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Abstract: Sustainable renewable polymer foam used as a lightweight porous skeleton for microwave
absorption is a novel strategy that can effectively solve the problems of the large surface density, high
additive amount, and narrow absorbing band of absorbing materials. In this article, novel renewable
microwave-absorbing foams were prepared using Sapiumse biferum kernel oil-based polyurethane
foam (BPUF) as porous matrix and Fe3O4-nanoparticles as magnetic absorbents. The microstructure
and the microwave absorption performance, the structural effects on the properties, and electromag-
netic mechanism of the magnetic BPUF (mBPUF) were systematically characterized and analyzed.
The results show that the mBPUF displayed a porous hierarchical structure and was multi-interfacial,
which provided a skeleton and matching layer for the Fe3O4 nanoparticles. The effective reflection
loss (RL≤ −10 dB) frequency of the mBPUF was from 4.16 GHz to 18 GHz with only 9 wt% content of
Fe3O4 nanoparticles at a thickness of 1.5~5 mm. The surface density of the mBPUF coatings was less
than 0.5 kg/cm2 at a thickness of 1.8 mm. The lightweight characteristics and broadband absorption
were attributed to the porous hierarchical structures and the dielectric combined with the magnetic
loss effect. It indicates that the mBPUF is a prospective broadband-absorbing material in the field of
lightweight stealth materials.

Keywords: bio-based polyurethane; lightweight magnetic foam; hierarchical microstructure; microwave
absorption mechanism

1. Introduction

It is well-known that the porous structure design and lightweight components of
materials could significantly influence the attenuation ability and absorption capacity of
electromicrowaves [1–3]. Microwave absorption materials (MAMs) are one of the most
important strategic materials for electromagnetic stealth and protection [4,5]. Polyurethane
foams (PUFs) are considered to be one of the most promising lightweight porous materials
for directional channels and skeletons, providing an ideal template to accommodate a
variety of absorbents [6–8].

Many works on the microwave-absorbing composites consisting of PUFs and ab-
sorbent materials have been reported, and there has been significant progress. For example,
Li et al. [9] prepared porous thermoplastic polyurethane/graphene (TPU/G) composites
using a facile vapor-induced phase separation (VISP) technique. The effective absorption
bandwidth (EBA) below −10 dB of the composite containing 3 wt% graphene (TPU/G-3)
achieved 4.28 GHz at a thickness of 3.1 mm. After the incorporation of Fe3O4 on the
TPU/G-3, the minimum reflection loss (RLmin) reached −58.96 dB and the matching thick-
ness was 8.0 mm. It indicated that the porous structure construction of TPU/G was benefi-
cial to obtain excellent absorption ability. Zheng et al. [10] fabricated a carbon nanotube
@Fe3O4/polyurethane (CNTs@Fe3O4/PU) composite foam-based triboelectric nanogenera-
tor by assembling self-foaming. The effective absorption bandwidth (EAB) (RL ≤ −10 dB)
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was 4.37 GHz at a thickness of 2.55 mm under a filler loading of 15 wt%. The tunable
microwave-absorbing mechanism was due to the good impedance matching, high dielectric
and magnetic loss, and multiple reflections and scatterings. Gao et al. [11] used TPU as
matrix to prepare TPU/G flexible composite foam with different G contents and foam ratios.
The effect frequency region of the composite foam was 4.7 GHz at a thickness of 1.6 mm and
a graphene content and foam ratio of 0.82 vol% and 3.9, respectively. The high microwave-
absorbing performance was attributed to the adjustment of the dielectric permittivity and
loss and the alteration of thickness. However, the above-mentioned coating-absorbing
materials still have some problems, such as unsustainable raw materials, a complex prepa-
ration process, small quantity and high prices, and unsatisfactory broadband-absorbing
effects. For these reasons, sustainable lightweight bio-based absorbing composites based
on microstructure design and effective compounding are the dominant strategies to obtain
high performance and extend the practical applications [12]. Bio-based polyurethane (BPU)
and its foams (BPUFs) have been evaluated as polymers that contain lightweight, flexible,
corrosion-resistant, easy-molding, and exceptional thermal–mechanical performance in
previous research. Therefore, they are competitive substrates compared to traditional
petroleum-based PUFs [13–16]. To date, few works have been concerned with the BPU as a
matrix skeleton for the application of microwave absorption.

Therefore, in this article, a novel BPUF synthesized with Sapiumse biferum kernel
oil polyol is used as the porous scaffold for embedding magnetic Fe3O4 nanoparticles.
Then, the microstructures, surface and interface characteristics, magnetic properties, and
absorption mechanism of the magnetic foam (mBPUF) are characterized and analyzed.
Furthermore, the microstructural effects on the properties of the mBPUF are intensively
evaluated combined with molecular dynamic simulation.

2. Results
2.1. Structure Characterization and Analysis

Figure 1 shows the transmission spectrum of the magnetic Fe3O4 particle and the
mBPUF composites. In the spectrum for the Fe3O4 particle, the peaks at 3404 cm−1,
1635 cm−1, and 588 cm−1 correlate to the characterization absorption of the O–H and
Fe–O groups, respectively [17]. For the mBPUF, the characteristic absorption peaks of the
Fe–O groups transfer to 1599 cm−1 and 507 cm−1, which display an apparent change in
the transmittance. This may be due to the molecular interaction of the polar functional
groups between Fe3O4 and the BPUF matrix. The peak at 3368 cm−1 is the antisymmetric
stretching vibrations of the O–H groups and the N–H groups, which exist in the molecular
chain of the BPUF matrix. The typical characteristic absorption peaks seen at 1720 cm−1,
1223 cm−1, and 1053 cm−1 are associated with the urethane C=O, C–N, and C–O stretching
modes [18].

The XRD patterns of Fe3O4 and the mBPUF are depicted in Figure 2. The Fe3O4
nanoparticles in Figure 1 exhibit sharp peaks, which are located at 30.8◦ (220), 35.5◦ (311),
36.9◦ (222), 42◦ (331), 43.2◦ (400), 45.9◦ (331), 53.6◦ (422), 57.7◦ (511), and 64◦ (440) [19,20].
For the mBPUF, the majority of the diffraction peaks for Fe3O4 are presented, but the
intensity of the peaks is weak. This indicates that part of the magnetic absorbents is
embedded in the porous resin, which influences the crystalline structure. One reason
is that Fe3O4 particles are masked and cannot be detected in the porous resin matrix.
The other reason is that the molecular interaction between the Fe3O4 particles and BPUF
matrix may result in a slight shift in diffraction angle and the difference in the crystalline
size. The peak at 22◦ of the mBPUF is associated with the base polymer. The presence
of the macromolecule shell, which wraps the Fe3O4 particles and changes the chain’s
conformational restrictions [21].
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Figure 1. FTIR spectra of the Fe3O4 and the mBPUF composites. 
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reason is that the molecular interaction between the Fe3O4 particles and BPUF matrix 
may result in a slight shift in diffraction angle and the difference in the crystalline size. 
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Fe3O4nanoparticles. Figure 3C is an image of the foam powders, which have an irregular 
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Figure 2. X-ray diffraction (XRD) spectra of the Fe3O4 and the mBPUF composites.



Int. J. Mol. Sci. 2022, 23, 12301 4 of 14

The structure of the magnetic Fe3O4, the fracture structure of the mBPUF, and its foam
powders are displayed in Figure 3. Figure 3A shows that the magnetic Fe3O4structures
are octahedral granular nanoparticles [22]. A porous structure for the mBPUF is shown
in Figure 3B, which has embedded within it plenty of magnetic particles. These particles
are mostly evenly distributed within the foam holes, while some are scattered on the walls
or retained within the interior of the pores, as shown in Figure 3D,F. The element features
for the structure are exhibited in Figure 3E,G. The tagged spectrum 1 and spectrum 3 are
the ones that reveal the characteristics of the magnetic Fe3O4nanoparticles. Figure 3C is an
image of the foam powders, which have an irregular shape. Here, the edges of the powder
are smooth after the foam is crushed.
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Figure 3. SEM and EDS spectra of the Fe3O4, mBPUF, and its powders. (A) Fe3O4; (B,D,F) mBPUF;
(C) mBPUF powder; (E,G) EDS spectrum of (D,F).

The XPS curves, shown in Figure 4, are used to analyze the surface element charac-
teristics and the chemical compositions of the obtained foam. From the curves, the four
elements (Fe, O, N, and C) are observed and the characteristic peaks of the Fe, O, and C
elements are analyzed. It can be observed that ferrum with its two oxidation states, Fe 2p1/2
and Fe 2p3/2, are found at the energies of 724.69 eV and 711.14 eV, which is the characteristic
of the Fe3O4 nanoparticles in the mBPUF [23]. This indicates that the foam powders can
be both embedded and encased within the matrix. For the mBPUF, the O 1s signals are
constituted by two peaks at 533.05 and 530.24 eV, which relate to a composition of C=O
and C–O in the chain of the matrix [24]. The O 1s peaks of the film overlap into almost one
peak. The C 1s signals at 288.33, 285.86, 286.59, and 285.06 eV are the characteristics of C=O,
C–N, C–O, and C–C/C–H for the mBPUF powder, respectively [25]. The N 1s signal is the
characteristic of C–N in the main chain of the BPUF matrix.
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Figure 4. XPS curves of the mBPUF composite.

2.2. Electromagnetic Parameters and Microwave Absorption Properties

The magnetic properties of the Fe3O4and its mBPUF are characterized using a vibrating
sample magnetometer (VSM) at room temperature. The magnetization hysteresis loops for
the samples are displayed in Figure 5. The saturation magnetization of the Fe3O4 particles
is 98.88 emu/g and the obtained superparamagnetism of the samples contains negligible
coercivities. For the mBPUF, the saturation magnetization decreases to 15.18 emu/g and is
characterized by the superparamagnetism [26].

In the article, the basic transmission line equations are constructed according to
transmission line theory and a microwave network. All of these effective parameters can be
calculated from the corresponding frequency-dependent parameters for bulk components
using electromagnetic field theory. It is the main tool to analyze transmission line problems
based on Maxwell’s equations (field method) and circuit theory based on Kirchhoff’s laws
(circuit method). The electromagnetic parameters are tested in a vector network analyzer
(VNA system), which covers the calculation method of the transmission line theoretical
equation. The electromagnetic performance of the mBPUF is a consolidated result of the
electromagnetic parameters, which include the complex permittivity (εr = ε′ − ε′′) and the
complex permeability (µr = µ′ − jµ′′). ε′, ε′′ and µ′, µ′′ with frequencyis displayed in
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Figure 6a. The real part parameters (ε′ and µ′) denote the storage abilities of electrical
energy and magnetic energy, and the imaginary part parameters (ε′′ and µ′′) represent the
dissipation ability of the electromagnetic wave [27,28]. The electromagnetic loss tangent
(tan δε = ε′′/ε′ and tan δµ = µ′′/µ′) (Figure 6b), the attenuation constant (α) (Figure 6c),
C0 (Figure 6d), the typical Cole–Cole semicircles (Figure 6e), and the reflection loss (RL)
curves (Figure 6f,g) are calculated according to Formulas (1)–(5) [29,30]. The mBPUF
samples with a content of 30% are mixed with paraffin and BPU to make a coaxial ring and
coating, respectively. The reflection loss (RL) depends upon the electromagnetic parameter
of the materials, the thickness (d), the working frequency (f ), and the velocity of the
electromagnetic wave in a vacuum (c). These are constructed according to the transmission
line theory. The calculation formulas of RL are as follows:

RL = 20lg
|Zin − Z0|
|Zin + Z0|

(1)

Zin =

√
µr

εr
tanh

(
j
2π

c
√

µrεr f d
)

Z0 (2)

where Zin and Z0 are the input and free space impedance of the magnetic materials, respectively.
The other important parameters for the absorption performance and its mechanism

can be expressed using the following formulas:

α =

√
2π f
c
×
√
(µ′′ ε′′ − µ′ε′) +

√
(µ′′ ε′′ − µ′ε′)2 + (µ′ε′′ + µ′′ ε′)2 (3)

C0 = µ′′
(
µ′
)−2 f−1 (4)

(ε′ − εs + ε∞

2
)

2
+ ε′′ 2 = (

εs − ε∞

2
)

2
(5)
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The attenuation constant (α) is the other factor that is typically employed to both
estimate and determine the microwave absorption performance (Formula (3)). In addition,
C0 is one of the major magnetic loss originators (Formula (4)), which expresses the eddy
current effect [31,32]. The parameters of static permittivity (εs) and relative dielectric
permittivity (ε∞) at an infinite frequency (Formula (5)) relate to the permittivity. From
Figure 4, the magnetic loss tangent curve is represented by tan δε and shows no evident
change with the modification of the frequency. Within the high-frequency region, magnetic
loss plays a major role in the sample. C0 is a parameter that reflects the eddy current loss in
an alternating magnetic field [33]. In Figure 6d, C0 declines in the lower-frequency range,
and then increases slowly to a stable level.

The results show that the eddy current effect is an important magnetic loss mecha-
nism for the materials. It is produced by electromagnetic conversion, and the pathway is
displayed in the dotted line of Figure 6d; when the microwave penetrates into the interior
composite, the microwave energy is consumed rapidly by the hierarchical microstructures
with dual dielectric–magnetic effects and dissipated into heat energy. The Cole–Cole semi-
circles are displayed in the form of a ε′–ε′′ curve (Figure 6e) for the mBPUF, which accounts
for the existence of the interface polarization loss [34]. A number of interfaces are beneficial
for interfacial polarization. Several semicircles in the plot of the ε′′–ε′ curve illustrate the
multiple relaxation process with the coexistence of conductivity.
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tric permittivity (ε∞) at an infinite frequency (Formula (5)) relate to the permittivity. From 
Figure 4b, the magnetic loss tangent curve is represented by tan δε and shows no evident 

Figure 6. Graphs showing the change in (a) saturation magnetization curves; (f) reflection loss (RL);
(b) magnetic tangent; (c) attenuation constant (α); (d) C0 over a range of frequencies; (e) typical
Cole–Cole semicircles for the mBPUF powders; (g,h) reflection loss (RL) for the mBPUF-f composites.

The RL curves in Figure 6f,g of the mBPUF is calculated by the electromagnetic
parameters εr and µr for different thicknesses. The effective RL under −10 dB is seen from
4.16 GHz to 18 GHz for a thickness of less than 5 mm, which indicates that the mBPUF
powders with low filler loading for the paraffin exhibit excellent microwave absorbency.
The surface density of the coating is 0.35 kg/cm2, the RLmin in Figure 6h of the coating
is −19.96 dB at 13.15 GHz, and the effective absorption frequency fields (RL < −10 dB)
are from 11.25 GHz to 15.97 GHz. This is highly consistent with the above result, which
tested by the coaxial ring and the base plate film according to a paragraph of test in
Figure S1. From the obtained results, it is clear that the mBPUF is an excellent candidate
for a lightweight broadband-absorbing material, and the BPU can be used as the novel
bio-based matrix in the field of absorbing materials.

2.3. Electromagnetic Mechanism

The microstructures of the component and the complex are constructed by MS.7.0 [35–37]
and shown in Figure S2, and the microwave absorption mechanism for the mBPUF compos-
ite is shown in Figure 7. The good dielectric and magnetic matching effects are the primarily
absorption mechanism for the composites [38], namely the combination of dielectric and
magnetic losses, which are generated by the multiple reflections, interfacial polarization,
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magnetic loss, and eddy current effects. First, a porous skeleton for the mBPUF in the
composites leads to multiple reflections and attenuates the incident wave [39]. Next, nu-
merous interfaces are produced between the Fe3O4 and the BPU in the foam skeleton and
the membrane skeleton, which enables the transfer of the incident wave into heat via an
interfacial polarization [40]. Third, the Fe3O4 nanoparticles, which have both dielectric and
magnetic loss characteristics, are encased in the matrix. This may generate eddy current
effects under the alternating electromagnetic field [41]. Furthermore, porous hierarchical
microstructures of mBPUF can be regarded as a semiconductor configuration, and plasma
can be generated within the pores, which thus dissipates the microwave radiation [42].
Overall, the cooperation of the dielectric and magnetic effects enhances the absorption
ability of the composites, and some possible plasma mechanism of microwave absorption is
indeed worthy of attention. Herein, the mBPUF composite has a lightweight characteristic
and superior microwave-absorbing ability compared with other references, as shown in
Figure 8 and Table 1.
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Table 1. The microwave absorption effects of some previously reported Fe3O4 foamed composites.

Absorber Matrix Filling Ratio
(wt%)

Optimal RL
(dB)

Bandwidth
(RL ≤ −10 dB)

Thickness
(mm) Ref.

CNTs@Fe3O4 PU 15 −68.5 4.37 2.55 [10]
Fe3O4 nanoparticles MDCF 30 −26.45 4.28 5.0 [19]
Hollow Fe3O4-Fe/G paraffin 18 −30.5 6.2 2.0 [22]
Porous Fe3O4/G epoxy 30 −20.0 4.5 2.0 [43]
Fe3O4/SiO2 PVDF 40 −28.6 1.8 2.5 [44]
Fe3O4/MWCNTs PU 80 −25 2.01 16.0 [45]
mBPUF paraffin 30 −24.0 4.62 1.789

[This work]mBPUF BPU 30 −19.96 4.72 2.00

3. Discussion

In the article, sustainable renewable polymer foam used as a lightweight porous
skeleton for microwave absorption is fabricated with structure design. Sapiumse biferum
kernel oil-based polyurethane foam/Fe3O4 composites with porous hierarchical structure
generating heterogeneous interfaces and abundant porous structures are mainly responsible
for enhanced microwave absorption performance. The basic transmission line equations
are constructed according to the transmission line theory and a microwave network. All of
these effective parameters can be calculated from the corresponding frequency-dependent
parameters for bulk components using electromagnetic field theory. It is worth noting
that the porous hierarchical microstructures between the magnetic and resin matrix can
be regarded as a semiconductor configuration. The plasma will be generated within the
pores to dissipate the microwave radiation. This is a new reflection loss mechanism for the
porous hierarchical materials.

4. Materials and Methods
4.1. Materials

The Sapiumse biferum kernel oil polyol(SSP, 296 mg KOH·g−1) was synthesized with
Sapiumse biferum kernel oil (SSO, a paragraph of text in Table S1) in the laboratory (Wuhan,
China) using techniques based on previous experience [46]. Stannous octanoate (SnOct, AR,
99.9%), triethylamine (TEA, AR, 99.9%), and polyethyleneglycol400 (PEG-400, AR, 99.5%)
were provided by Aladdin Chemistry Ltd Co. (Shanghai, China). Diphenylmethane diiso-
cyanate (pMDI 44v20, TP, NCO% = 30.0–32.0%) and silicone oil were supplied by Chengdu
Advanced Polymer Technology Co., Ltd. (Chengdu, China). Dichloromethane (DCM, AR,
99.9%), hexahydrated ferric chloride (FeCl3·6H2O, AR, 99.7%), ferroussulfate (FeSO4·7H2O,
AR, 99.9%), ammoniumhydroxide (NH3·H2O, AR, 25.0%~28.0%), and sodium dodecyl ben-
zene sulfonate (SDBS, AR, 99.0%) were purchased from Sinopharm Chemical Reagent Co.,
Ltd. (Shanghai, China). Deionized water was sourced from the laboratory (Wuhan, China).

4.2. Preparation of Magnetic Fe3O4 Nanoparticles

TheFe3O4 nanoparticles were synthesized according to vacuum coprecipitation [47].
The raw materials, FeSO4·7H2O and FeCl3·6H2O, with a molarratio of 1:1.8, were dissolved
in 200 mL of deionized water and then stirred with mechanical stirring in water bath,
under a nitrogen atmosphere. Next, 100 mL NH3·H2O solution was added dropwise into
the system at 65 ◦C until the pH reached higher than 12 and continued to react for 1 h.
Following this, the system temperature was raised to 85 ◦C, and the SDBS (1% of the system)
was quickly added. The product was then continually stirred until room temperature was
achieved. Subsequently, the mixture was separated via a magnetic method and washed
with deionized water until neutral. Then, the mixture was freeze-dried to remove the water
for 24 h. Finally, the products were ground and then collected for later use.
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4.3. Preparation of Magnetic Bio-Based Polyurethane Foam (mBPUF) Composite

The mBPUF were prepared using SSP and pMDI as the matrix monomers, Fe3O4
particles with 30 wt% of BPUF as absorbents, deionized water with 4 wt% of SSP as the
blowing agent, and PEG-400 with 5% of SSP as the chain extender. The synthesis process
of SSP-based BPUF is expressed in Scheme S1. The synthesis and molding process for the
mBPUF composite is displayed in Scheme 1 and Scheme S2. The mixture was freely foamed
with a flat plate, and then removed and inserted into an oven for vacuum drying at 60 ◦C
for 10 h. Following this, the composite foam was pulverized and removed from the foam
powders using 70-mesh sieves.
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Scheme 1. Synthesis process for the mBPUF composite.

4.4. Characterization

The structural information of the products was characterized by Fourier transform
infrared spectroscopy (FITR, Vertex 70 FTIR) (Bruker Company, Karlsruhe, Germany),
which was performed on a spectrometer from 400 cm−1 to 4000 cm−1 with 4 cm−1 resolu-
tions at room temperature. The vertical fracture surface morphology of the mBPUF was
evaluated by use of scanning electron microscopy (SEM, Nova Nano SEM 450) and the
relative elemental composition information was obtained by employment of an energy-
dispersive X-ray (EDSX) spectrometer (FEI Company, Eindhoven, Netherlands). The phase
structure of the mBPUF and its composites were acquired from X-ray diffraction (XRD,
X’pert3 powder) (PANalytical B.V., Panakot, Netherlands) with a 2θ range from 5◦ to 70◦ at
17◦ min−1. The distribution of the elements on the surface of the composites was detected
by X-ray photoelectron spectroscopy (XPS, AXIS-ULTRA DLD-600) (Shimadzu Kratos,
Kyoto, Japan). The surface density was calculated as the ratio of mass to area for a given
thickness. The magnetic properties of the products were tested by use of a vibrating sample
magnetometer (VSM, Lake Shore 7404) (Lakeshore, Columbus, OH, USA). The electro-
magnetic properties are tested according to the GJB 2038A-2001 by using vector network
analyzer (VNA, PNA-X) (Agilent N5244A, Qingdao, China). Molecular simulation was



Int. J. Mol. Sci. 2022, 23, 12301 12 of 14

applied to construct the microstructure of the mixing system by using the Materials Studio
v7.0 (MS) (Accelrys Co., Ltd., San Diego, CA, USA).

5. Conclusions

This article discussed a convenient and feasible microstructure design ideal to prepare
lightweight renewable bio-based mBPUF composites with potential broadband microwave-
absorbing performance. The microstructures and the performance of the prepared samples
were systematically characterized. It was found that the porous mBPUF embedded with
Fe3O4 nanoparticles exhibited heterostructures and could be used as a functional filler in
the BPU matrix. Due to the heterostructure and porous microstructures of the lightweight
mBPUF, the multiple reflections, interfacial polarization, magnetic loss, eddy current effects,
and plasma were produced when subjected to magnetic fields. The mBPUF composite
with 9% content of Fe3O4 exhibited outstanding microwave absorbency with an effective
bandwidth of 4.62 and 4.72 GHz at a thickness of 1.789 mm and 2.0 mm in paraffin and
BPU matrix, respectively, which indicated good stability in different matrixes. The effective
absorbing frequency range reached 13.84 GHz when the thickness was less than 5 mm. The
good impedance matching effect makes the mBPUF a promising lightweight broadband-
absorbing material, which will expand the practical use of renewable resources and achieve
great economic value.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms232012301/s1, The fatty acid components and degree of un-
saturation of SSO and common vegetable oils (Table S1). Synthesis process of SSP-based BPUF
(Scheme S1, reaction equation) and molding process of the mBPUF and mBPUF coating film compos-
ites (Scheme S2). Test method of reflectivity loss in the (a) mBPUF and (b) mBPUF film composite
(Figure S1). Microstructure and dynamic blending model images of Fe3O4 and its mBPUF composites
(Figure S2).
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