subtype Number of cases

FL 23
DLBCL 14
Chronic lymphocytic leukemia (CLL) 5
Lymphoblastic lymphoma (LBL) 5
MCL 3
Mucosa-associated lymphoid tumour (MALT) 2
BL 2
Other B-Cell Lymphoma 26
Total 80

TABLE 2 | Pathology of NHL tumour samples, including immunohistochemistry and comments from pathologist.

GLP ID Diagnosis Gender Age Anatomy Immunohistochemistry Pathologist comments

DLBCL03 DLBCL M 71 Bowel CD45+, CD20+, CD30+, CD15− Multilobulated Reed-Sternberg like cells, extension
into perinodal soft tissue

DLBCL04 DLBCL F 57 Groin CD10+, CD20+, CD5−, CD3+, BCL-2+, BCL-6+, Ki-
67+, CD1+, CD30−

Consistent with transformed lymphoma

DLBCL05 FL; DLBCL F 52 Bowel CD20+, BCL2+, CD10+, BCL6+, Ki67+ Not tested
DLBCL06 DLBCL F 68 Axillary CD20+, BCL6+, BCL2+, MUM1+, CD3−, CD10−,

CD138-
Non-GCB origin

DLBCL09 DLBCL F 50 Submandibular CD20+, BCL2+, CD10−, CD3−, Kappa, Ki67+ t(6:22)
DLBCL10 DLBCL M 87 Supraclavicular CD20+, CD30+, Ki67+, BLC2 +, BCL1-, CD3−, CD5−,

CD10−, CD23−
Negative for cytogenetics

FL01 FL M 60 Testis CD20+, CD3+ T-cells, BCL2- Not tested
FL03 FL M 62 Groin CD20+, CD19+ and FMC7, CD10, CD5− Not tested
FL08 FL F 47 Groin CD3−, CD20+, BCL2+, Kappa+, Lambda- Not tested
FL09 FL F 59 Groin Ki67+, CD10+, CD20+, CD19+ Not tested
FL10 FL F 63 Axillary CD10+, BCL2+, CD23−, CD3 T-cell, CD5+ T-cell,

ki67+
Not tested
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diagnosed with cancer nor did they have a family history of
haematological malignancy. Of the 6 healthy controls, 3 (50%)
were female.

Cell Culture of B-NHL Cell Lines
Studies were conducted using four commercial immortalised cell
lines: Raji (BL), Toledo (DLBCL), SUDLH4 (DLBCL), and Mino
(Mantle cell lymphoma (MCL)). Vials were stored in liquid nitrogen
and rapidly thawed and seeded in a T-75 culture flask in 25ml
RPMI-1640, supplemented with 10% FBS and 1% Penicillin-
Streptomycin antibiotics. The cells were incubated at 37°C in a
humidified 5%CO2 incubator. Cell count and viability were assessed
using Trypan Blue exclusion method in a 1:1 ratio of cell suspension
to dye andmeasured on a TC10™ automated cell counter. Cells were
split into a 1:2 ratio, with fresh media was added every second day
until >80% confluence and 90% viability were achieved.

Computational Analysis and Target
Identification
Computational analysis of miRNA and target gene prediction was
performed usingmiRbase (miRBase, 2021),miRTarBase (miRTarBase,

2021), and Target Scan (Target Scan, 2021), identifying miR-92a-3p
and 5p as candidates. DNA methylation analysis in the miR-17–92
cluster host-gene (MIR17HG) promoter region and the miR-92a to
TET2 promoter was performed using MethHC 2.0 software.

Nucleic Acid Extraction, Bisulfite
Conversion, and Reverse Transcription
gDNA was previously extracted from whole blood, collected into
EDTA tubes, using an in-house salting-out method as evaluated by
Chacon et al. (Chacon-Cortes et al., 2012). Both NHL cell line, control
peripheral bloodmononuclear cell (PBMC), andNHL tumour sample
gDNA was extracted using the Wizard® SV Genomic DNA
Purification System (Promega). DNA quality and quantity were
quantified using a Nanodrop spectrophotometer, determined by
A260/A280 ratio (ND1000 V3.8.1, ThermoFisher Scientific).

Bisulfite conversion of 500 ng of NHL B-cell line and control
PBMC DNA and 750 ng of DNA from each patient/control DNA
sample and NHL tumour sample was performed using the EZ
DNA Methylation™ Kit (Zymo Research) according to the
manufacturer’s protocol, with a modification to the elution
volume, from 10 to 40 µL.

TABLE 3 | Gene expression forward and reverse primer sequences with transcript accession numbers. miRNA expression assays utilised miScript universal reverse primer
(Qiagen).

Gene Primer Sequence (5’—3’) Product size Accession

TET2 F TGGCAAACATTCAGCAGCAC 153 bp NM_001127208.2
R AGTTGAATTCAGCAGCTCAGT NM_017628.4

92a-5p F GAGGTTGGGATCGGTTG ∼87 bp MIMAT0004507
92a-3p F CGCAGTATTGCACTTGC ∼87 bp MIMAT0000092

FIGURE 1 | Location of amplicons for the MIR17HG and TET2 methylation assays. Two regions of four CpGs each were identified within the promoter CGI of the
MIR17HG gene (A), and one region in the first exon of the TET2 gene (B), each containing several regulatory motifs and transcription factor binding sites. Created with
BioRender.com.
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Total RNA was extracted using TRIzol® Reagent
(ThermoFisher) and the Direct-zol RNA MiniPrep Kit (Zymo
Research) from cell lines, control PBMCs, and NHL tumour
samples. Total RNA, including miRNA, was reverse transcribed
using the MiScript II RT Kit (Qiagen) for all samples.

Quantitative PCR of miRNA and mRNA
Expression
Analyses were performed by real-time quantitative PCR
(Q-PCR) to measure miR-92a mature miRNAs (MiScript
SYBR® Green PCR, Qiagen) and mRNA transcripts (SYBR®
Green PCR master mix, Promega). Customised forward and
reverse primers (Integrated DNA Technologies, Inc) were
designed for the miRNAs and TET2 mRNA transcripts of
interest (Table 3). All assays were performed on the
QuantStudio™ 7 Flex Real-Time PCR System
(ThermoFisher) running the QuantStudio™ Software
(v1.7.1) (ThermoFisher). miRNA assays were performed
under the following conditions: 95°C for 2 min s (x1 cycle),
95°C for 10 s, 56°C for 60 s (x40 cycles), melt curve analysis
60–95°C. TET2 expression was measured under the following
conditions: 50°C for 2 min (x1 cycle), 95°C for 3 min (x1 cycle),
95°C for 3 s, 60°C for 30 s (x50 cycles), melt curve analysis
60–95°C. Endogenous controls were miR103 for the miRNA
assays and 18 S ribosomal RNA for the TET2 assays. Specific
amplification of targets was confirmed via melt curve analysis
and gene expression was calculated using the relative
quantification method (ΔΔCt).

TABLE 4 | PCR and Pyrosequencing primers for TET2 and MIR17HG regulatory
regions.

Gene Primer Sequence (5’—39)

TET2 prom CGI Forward
primer:

GGAGTAGGGGTTAGGGTT

TET2 prom CGI Reverse primer: bio-ACTCTACTTCTTCTCCCAAAAAT
TET2 prom CGI sequencing
primer:

TAGGGGTTAGGGTTG

miR-17–92 R1 Forward primer: GGTTGGTTTGGAGTAGGTTTTTAATT
miR-17–92 R1 Reverse primer: bio-

CTTCCCCAAACTTCCTAAAAACCCTACTCT
miR-17–92 R1 Sequencing
primer:

GGTAGGTAAAGTAATAAATTGTGAT

miR-17–92 R2 Forward primer: GAGGGGAGGTTTAGGTATTG
miR-17–92 R2 Reverse primer: bio-AAACCCAAAAATAAATACATTACACCC
miR-17–92 R2 Sequencing
primer:

TGTAGTTGTGAAATTTTTGT

FIGURE 2 | Expression miRNA 92a-3p, miRNA 92a-3p, and TET2 mRNA, and promoter DNA methylation of CpGs in two regions of the promoter CGI of the miR-
17∼92 cluster and one region in the promoter CGI of the TET2 gene in NHL cell lines and in healthy control PBMCs. The expression of miR-92a-3p (A), miR-92a-5p (B)
and TET2 mRNA (C) was assayed by RT-qPCR in commercially available NHL cell lines SU-DHL-4, Mino, Raji, and Toledo, and in healthy control PBMCs. Bisulfite
pyrosequencing was performed on two regions in the promoter CGIs of the miR-17–92 cluster and in one region of the TET2 gene in the same cells and controls.
Meanmethylation levels of 4 CpGs in the two regions, 532 bp (D) and bp (E) upstream of theMIR17HG TSSwere assayed, andmeanmethylation levels of 6 CpGs in the
first exon of TET2 were also assayed (F). Bars denote mean and error bars denote SEM. Statistical significance calculated by KW test of significance and a post-hoc
Dunn test for comparison of cell lines to controls, with significance denoted as: **** p < 0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05.
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DNA Methylation Studies
The UCSC genome browser was used to identify CGI regions
in the MIR17HG and TET2 promoter regions (Figure 1).
Pyromark Assay Design 2.0 software (Qiagen) was used to
generate amplification and pyrosequencing primers to target
regions in the CGI containing numerous CpGs (Table 4).
Primers were designed to incorporate biotin on the reverse
primer and an additional sequencing primer for the
pyrosequencing, with one set targeting 7 CpGs in Exon 1 of
TET2 and two regions of four CpGs were targeted within the
promoter CGI of the MIR17HG gene, both regions that
containing several transcription factor binding sites.
Pyrosequencing was performed on a PyroMark Q48
Autoprep system (Qiagen) as per the manufacturer’s
instructions using PyroMark Q96 Gold reagents (Qiagen).
Pyrosequencing output analysis was performed using the
Qseq software (BioMolecular Systems, V2.4.3).

Statistical Analysis
Statistical analysis of both expression and methylation data was
performed in GraphPad Prism, with a Kruskal–Wallis (KW) test

of significance and a post-hoc Dunn test for comparisons of
individual groups.

RESULTS

Differential miR-92a and TET2 Expression
and Differential Upstream Promoter CGI
Methylation Were Observed Between NHL
Cell Lines and Healthy Control PBMCs
The expression of miR-92a-3p and miR-92a-5p mature
miRNAs and TET2 mRNA were assayed by RT-qPCR, and
upstream promoter CGI methylation for each gene was
assayed by bisulfite pyrosequencing, in 4 biological
replicates of NHL cell lines SU-DHL-4, Mino, Raji, and
Toledo, and in PBMCs of 6 healthy controls (Figure 2).
miR-92a-3p expression was increased in Mino cells
compared to controls (Figure 2A, p � 0.0145) and miR-
92a-5p expression increased in Mino (p � 0.0013), Raji (p �
0.0016), and Toledo (p � 0.0200) cells compared to controls

FIGURE 3 | Expression miRNA 92a-3p, miRNA 92a-3p, and TET2 mRNA, and promoter DNA methylation of CpGs in two regions of the promoter CGI of the miR-
17∼92 cluster and one region in the promoter CGI of the TET2 gene in NHL tumours compared to healthy control PBMCs. The expression of miR-92a-3p (A), miR-92a-
5p (B) and TET2 mRNA (C) was assayed in by RT-qPCR in malignant lymphatic tissue of NHL patients and in healthy control PBMCs. Bisulfite pyrosequencing was
performed on two regions in the promoter CGIs of the miR-17–92 cluster and in one region of the TET2 gene. Mean methylation levels of 4 CpGs in the two regions,
532 bp (D) and 774 bp (E) upstream of the MIR17HG TSS were assayed, and mean methylation levels of 6 CpGs in the first exon of TET2 were also assayed (F). Bars
denote mean and error bars denote SEM. Statistical significance calculated by KW test of significance and a post-hoc Dunn test for comparison of cell lines to controls,
with significance denoted as: **** p < 0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05.
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(Figure 2B). Differential methylation was observed in the
MIR17HG upstream region, with Mino cells showing
decreased methylation in region 1 when compared to

controls (Figure 2D, p � 0.0460). Differential methylation
was also observed between SU-DHL-4 and Raji cells (p �
0.0237). and between Mino cells and Raji (p � 0.0029) and

FIGURE 4 | Promoter DNAmethylation of CpGs in two regions of the promoter CGI of the miR-17∼92 cluster and one region in the promoter CGI of the TET2 gene
in whole blood gDNA of a retrospective NHL case-control cohort. Bisulfite pyrosequencing was performed on two regions in the promoter CGIs of the miR-17–92 cluster
and in one region of the TET2 gene. Mean methylation levels of 4 CpGs in the two regions, 532 bp (A–B) and 774 bp (C–D) upstream of the MIR17HG TSS were
assayed, and mean methylation levels of 6 CpGs in the first exon of TET2 were also assayed (E–F). Patients were categorised by NHL subtype, with mean
methylation levels compared between subtype and controls. Individuals without a specific subtype were not included in comparison between diagnosis. Bars denote
mean and error bars denote SEM. Statistical significance calculated by KW test of significance and a post-hoc Dunn test for comparison of cell lines to controls, with
significance denoted as: **** p < 0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05.
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Toledo (p � 0.0278). Toledo (p � 0.0329) cells showed
increased methylation in region 2 when compared to
controls (Figure 2E).

TET2 was differentially expressed in Mino (p � 0.0153) and
Toledo (p � 0.0045) cells compared to controls (Figure 2C).
Differential expression was also observed between SU-DHL-4
cells and Mino (p � 0.0016), Raji (p � 0.0385), and Toledo (p �
0.0004) cells. Upstream promoter hypermethylation was observed in
SU-DHL-4 and Raji cell lines when compared to controls.
(Figure 2F, p < 0.0001). SU-DHL-4 cells were also significantly
different to Mino and Toledo cells (p < 0.0001), and Raji cells were
significantly different to Mino and Toledo cells (p < 0.0001).

Differential miR-92a and TET2 Expression
and Differential Upstream Promoter CGI
Methylation Were Observed Between
Healthy Control PBMCs and NHL Tumours
The expression of miR-92a-3p and miR-92a-5p mature miRNAs
and TET2 mRNA were assayed in NHL patient tumour biopsies
and compared to healthy control PBMCs by RT-qPCR
(Figure 3). Promoter methylation for each gene was assayed
by bisulfite pyrosequencing in the same cohort. miR-92a-5p
expression was increased in DLBCL tumours compared to
controls (Figure 3B, p � 0.0017), and differential methylation
was observed between controls and FL tumours in region 1 of the
MIR17HG upstream promoter CGI (Figure 3D, p � 0.0203).

Increased TET2 mRNA expression was observed in both
DLBCL (p � 0.0164) and FL (p � 0.0240) patient tumour
biopsies compared to controls (Figure 3C), and decreased
methylation was observed in FL tumours compared to
controls (Figure 3F, p � 0.0300).

Aberrant Upstream Promoter CGI
Methylation of MIR17HG and TET2
Identified in NHL Patient and Healthy
Control Whole Blood gDNA
DNAmethylation of CpGs in each region was assayed by bisulfite
pyrosequencing of whole blood gDNA from an NHL case-control
cohort, comprised of 80 cases with age and sex-matched controls
(Figure 4). Increased DNA methylation of region 1 of the
MIR17HG promoter CGI was observed in the NHL cohort
compared to the controls (Figure 4A, p < 0.0001).
Furthermore, differential DNA methylation was observed
between healthy controls and NHL patient subtypes, with
increased levels of DNA methylation observed in the FL (p �
0.0004), MCL (p � 0.0046), BL (p � 0.0062), and LBL (p � 0.0004)
patient groups (Figure 4B). No differential methylation was
observed between the cases and controls in region 2 of the
MIR17HG upstream promoter CGI (Figure 4C); however,
differential methylation was observed between controls and
the DLBCL (p � 0.0041) and MCL (p � 0.0398) subtypes
when the specific diagnosis was considered (Figure 4D).
Decreased TET2 promoter CGI methylation was observed in
NHL cases compared to controls (Figure 4E, p � 0.0159), and
between healthy controls and FL subtype (Figure 4F, p � 0.0210).

DISCUSSION

In the last decade, both the role of miRNAs in malignancy and
their viability as biomarkers for malignancy has been a rapidly
expanding area of research. The mechanisms behind miRNA
expression are not fully understood; however, aberrant
methylation of promoter regions of miRNA genes has been
previously implicated in aberrant miRNA expression in several
cancers (Weber et al., 2007; Suzuki et al., 2010; Suzuki et al., 2012;
Harada et al., 2015), including lymphoma (Stumpel et al., 2011;
Yim et al., 2012). The expression profiles of miRNAs have been
previously presented as novel biomarker panels for NHL (Khare
et al., 2017; Solé et al., 2017), but the role of DNA methylation in
miRNA expression regulation in NHL is not well explored. In this
study, the methylation levels of CpGs in CGIs spanning the
promoter regions of the miR-17–92 cluster host gene and the
TET2 gene were quantified by bisulfite pyrosequencing and
correlated with the expression levels of TET2 mRNA and
mature miR-92a-3p and miR-92a-5p miRNAs. Gene
expression was assayed in NHL B-cell lines, NHL tumour
samples, and healthy PBMCs. Methylation of promoter CGIs
was measured in the DNA of several NHL B-cell lines, in NHL
tumour samples, in healthy PBMCs, and in whole blood gDNA of
a retrospective NHL case-control cohort.

Increased expression of both the −3p and −5p mature miRNAs
was observed in Mino cells when compared to controls, and
additionally, upregulation of −5p was observed in Raji and
Toledo cells lines. Previous studies have identified miR-92a
overexpression in BL, MCL, and DLBCL cell lines, and our
study replicates these findings (He et al., 2005; Ji et al., 2011).
Higher expression of miR-92a has also been previously identified in
MCL tumours (Husby et al., 2013; Roisman et al., 2016), reflecting
the increased expression identified in Mino cells in this study.
Increased expression of miR-92a-3p was also observed in our
DLBCL tumour samples when compared to controls. Increased
expression of miR-92a has previously been found to cause
lymphatic malignancy in mice (Xiao et al., 2008), with
downregulation of miR-92a implicated in the inhibition of
tumour growth in an MCL mouse model (Rao et al., 2012).
Overexpression of miR-92a and has been previously implicated
in the reduction of overall survival and event-free survival in NHL
patients (Yan et al., 2019), reinforcing the relevance of our findings.

Differential methylation was observed in the upstream promoter
CGI of MIR17HG between cell lines, and between cell lines and
healthy controls; however, this difference may not be biologically
significant as the difference between mean methylation is within the
detection limit margin of error (Gruber et al., 2002; Tost and Gut,
2007). Therefore, it seems unlikely that methylation of CpGs in these
specific regions in theMIR17HG promoter region contribute to the
differential miR-92a expression between NHL cell lines. A similar
trend was identified in the NHL tumour samples; however, again the
difference between mean methylation is within the detection limit
margin of error. Aberrant methylation of the MIR17HG promoter
has been previously correlated with dysfunctional expression of
miRNAs in the miR-17–92 cluster in lung biopsies of individuals
diagnosed with pulmonary fibrosis (Dakhlallah et al., 2013), and in
both human samples and mouse models of bronchopulmonary
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dysplasia (Rogers et al., 2015; Robbins et al., 2016). The epigenetic
mechanisms for the regulation of the miR-17–92 cluster expression
in cancer, and in NHL specifically, are not well explored and further
investigation is therefore required to identify the role of miR-92a in
malignancy and specifically in lymphomagenesis. In NHL patient
whole blood gDNA, statistically significant increased levels of mean
methylation were observed in region 1 of theMIR17HG CGI when
compared to healthy controls. Although the mean difference
between the two cohorts was not substantial, several individuals
in the NHL patient cohort presented high levels of genomic DNA
methylation across these targeted regions. Aberrant methylation of
levels were observed in individuals diagnosed with specific subtypes
of NHL when compared to controls, BL being the most prominent.
An aggressive subtype of NHL, the BL cell line Raji was identified to
exhibit increased methylation in these same regions in the cell line
populations, and previous studies have reported a similar increase in
methylation levels to those identified in this study in other miRNA
promoter regions, in both BL cell lines and BL tumours (Mazzoccoli
et al., 2018; Mazzoccoli et al., 2019). Increased methylation was also
observed between CLL individuals and controls in region 1 of the
MIR17HG, and a previous study identified that aberrantmethylation
of miRNA promoter regions in circulating B-cells of CLL patients
was associatedwith abnormalmiRNA expressionwhen compared to
healthy B-cells. Increased expression ofmiR-92a has been implicated
in CLL malignancy, specifically in lymph node proliferation centres
(Szurián et al., 2017). As the case-control cohort in this study is
comprised of whole blood gDNA rather than specifically PBMC or
B-cell DNA these previous results cannot be replicated, but the
similar rates of increased methylation of DNA can be considered,
and further investigation into miRNA promoter methylation in CLL
is required. It should be considered that, although differential
methylation was observed between subtypes in this study, DNA
hypermethylation has long been regarded as a hallmark of cancer,
and the aberrant methylation observed in these regions may be a
result of genome-wide increases in DNA methylation rather than a
consequence of dysregulation of specific genes or promoter regions,
endorsing further investigation into the role of DNAmethylation in
these specific NHL subtypes.

The findings of this study support previous conclusions regarding
the significance of miR-92a in B-cell malignancy and reinforce the
importance of investigating its specific role in NHL. Several previous
studies have identified miR-92a as being implicated in dysregulation
and suppression of tumour suppressors, including PTEN (Xiao et al.,
2008) and PHLPP2 (Rao et al., 2012) in MCL models and VHL in
CLL B-cells (Ghosh et al., 2009). This same may be true of TET2,
wherein our studies identified a trend of dysregulation in some cells,
along with additional novel findings which warrant further
investigation. Differential expression of TET2 was seen across
NHL cell lines and malignant tissues compared to controls, with
specifically increased expression of TET2 in Mino, Raji, and Toledo
cell lines alongside DLBCL and FL tumour tissue compared to
controls. However, when taking into account the increasedmiR-92a-
5p expression in the cell lines, NHL tumour tissue, and increased
miR-92a-3p expression in theMino cell line compared to controls, it
is suggestive that miR-92a-5p and −3p may not be strong negative
regulators of TET2 within these subtypes. Further assessment of the
functional role of miR-92a on TET2 expression is required, feasibly

with the utilisation of miRNA mimics and inhibitors, to determine
the effect of miR-92a-5p and −3p expression and inhibition in NHL
cell models.

SU-DHL-4 and Raji cell lines showed significant
hypermethylation in the studied CpGs within the TET2 upstream
promotor region when compared to controls and to Mino and Raji
cell lines. This novel finding correlated with expected
downregulation in TET2 expression in the SU-DHL-4 cells, along
with a similar trend observed in the Raji cells compared toMino and
Toledo cell lines in previous studies (Chiba, 2016; Chiba, 2017).
Although TET2 mRNA generally reported increased expression in
cell lines and tumours, with the exception of SU-DHL-4, when
compared to controls in our findings, TET2 methylation in our
target region negatively correlated with expression in the NHL cell
lines, indicating that theCpGs assayed in this regionmay be involved
in the regulation of TET2 transcription and expression. TET2
overexpression in NHL is not well explored when compared to
well-documented trends of downregulation in TET2 within various
haematological malignancies (Chiba, 2017); however, previous
studies have established this same trend of TET2 over-expression
in CLL as observed in our study (Hernández-Sánchez et al., 2014). A
possible explanation for this finding is TET2 overexpression in cells
of some aggressive and indolent NHL subtypes is an innate immune
response, involving tumour suppressor and DNA repair pathways,
to the specific subtype of malignancy. Examination of TET2 protein
and of downstream pathways of TET2 related expression regulation
may assist in determining the translational consequence of TET2
overexpression in these NHL samples and cell lines.

Previous studies have identified TET2 variants in DLBCL as
being associated with malignancy via the hypermethylation of
pro-tumorigenic genes (Liu et al., 2017). Genotyping of the TET2
gene in the specific NHL cell models and tumours samples may
therefore provide greater understanding into the potential
presence of disease-causing TET2 mutations, which may
contribute to disease phenotypes; as highlighted by differential
expression DLBCL cell lines SU-DHL-4 and Toledo, both of
which are DLBCL cell models. DNAmethylation studies of CpGs
in the TET2 upstream promotor region across both NHL tumour-
derived and control PBMC samples showed consistently low
levels of methylation, and a similar trend was observed in the
methylation of genomic DNA in the NHL case-control cohort.
Differential methylation was observed in the TET2 regulatory
region between the case and control cohort; however, this
difference may again not be biologically significant (Gruber
et al., 2002; Tost and Gut, 2007). It is therefore unlikely that
localised, as well as genome-wide, aberration of DNA
methylation in CpGs in this region are directly involved in
TET2 expression regulation in these NHL cohorts.

Clinical data from specific DLBCL tumour samples presented
interesting characteristics and relationships when both TET2 and
miR-92a expression were considered (Table 1). One tumour sample
displayed Reed-Sternberg-like cells during the histological
examination, while our studies showed significantly decreased
TET2 expression compared to other DLBCL and FL tumour
samples, as well as compared controls considered (Supplementary
Figure S1E). Hypermethylation within our studied CpGs was not
noted, therefore a likely cause of decreased TET2 expression in this
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outlier is the presence of a functional mutation in TET2. Reed-
Sternberg-like cells have been previously associated with TET2
mutations (Venanzi et al., 2021) along with diminished 5 hmC
levels (Siref et al., 2020). Genotyping the tumour samples would
assist in determining whether a polymorphism or variant in TET2 is
the cause of downregulated TET2 levels, thereby further supporting
previous findings regarding TET2 as a potential marker and driver of
malignancy in NHL.

CONCLUDING REMARKS

The role of TET2 in NHL has been previously documented;
however, the mechanisms driving TET2 expression regulation,
such as DNAmethylation, are not well explored.We identified in
this study that aberrant methylation of several CpGs in the
regulatory region of TET2 correlated with TET2 mRNA
expression in NHL cell models. These findings are novel and
may indicate that methylation of these regions may play a
functional role in TET2 expression. This same relationship
was not observed in NHL tumour samples or in NHL patient
genomic DNA. Although a target of miR-92a, and aberrant miR-
92a-3p and miR-92a-5p expression was observed in NHL cell
models and NHL tumours, an association between miR-92a and
TET2 was not observed in this study. Further assessment of the
functional role of miR-92a-TET2 in human cell models is
required; as is, ultimately, assessment in clinical cohorts.
Although TET2 may not be comprehensively regulated by
miR-92a, these novel findings regarding dysregulated
methylation of TET2 regulatory regions in NHL is an
intriguing relationship warranting further investigation and
reinforces the prominence of TET2 as an element in NHL
pathogenesis and malignancy.
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