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1 Introduction

Otto Warburg observed a peculiar phenomenon in 1924, unknowingly laying the foundation 

for the field of cancer metabolism. While his contemporaries hypothesized that tumor cells 

derived the energy required for uncontrolled replication from proteolysis and lipolysis, 

Warburg instead found them to rapidly consume glucose, converting it to lactate even in 

the presence of oxygen [1]. The significance of this finding, later termed the Warburg 

effect, went unnoticed by the broader scientific community at that time. The field of cancer 

metabolism lay dormant for almost a century awaiting advances in molecular biology and 

genetics, which would later open the doors to new cancer therapies [2, 3].
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2 The Warburg Effect

2.1 Otto Warburg’s Early Studies of Normal Cellular Respiration

Warburg began his forays into research studying the oxygen consumption of sea urchin eggs, 

finding that the rate of respiration increased severalfold after fertilization. He went on to 

further describe two processes that were crucial to cellular glucose metabolism: respiration 

and fermentation [4].

Most differentiated cells metabolize glucose through the tricarboxylic acid (TCA) cycle 

under aerobic conditions. They then undergo oxidative phosphorylation to generate ATP 

(between 32 and 34 ATP molecules per glucose molecule) [5] (Fig. 1). While glycolysis 

produces two net molecules of ATP per one molecule of glucose, the majority of ATP 

production occurs during the TCA cycle and oxidative phosphorylation. During these 

latter steps of respiration, the pyruvate molecule produced in glycolysis undergoes a series 

of reactions in the presence of oxygen. Without the presence of oxygen, cells undergo 

fermentation or anaerobic glycolysis, shunting the resultant pyruvate molecules to lactate 

production.

2.2 The Warburg Effect Is a Prominent Feature of Cancer Cell Metabolism

In 1927, Warburg studied the processes of respiration and fermentation in tumor cells. 

According to normal cellular respiration, glucose is converted to pyruvate, which then enters 

the TCA cycle to undergo oxidative phosphorylation in the presence of oxygen, and there 

should be minimal lactate production. However, in his in vivo and ex vivo studies, Warburg 

observed an increased glucose uptake and increased lactic acid production in tumor cells 

as compared to normal cells, even in the presence of oxygen [6]. This phenomenon, the 

metabolism of glucose to lactate despite the presence of adequate oxygen, is called the 

Warburg effect or aerobic glycolysis (Fig. 1).

For Warburg, several questions remained unanswered, including why cancer cells would 

inefficiently shunt glucose-derived pyruvate to lactate production instead of to the TCA 

cycle, which would result in significantly higher ATP production. Warburg hypothesized 

that the lactate production in cancer cells was due to the impairment of oxidative 

phosphorylation caused by mitochondrial damage [7].

There was a debate surrounding this theory with disagreement arising particularly 

from Sidney Weinhouse, one of Warburg’s contemporaries. Using isotope tracing [8], 

Weinhouse’s experiments showed that the rates of oxidative phosphorylation in both normal 

cells and tumor cells are similar, suggesting that the mitochondria of tumor cells are intact 

[9]. Rather, tumor cells in oxygen-rich environments utilize both aerobic glycolysis and 

oxidative phosphorylation to sustain their rapid rates of proliferation. Only in hypoxic 

environments, such as the tumor core, do the rates of lactic acid production by anaerobic 

glycolysis overtake oxidative phosphorylation as the primary source of energy [10].
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2.3 The Biochemical Nature and Clinical Significance of the Warburg Effect

Examination of the underlying biochemical processes elucidated possible reasons for why 

cancer cells paradoxically undergo aerobic glycolysis, a process yielding less ATP than 

oxidative phosphorylation per cycle. For example, given the inefficiency of ATP production 

in the Warburg effect, there are likely differences in the kinetics of aerobic glycolysis and 

oxidative phosphorylation, which have led to cancer cells promoting aerobic glycolysis. 

Demetrios et al. found that, in the Warburg effect, the flux of glucose to lactate is up to 100 

times faster than through the TCA cycle resulting in similar amounts of ATP production over 

the same time [11]. Even when oxidative phosphorylation is actively continuing, aerobic 

glycolysis will see much higher glucose flux [12].

To further understand a cancer cell’s dependence on aerobic glycolysis, it is necessary to 

revisit one of the hallmarks of cancer—rapid proliferation supported by strong anabolism. 

Tumor cells need not only ATP but also anabolic metabolism to accumulate a large 

amount of biomass to sustain their growth. The Warburg effect via multiple glycolytic 

intermediates provides a carbon source which contributes to the nucleotide, fatty acid, and 

amino acid synthesis pathways [13]. For example, glucose-6-phosphate (G6P) becomes 

partially oxidized via the pentose phosphate pathway (PPP) to generate NADPH and 

nucleotide components. In addition to the PPP, NADPH is also generated with the 

shunting of 3-phosphoglycerate out of the glycolytic pathway and into the serine and 

glycine biosynthesis pathway [14]. NADPH is a reducing equivalent, which is then 

further used for lipid biosynthesis [15, 16]. In addition, phospholipid biosynthesis is 

enabled by the conversion of dihydroxyacetone phosphate (DHAP) to glycerol-3-phosphate 

[17], and fructose-6-phosphate (F6P) enters the hexosamine pathway to support protein 

posttranslational modification [18].

Two other clinically significant hallmarks of cancer, the evasion of apoptotic cell death and 

the ability to metastasize, may provide additional reasons behind the upregulation of aerobic 

glycolysis in cancer. Anoikis is a type of apoptosis that is a consequence of reactive oxygen 

species (ROS) accumulation in the setting of the detachment of a cell from the extracellular 

matrix [19]. When this detachment happens for a cancer cell, however, anoikis is inhibited 

because the Warburg effect reduces mitochondrial ROS production by decreasing the flow of 

pyruvate into oxidative phosphorylation [20]. Resistance to apoptosis in the setting of matrix 

detachment is essential to the metastatic spread of tumor cells.

The Warburg effect has clinical utility as well. One ubiquitous application is the use of 

positron-emission tomography (PET) imaging in oncology, which has become indispensable 

in the detection of tumors and the monitoring of the response of existing cancer to 

therapeutic intervention. PET is an exploitation of the high rate of glycolysis in cancer 

cells as it uses a radiolabeled glucose analog, [18F]fluoro-2-deoxy-d-glucose (FDG), which 

accumulates in tumor cells due to their rapid uptake of glucose. Another developing 

application of the Warburg effect is the use of gene expression profiles linked to glycolysis 

to determine prognosis. Tools in both lung adenocarcinoma and triple-negative breast cancer 

have shown that glycolytic phenotypes are generally associated with worse patient survival 

[21–23].

Bose et al. Page 3

Adv Exp Med Biol. Author manuscript; available in PMC 2022 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.4 Metabolic and Genetic Reprogramming Underlying the Warburg Effect

With current advances in genetics and molecular biology, much of the past several decades 

of cancer research have been consumed by characterizing the genetic alterations, which 

lead to the development of cancers. However, cancer cells need not only a genetic switch 

but also metabolic building blocks and energy sources to undergo rapid proliferation. The 

recognition of the importance of energy sources allowed for the resurgence of cancer 

metabolism as a field that is closely related to tumor genetics. It is now understood that 

the metabolic reprogramming underlying the Warburg effect is driven by several oncogenes 

and tumor suppressors.

Some of the identified oncogenes, namely protein kinase B (PKB/AKT), phosphoinositide 

3-kinase (PI3K), Ras, and Von Hippel-Lindau (VHL), act via the protein hypoxia-inducible 

factor 1α (HIF-1α), resulting in the non-hypoxic expression of HIF-1α. In normal cells, 

HIF-1α becomes stabilized in a hypoxic environment to form a transcription factor involved 

in promoting glycolysis and suppressing oxidative phosphorylation [24]. HIF-1α, when 

present, upregulates glucose transporter 1 (GLUT1) to promote the retention of glucose 

inside cells in addition to upregulating hexokinase 2 (HK2), the enzyme which catalyzes the 

first committed step of glycolysis [25]. Typically, when oxygen is present, HIF-1α degrades 

in a concentration-dependent manner. In tumor cells, however, even in the presence of 

oxygen, high AKT and mechanistic target of rapamycin (mTOR) oncogenic activity promote 

HIF-1α expression, leading to persistent transcription of the enzymes driving glycolysis and 

lactate production.

Other oncogenic pathways have been found to work independently of HIF-1α to promote 

aerobic glycolysis as well, namely the activation of oncogenes such as MYC, Ras, and 

AKT and the deactivation of tumor suppressors such as TP53. Like HIF-1α, MYC directly 

upregulates GLUT and HK2. The loss of TP53 function also upregulates GLUT expression. 

Additionally, TP53 deactivation indirectly leads to increased glycolysis. Without TP53 

expression, TP53-induced glycolysis and apoptosis regulator (TIGAR), a protein, which 

causes shunting of glucose to the PPP, is no longer upregulated, resulting in a greater flux of 

glucose through the glycolytic pathway [26].

3 Heterogeneity in Glucose Metabolism

Aerobic glycolysis is not consistent across tumor types or even within a single tumor’s 

microenvironment (Fig. 2). Examination of different tumor types revealed that the balance 

between aerobic glycolysis and oxidative phosphorylation could be very different. In a study 

evaluating the variability of metabolic gene expression across multiple different tumor types, 

it was found that there was an upregulation of genes related to oxidative phosphorylation 

in ovarian, lymphoma [27], leukemia, and lung cancers, whereas the opposite was true in 

thyroid, colon, pancreatic [28], and renal cancers [29, 30]. It is thought that the variable 

activation of different oncogenes such as RAS, AKT, and c-MYC is the driver behind these 

differences [31–35].

These differences in metabolism can be seen even in cells within the same tumor [36, 37]. 

Sometimes, these differences result from variations in the tumor microenvironment leading 
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to metabolic flexibility, the ability of cancer cells to change their bioenergetic pathways 

according to available nutrients [38, 39]. One important resource is oxygen, which can vary 

significantly with the aberrant vascularization of tumors. As demonstrated in HeLa cells in 

hypoxia, there was an observed decrease in ATP derived from oxidative phosphorylation 

to just 29% compared to 79% in normoxia [40]. However, in a study by Le et al., it was 

shown that a subpopulation of cancer cells under hypoxia still exhibited expressions of 

genes related to mitochondrial function and maintained their oxidative phosphorylation and 

tumorigenicity [37]. These results suggest that respiration, even when there is an oxygen 

shortage, may be necessary for tumorigenicity, which does not depend on the Warburg 

effect alone and is not reduced as a result of the maintenance of respiration under hypoxic 

conditions. There may also be differences rooted in the type of tumor cells within the 

microenvironment—cancer stem-cell-like cells (CSCs) versus more differentiated tumor 

cells. A recent study found that 80% showed high levels of glucose uptake, and 20% showed 

low levels of glucose uptake [41]. This may have been due to the presence of both CSCs 

and differentiated cells within the studied population. Similarly, studies of small-cell lung 

cancer (SCLC) cells showed that the CSC subpopulation was metabolically less active and 

preferred oxidative phosphorylation rather than glycolysis to fulfill energy requirements 

[42].

4 The Role of Glycogen Metabolism and Gluconeogenesis in Tumor 

Growth

4.1 Glycogen Metabolism Is Upregulated in Several Cancers

Glycolysis is not the only component of glucose metabolism, which plays a significant role 

in tumor growth. Glycogenolysis, the process by which glycogen is converted to glucose-1-

phosphate (G1P) and then to G6P to enter the glycolytic pathway, provides another energy 

source for tumors in the face of nutrient stress (Fig. 2). Glycogen metabolism, although 

studied far less than glycolysis by cancer researchers, is upregulated in many cancer types, 

including renal, breast, bladder, uterine, ovarian, skin, and brain cancers. However, the 

glycogen content of cancer cells was found to be not associated with the rate of replication 

[43]. Renal cell carcinoma, which classically has clear cells on histology, appears this way 

due to high glycogen content.

Advances in tumor genetics have allowed for the characterization of tumor-suppressor 

genes and oncogenes, which have driven these changes in glycogen metabolism in tumor 

cells. The over-expression of the oncogene Rab25 has been demonstrated as a driver 

in increasing cellular glycogen stores via the AKT pathway [44]. In bladder cancer, the 

glycogen debranching enzyme AGL has been identified as a tumor suppressor. Additionally, 

deactivation of AGL leads to the accumulation of abnormal glycogen stores and promotes 

tumorigenesis in xenograft models [45]. Given this, Guo-Min Shen and colleagues studied 

glycogen metabolism in the setting of hypoxia. It was noted that glycogen accumulated 

in breast cancer cells after 24 and 48 h under hypoxia due to HIF-1α induction of 

protein phosphatase 1 regulatory subunit 3C (PPP1R3C), a glycogen synthase [46]. Later 

studies demonstrated that glycogen synthesis promotes cancer cell survival in the setting 

of hypoxic conditions [47]. Both glycogenolysis and glycogen synthesis enzymes appear 
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to be upregulated by tumor cells with HIF-1α dependence, including UTP:glucose-1-P 

uridylyltransferase 2 (UGP2), phosphoglucomutase (PGM), 1,4-alpha-glucan branching 

enzyme (GBE), glycogen synthase 1 (GYS1), and PPP1R3C [48]. In vivo studies of 

suppression of glycogen synthase kinase 2 (GSK2) activity demonstrated a reduction in 

prostate tumor growth [49]. Glycogen metabolism is an important target of therapy given 

that cancer cells can utilize glycogen as an energy source even during nutrient deficiency 

due to poor angiogenesis [50, 51].

4.2 Upregulation of Gluconeogenic Enzymes in Cancer

Gluconeogenesis is the process of generating glucose from carbon substrates that are not 

carbohydrates. There are two gluconeogenic enzymes that play important roles in cancer 

metabolism: phosphoenolpyruvate carboxykinase 1 (PCK1) and phosphoenolpyruvate 

carboxykinase 2 (PCK2). It has been demonstrated that TP53 inhibits both enzymes, 

meaning that the loss of TP53 upregulates these enzymes and gluconeogenesis [52]. It 

was also observed that the inhibition of mTOR in hepatocellular carcinoma and renal 

cell carcinoma cells directs the glycolytic flux towards lactate and gluconeogenesis with 

resultant tumor cell death via the downregulation of PCK1 [53].

5 Success and Failures of Targeting Glucose Metabolism for Cancer 

Therapy

5.1 Therapies Targeting Glycolysis and the Warburg Effect

As discussed previously, over the latter half of the twentieth century, advances in molecular 

biology and the identification of oncogenes and tumor suppressors drew the attention 

of much of the anticancer therapeutic efforts. It is true that genetic alterations drive 

uncontrolled replication in cancer cells, but it is also important to recognize that a cancer cell 

is still dependent on nutrient availability. In the past two decades, there has been an upsurge 

in efforts to exploit the addiction of cancer cells to glucose and the Warburg effect for cancer 

treatment [54]. Several enzymes in the glycolytic pathway have been targeted, some showing 

tumoricidal effects in vitro and in vivo (Fig. 3). Unfortunately, there has been little clinical 

success given that glycolysis is crucial to the glucose metabolism of normal cells as well. 

Thus, the focus should be on targeting those elements of aerobic glycolysis, which are more 

upregulated in cancer.

Glucose transporters (GLUT1–4) are upregulated in tumor cells by MYC and HIF-1α. 

Previous attempts with small-molecule inhibitors of GLUT1 have seen in vitro tumoricidal 

effects in a renal cell carcinoma cell line [55] and hepatocellular carcinoma cell line [56]. 

However, GLUT1 is a prevalent glucose transporter in normal cells as well, which would 

likely preclude clinical success. Homozygous Glut1 deletion is embryonically lethal in mice, 

and heterozygous deletion causes impaired motor activity and seizures [57]. A GLUT1 

inhibitor called silibinin failed to demonstrate any reduction in prostate-specific antigen, a 

well-known biomarker for prostate cancer, in a phase I clinical trial and was associated with 

significant side effects [58].
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Hexokinase phosphorylates glucose to glucose-6-phosphate in the first committed step of 

glycolysis. Hexokinase 2 (HK2) is mostly expressed in cancer cells and is the primary 

hexokinase to function in tumors, so it is another potential therapeutic target. Experiments 

in which HK2 was systemically deleted have shown to be well tolerated in mice [59]. 

A glucose analog that competitively inhibits G6P isomerase in order to inhibit the 

phosphorylation of glucose, 2-deoxyglucose, has been studied in a phase I clinical trial 

in combination with radiation therapy with good toleration in glioblastoma multiforme [60, 

61]. However, a HK inhibitor called lonidamine failed to show any benefit in two phase III 

randomized clinical trials [58].

Phosphofructokinase (PFK) is the enzyme which catalyzes the second committed step 

in glycolysis, the conversion of fructose-6-phosphate to fructose-1,6-bisphosphate (F1,6-

BP). Although inhibiting PFK directly is not possible since it is crucial to glycolysis 

in normal cells, it may be feasible to target it indirectly. PFK is strongly allosterically 

activated by fructose-2,6-bisphosphate (F2,6-BP). F2,6-BP is activated by another protein, 

6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), a target of HIF-1α. 

Attenuation of glycolysis was achieved in in vitro and in vivo studies with a small-

molecule PFKFB3 inhibitor called 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) 

[62]. PFKFB3 inhibitors were also shown to reduce tumor angiogenesis [63].

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) converts glyceraldehyde 3-phosphate 

to glycerate 1,3-bisphosphate with the production of NADH and is a promising target 

for anti-glycolytic therapy given the role of NADH in biosynthesis. The small-molecule 

pyruvate analog, 3-bromopyruvate, is a nonselective inhibitor of GAPDH and has been 

shown to inhibit tumor oxidative phosphorylation and glycolysis with good preclinical 

efficacy [64, 65]. However, there is concern for toxicities such as burning sensation with 

intravenous infusion and there are no ongoing clinical trials with this compound [66].

In seeking a target that was more unique to cancer cell metabolism and central to the 

Warburg effect, Le et al. focused on lactate dehydrogenase A (LDHA) which reciprocally 

mediates the redox-coupled conversion between lactate with NAD+ and pyruvate with 

NADH [67, 68]. Elevated expression level of LDHA is a hallmark of many types of tumors, 

including squamous head and neck cancer, colorectal cancer, and non-small cell lung cancer 

[69–71]. By perturbing the NADH/NAD+ ratio, a small-molecular inhibitor of LDHA called 

FX-11 was shown to increase reactive oxygen species in tumor cells with subsequent cell 

death in not only in vitro studies but also pancreatic and lymphoma xenografts [72–74].

Several other LDHA inhibitors, such as gossypol, galloflavin, and N-hydroxyindole-based 

inhibitors, were tested in preclinical settings [72, 75–78]. Among them, gossypol (AT-101), 

a nonselective inhibitor of LDH, was tested in phase I and phase II clinical trials targeting 

glioblastoma (NCT00390403, NCT00540722), small-cell lung cancer, and prostate cancer 

[79, 80]. Despite active investigations for developing LDH inhibitors, there is still a 

clinical need for highly selective and efficient LDH inhibitors, as gossypol shows off-target 

effects such as the inhibition of NADH-dependent enzymes (e.g., GAPDH) [77]. Although 

compounds targeting lactate metabolism have not yet been approved, it is clear that LDH-

targeting strategies are promising approaches for cancer therapy.

Bose et al. Page 7

Adv Exp Med Biol. Author manuscript; available in PMC 2022 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT00390403
https://clinicaltrials.gov/ct2/show/NCT00540722


On a macro level, dietary changes to limit glucose availability to tumor cells have also been 

studied. For example, ketogenic therapy, a diet with severe carbohydrate restriction, has been 

shown to sensitize gliomas and glioblastoma to chemoradiation therapy, reduce oxidative 

stress, and downregulate angiogenic proteins [81]. The success of this therapy may lie in the 

relative metabolic inflexibility of neuronal cells and their addiction to glucose.

5.2 Therapies Targeting Glycogenolysis and Glycogen Synthesis Have Shown Promising 
Results

Significantly fewer therapies targeting glycogen metabolism have been developed (Fig. 3). 

Lee et al. inhibited glycogen phosphorylase in a pancreatic cell line with a compound called 

CP-320626, leading to tumor cell death with no effect on normal human fibroblasts [82]. 

Flavopiridol, another glycogen phosphorylase inhibitor, had safe and modest efficacy in 

clinical trials with prostate cancer, renal cell carcinoma, and colorectal carcinoma [83–85]. 

However, flavopiridol is also a cyclin-dependent kinase inhibitor [86], so it is uncertain 

whether the antitumor effects were purely from glycogen phosphorylase inhibition. More 

recently, inhibition of glycogen synthase kinase (GSK)3β by AR-A014418 and SB-216763 

in an esophageal squamous cell carcinoma cell line has resulted in attenuated tumor growth 

and induced apoptosis; thus GSK3β has emerged as a potential target [87]. Similar results 

were shown in sarcoma cell lines [88]. Given these promising results, further investigation of 

glycogenolysis and glycogen synthesis-targeting agents is warranted.

6 Conclusion

Currently, there are several challenges to metabolic cancer therapies. First, an understanding 

of the heterogeneity of metabolic phenotypes is only beginning to be established. Metabolic 

phenotypes likely vary based on tissue of origin, tumor microenvironment, primary versus 

metastatic tumors, and mutational differences. Second, there are limitations in translating 

in vivo mouse studies to clinical trials, as is evidenced by the lack of success in advancing 

metabolic inhibitors through clinical trials up until this point. Third, there is the potential for 

metabolic inhibitors to be overcome by the adaptation of tumors to new energy sources as 

well as their inherent metabolic flexibility. With renewed interest in cancer metabolism, the 

development of metabolic inhibitors will continue to grow, and it may be most effective to 

combine these therapies with other modalities of therapy in order to increase efficacy.

Abbreviations

3PO 3-(3-Pyridinyl)-1-(4-pyridinyl)-2-propen-1-one

AGL Amylo-alpha-1, 6-glucosidase, 4-alpha-glucanotransferase

AKT Also known as PKB, protein kinase B

ATP Adenosine triphosphate

CP-320626 5-Chloro-N-[(2S)-3-(4-fluorophenyl)-1-(4-hydroxypiperidin-1-yl)-1-

oxopropan-2-yl]-1H-indole-2-carboxamide

CSC Cancer stem-cell-like cell
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DHAP Dihydroxyacetone phosphate

F1,6-BP Fructose-1,6-bisphosphatase

F2,6-BP Fructose-2,6-bisphosphate

F6P Fructose-6-phosphate

FDG Fluoro-2-deoxy-d-glucose

FX-11 3-Dihydroxy-6-methyl-7-phenylmethyl-4-propylnaphthalene-1-

carboxylic acid

G1P Glucose-1-phosphate

G6P Glucose-6-phosphate

GAPDH Glyceraldehyde 3-phosphate de-hydrogenase

GBE 1,4-Alpha-glucan branching enzyme

GLUT Glucose transporter

GSK2 Glycogen synthase kinase 2

GSK3β Glycogen synthase kinase 3β

GYS1 Glycogen synthase 1

HIF-1α Hypoxia-inducible factor 1α

HK2 Hexokinase 2

LDHA Lactate dehydrogenase A

mTOR Mechanistic target of rapamycin

NAD Nicotinamide adenine dinucleotide

NADPH Nicotinamide adenine dinucleotide phosphate

PCK1 Phosphoenolpyruvate carboxyki-nase 1

PCK2 Phosphoenolpyruvate carboxyki-nase 2

PET Positron-emission tomography

PFK Phosphofructokinase

PFKFB3 6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 3

PGM Phosphoglucomutase

PI3K Phosphoinositide 3-kinase

PPP Pentose phosphate pathway
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PPP1R3C Protein phosphatase 1 regulatory subunit 3C

ROS Reactive oxygen species

SCLC Small-cell lung cancer

TCA Tricarboxylic acid

TIGAR TP53-induced glycolysis and apoptosis regulator

TP53 Tumor protein 53

UGP2 UTP:glucose-1-P uridylyltransferase 2

VHL Von Hippel-Lindau
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Key Points

• Tumor cells exhibit an upregulation in glycolysis, glycogen metabolism, and 

gluconeogenesis as opposed to normal cells.

• Several oncogenes and tumor suppressors drive the metabolic reprogramming 

underlying the Warburg effect and other changes in glucose metabolism.

• There is heterogeneity in glucose metabolism across tumor types as well as 

within the tumor microenvironment.

• Numerous therapies targeting glucose metabolism have been developed but 

have yet to show success in clinical trials.
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Fig. 1. 
Respiration in normal differentiated tissue (left) in contrast with the Warburg effect in 

proliferating tissue (right)
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Fig. 2. 
Heterogeneity in cancer glucose metabolism with respect to tumor type, tumor 

microenvironment, and differentiation

Bose et al. Page 17

Adv Exp Med Biol. Author manuscript; available in PMC 2022 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Current targets of cancer therapies directed at glucose metabolism
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