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Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous disease with a high mortality rate. The tumor
microenvironment (TME) is composed of numerous noncancerous cells that contribute to tumorigenesis and prediction of
therapeutic effects. In this study, we aimed to develop a cell component-related prognostic model based on TME. We screened
cell component enrichments from samples in The Cancer Genome Atlas (TCGA) HNSCC cohort using the xCell algorithm.
Univariate Cox and multivariate Cox regression analyses were performed to establish an optimal independent risk model. The
prognostic value of the model was further validated using Gene Expression Omnibus datasets. We found that patients in the
low-risk group had a better outcome and activated immunity and may benefit more from the immune checkpoint inhibitor
therapy. We also explored microRNAs (miRNAs) that may regulate these identified cell components, and 11 miRNA
expression levels influenced the overall survival time. Moreover, their target mRNAs were differentially expressed in TCGA
cohort and enriched in pathways of cell cycle pathways, extracellular matrix receptor interaction, human papillomavirus
infection, and cancer. In summary, our cell component-related signature was a promising prognostic biomarker that provides
new insights into the predictive value of nontumor components in the TME.

1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is the
sixth most prevalent malignancy globally, with a high mor-
tality rate of 40–50% [1], comprising a heterogeneous group
of tumors originating from the mucosal epithelium in the
oral cavity, oropharynx, larynx, and hypopharynx. Notably,
approximately 60% of HNSCC-induced mortality is caused
by a high rate of local recurrence [2]. In general, tobacco
use and alcohol consumption are the most important risk
factors for HNSCC, and as an emerging risk factor, infection
with oncogenic strains of human papillomavirus (HPV) has
been proven to be closely connected with oropharyngeal
cancers (>70%). Surgery alone or combined with the follow-
ing radiation or chemoradiotherapy is the current standard

treatment for HNSCC, depending on the tumor origin and
clinical stage [3].

In recent years, the concept of the tumor microenviron-
ment (TME) has improved the understanding of tumors.
TME comprises cancer and noncancerous cells, including
fibroblasts, endothelial cells, neurons, adipocytes, and
adaptive and innate immune cells, as well as noncellular
components. Reciprocal interactions between cancer cells
and noncancerous cells in the TME contribute to the evolu-
tionary development of cancer [4–6]. In HNSCC tissues, in
addition to the cancer cells, the TME consists of numerous
noncancerous cell types, including immune and stromal
cells, that can interact with malignant cells. Numerous
studies have shown that immune cell infiltration in HNSCC
plays a vital role in determining the development and
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prognosis of HNSCC [7]. Although several clinical trials
have verified that HNSCC responds well to immunotherapy
agents [8], including epidermal growth factor receptor
monoclonal antibody and anti-programmed cell death 1
(anti-PD1), only a subset of patients can benefit from these
agents [9]. This indicates that focusing solely on the immune
cells in the TME is insufficient. Hence, in this study,
we explored the specific cell component enrichments in
HNSCC using xCell, which provided a landscape of 64 cell
components, including immune, stromal, and other cell
types. Based on this, we established a prognostic risk model
using univariate and multivariate Cox regression analyses,
and we identified subgroups of patients with low and high
prognostic risks. The high-risk group showed a significantly
higher copy number variation (CNV), aneuploidy score,
and tumor purity, with lower response sensitivity to the
immune checkpoint inhibitors (ICIs) than the low-risk
group. Given the important role of microRNAs (miRNAs)
in cell regulation and communication, we obtained a miRNA
map related to altered cell components in HNSCC by gene
set enrichment analysis (GSEA). These results provide new
insights into the potential prognostic and therapeutic targets
in HNSCC.

2. Materials and Methods

2.1. Data Acquisition and Processing. For the training set, the
tumor mRNA and miRNA profiles (Fragments Per Kilobase
Million (FPKM) values) were downloaded from The Cancer
Genome Atlas (TCGA) database (https://portal.gdc.cancer
.gov) (tumor samples, n = 500; normal control samples,
n = 44). In addition, the corresponding clinical information
on tumor samples, including age, sex, TNM stage, histologic
grade, HPV status, overall survival (OS) time, and status, was
obtained (n = 500, excluding samples with incomplete
survival data). Two independent datasets were extracted
from the Gene Expression Omnibus (GEO) repository
(https://www.ncbi.nlm.nih.gov/geo/) for subsequent vali-
dation. GSE65858 included 270 HNSCC samples, and
GSE41613 included 97 patients.

2.2. Cell-Type Enrichment Analysis. The xCell algorithm is a
novel gene signature-based strategy used for cell composi-
tion analysis that can distinguish between 64 cell types.
The relative enrichment score (ES) of cell components in
heterogeneous samples was determined using the xCell algo-
rithm with transcriptome data.

2.3. Establishment and Validation of a Prognostic Predictive
Signature. Uni- and multivariable Cox regression models
were built using the Coxph function in the “survival” pack-
age. Univariate analyses were performed for OS time and
status along with cell component enrichment in the TME
analyzed by xCell. The criterion of p < 0:05 was selected as
the filtering threshold. Next, we used multi-Cox regression
analysis to build a prediction model; we selected nonzero
regression coefficients to identify the optimal cell compo-
nent sets and calculated the risk coefficient (Coef) of
the cell component. The risk value for eachpatient was

obtained using the following formula: risk score = ðES of
cell component 1 ∗ Coef 1Þ + ðES of cell component 2 ∗
Coef 2Þ + ðES of cell component 3 ∗ Coef 3Þ+⋯+ðES of cell
component n ∗ Coef nÞ. According to the above formula,
the median value of the risk score was used as the truncated
cut-off value for high- and low-risk group demarcations.
The same risk formula was used to compute the risk scores
for patients in the GEO datasets. Curves for OS were esti-
mated by the Kaplan–Meier method, and the survival differ-
ences between subgroups were compared with the log-rank
test. In addition, time-dependent receiver operating charac-
teristic (ROC) curves and area under the curve (AUC) at 1
and 3 years were calculated to evaluate the prognostic ability
of the above model. Kaplan–Meier curves and ROC curves
were generated by the “survival” package in the R software.
Independent datasets from the GEO repository were used
for further validation.

2.4. CNV Estimation, Aneuploidy Score, and Tumor Purity
Estimation. The CNV score, aneuploidy score, and tumor
purity data were obtained from the Supplementary files of
“The Immune Landscape of Cancer” [10].

2.5. Identification of Differentially Expressed Immune
Checkpoint Genes between the Low- and High-Risk Groups.
The differentially expressed immune checkpoint genes in
TCGA-HNSCC were identified with limma package in the
R software. Genes with an absolute log 2 − fold change ðFCÞ
> 1 and an adjusted p value < 0.05 were considered for
further analysis.

2.6. Identification of miRNAs Related to Cell Components. To
filter miRNAs related to specific cell components in the
prognostic model, we calculated the correlation of mRNAs
with specific miRNAs by Pearson correlation analysis and
ranked mRNA based on the rank score (RS) as follows:

RSij = − log 10 pij
� �

∗ rij, ð1Þ

where the pij and rij represent the p value and correlation
index of miRNA I and gene j, respectively.

Next, we replaced the genes in GSEA pathways with
marker genes of cell components in the prognostic model
to detect miRNAs related to specific cell components. Cytos-
cape was used to visualize the interaction network between
the miRNAs and target cell components.

2.7. Enrichment Analysis of miRNA-Targeted Genes. MiRNA
target genes were predicted using an online miRNA target
prediction database (http://mirdb.org). The limma package
was used to analyze differentially expressed genes (DEGs)
between the HNSCC and control groups in TCGA cohort,
and an adjusted p value < 0.05 and jlogFCj > 1 were set
as the selection thresholds of DEGs. We ranked these
miRNA-targeted genes included in DEGs by the value of
logFC. GSEA, Gene Ontology (GO), and KEGG enrich-
ment analyses were conducted by the clusterProfiler pack-
age (version 3.12.0) and enrichplot package (version 1.4.0).
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2.8. Statistical Analyses. All statistical analyses were per-
formed using R software (version 3.6.1). Gene expression
data were transformed for log2 in all analyses. The Wilcoxon
test was used to compare two groups, while the Kruskal-
Wallis test was used to compare multiple groups. The
chi-square test was used to analyze the relationship
between bicategorical variables. The Kaplan–Meier plot was
employed to generate survival curves for subgroups. The
relationship between cell components was analyzed by
Spearman rank correlation analysis based on signature
classifiers and pathways, and an index value of more than
0.5 was considered statistically significant.

3. Results

3.1. Overall Protocol and Dataset Acquisition. The workflow
of this study is illustrated in Figure 1. TCGA-HNSCC
samples (n = 500) and GEO datasets (GSE65858, n = 270;
GSE41613, n = 97) were enrolled in the current study
(excluding samples with incomplete clinical data). Patients
in TCGA dataset were diagnosed with primary HNSCC
from 1992 to 2013; the primary tumor sites included the oral
cavity (321 cases), oropharynx (40 cases), larynx (111 cases),
hypopharynx (10 cases), and alveolar ridge (18 cases).
Patients in GSE65858 were diagnosed with primary or
metachronous secondary HNSCC at the University Hospital
Leipzig, and those with a prior history of other cancers were
excluded. Of these, 106 cases originated from the orophar-
ynx, 48 from the larynx, 33 from the hypopharynx, and 83
from the oral cavity [11]. GSE41613 contained 97 cases
of HPV-negative OSCC at the Fred Hutchinson Cancer
Research Center between 2003 and 2007 [12]. The corre-
sponding clinical data included age, sex, clinical stage, and
TNM stage (Table S1).

3.2. Establishment of a Prognostic Risk Model for HNSCC.
The transcriptome profile from TCGA database was used
as a training dataset, and the cell component enrichments
in HNSCC were presented by the xCell algorithm. Univari-
ate Cox regression analysis was used to investigate the types
of TME cells that were associated with HNSCC prognosis,
and 24 prognostic cell components related to OS were iden-
tified (p < 0:05). Of these, 21 were protective ðhazard ratio
ðHRÞ < 1:0Þ and the other three were risky (HR > 1:0)
(Table S2). The interaction network showed that T
lymphocytes and B lymphocytes are highly correlated in
HNSCC based on the correlation index (jcorrelation indexj
> 0:5, Figure 2(a)), which indicates that adaptive immune
responses play an important role in the development of
HNSCC. Subsequent multivariate analysis provided a
combination of 12 eligible prognostic components. The
forest plot showed the HR with a 95% confidence interval
(CI) and p value of these 12 components (Figure 2(b)).
Higher enrichments of pro-B cells, platelets, naive B
cells, microenvironment score, memory B cells, immune
score, common myeloid progenitor (CMP), class-switched
memory B cells, CD4+ central memory cells (CD4+ Tcm),
and basophils tended to predict better survival, whereas
higher expressions of smooth muscle and osteoblasts

tended to predict a poorer survival. The risk score
representing a new prognostic signature of each patient
with HNSCC was calculated using the following formula:
risk score = ½ð−4:31Þ × ESBasophils� + ½ð−7:48Þ × ESCD4+Tcm� +
½ð−14:00Þ × ESClass−switchedmemory B cells� + ½ð−81:26Þ × ESCMP� +
½19:05 × ESMemory B cells� + ½ð−68:36Þ × ESnaive B cells� + ½18:95 ×
ESOsteoblast� + ½ð−45:91Þ × ESPlatelets� + ½ð−18:19Þ × ESpro−B cells�
+ ½2:51 × ESSmoothmuscle� + ½5:71 × ESImmuneScore� + ½ð−3:94Þ ×
ESMicroenvironmentScore�. Based on the risk score, we redivided
the HNSCC patients into the high-risk (n = 250) and low-risk
groups (n = 250) according to the median risk score
(median risk score = 1:0837). The heatmap showed that
patients in the high-risk group had significantly less
immune-related cell enrichment and higher smooth muscle
cell enrichment (Figure 2(c)). Patients in the high-risk
group had substantially worse outcomes than those in the
low-risk group (Figure 2(d)). To further determine the
robustness of the signature in predicting the prognosis of
HNSCC, ROC analysis was performed. The ROC curves
showed a 1-year survival AUC value of 0.69 and a 3-year
survival AUC value of 0.664, which indicated moderately
good predictive power (Figure 2(e)).

3.3. Validation of the Established Prognostic Risk Model. The
GSE65858 and GSE41613 datasets were used as external val-
idation datasets to test the prognostic risk model. Patients in
the high-risk groups had worse OS than those in the low-risk
groups (Figures 3(a) and 3(b)). The time-dependent ROCs
of GSE65858 and GSE41613 showed a predictive power
similar to those of TCGA-HNSCC dataset (Figures 3(c)
and 3(d)). The enrichment profiling of the 12 cellular com-
ponents is presented in heatmaps (Figures 3(e) and 3(f)).

3.4. Prognosis Risk Score Was an Independent Risk Factor for
HNSCC. To further assess whether the risk score is an
independent risk factor, we explored the differences in
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Figure 1: Workflow of the study.
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traditional risk factors, such as age, sex, smoking, alcohol
consumption, TNM stage, pathology grade, and HPV status,
between the low- and high-risk groups in TCGA-HNSCC
dataset. Late-stage and HPV-negative patients tended to
present with higher risk scores (Figures 4(a) and 4(c)).
However, there was no difference in the clinical stages and
HPV status between the low- and high-risk groups
(Figure S1d, e). No significant difference was observed in
the risk scores for age, sex, or pathological grade
(Figure 4(b); Figure S1a, b), and the low-risk group showed
a longer OS time (Figure S1c). Univariate and multivariate
Cox regression analyses revealed that the risk score was an
independent risk factor for HNSCC (Figure 4(d)).

3.5. CNV, Aneuploidy Score, and Tumor Purity Estimation.
To detect the heterogeneity of HNSCC, we investigated the
CNV, aneuploidy score, and tumor purity in the high- and
low-risk groups. We found that patients in the low-risk
group had a lower CNV, aneuploidy score, and tumor purity
than those in the high-risk group (Figures 5(a)–5(c)).

3.6. Benefit of ICI Therapy in Classifier-Defined Subgroups.
ICI therapy has proven to be an effective treatment for
patients with recurrent or refractory HNSCC; however, only
a portion of patients benefit from this treatment. Hence,
identifying patients who can benefit most from this therapy
is crucial. To explore the therapeutic effects of ICIs between
subgroups, we analyzed the expression of known immune
checkpoint genes in TCGA cohort. Overall, the low-risk
group had higher immune activation, such as antigen pre-
sentation, costimulators, and receptors, than the high-risk
group (Figure 5(d)). Among them, CTLA4 and CD274

(PD-L1), two classical targets of ICIs, were also upregulated
in the low-risk group, indicating that patients in the low-risk
group may benefit more from CTLA4 and PD-L1 inhibitor
therapies.

3.7. miRNAs Related to Cell Components in the Prognostic
Model. miRNAs are a class of single-stranded noncoding
RNAs, and their dysregulation is related to the promotion,
migration, and invasion of tumor cells. In the TME, miR-
NAs are involved in the recruitment and modification of
stromal cells by tumor cells and mediate interactions
between various immune and cancer cells [13, 14]. To
determine the underlying mechanism, we obtained a map
of miRNAs related to different cell components in the
prognostic model. Using a modified GSEA, we identified
173 miRNAs related to 10 cell components in the prognostic
signature. Among them, 54 miRNAs were related to smooth
muscle; 47, to basophils; 32, to memory B cells; 27, to pro B
cells; 14, to osteoblast; 12, to naive B cells; 11, to platelets; 4,
to CD4+ Tcm; 4, to CMP; and 3, to class-switched memory
B cells (Figure 6(a)). Next, we performed univariate Cox
regression analysis on these miRNAs and found that 20
miRNAs were related to tumor progression, including two
protective miRNAs (HR < 1:0) and 18 risky miRNAs
(HR > 1:0) (Figure 6(b)). By Kaplan–Meier curves, 15 miR-
NAs were found to be closely correlated with patient
outcomes (Figure 7(a); Figure S2). Combining these two
results, we found that 11 miRNAs were in common,
including hsa-miR-329-2, hsa-miR-421, hsa-miR-4519,
hsa-miR-4539, hsa-miR-541, hsa-miR-622, hsa-miR-6741,
hsa-miR-6787, hsa-miR-6828, hsa-miR-6857, and hsa-miR-
7111. Using an microRNA target prediction database, we
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Figure 2: Establishment of a prognostic risk model for HNSCC. (a) Interaction network of highly related cell components. Analyzed by
Spearman correlation analysis; jcorrelation indexj > 0:5; as edge color from yellow to purple, the correlation index increases. (b) Forest
plot of 12 prognostic components. HR: hazard ratio; CI: confidence interval. (c) Heatmap showing differential expression of 24 cell
components that related to overall survival between the low- and high-risk group. (d) Kaplan–Meier plots of the prognostic model, with
red line representing the high-risk group and blue line representing the low-risk group. (e) Receiver operating characteristic (ROC)
curves for the low- and high-risk groups, with area under the curve (AUC) scores.
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obtained the target genes of these 11 miRNAs. Then, we
explored the expression changes between the tumor and
control samples in TCGA cohort, and mRNAs with an
adjusted p value < 0.05 were selected for GSEA. GSEA of
these target mRNAs showed that cell cycle, extracellular
matrix- (ECM-) receptor interaction, HPV infection, and
cancer pathways were the top four enriched pathways

(Figure 7(b)). Moreover, GO revealed that these genes
primarily function in the actin filament-based process,
muscle structure development, and muscle system process
(Figure 7(c)). This suggests that the 11 miRNAs may
regulate the interaction of cell components in HNSCC
through these pathways and determine the occurrence and
development of HNSCC.
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Figure 5: Crossplatform analysis and expression of immune checkpoint genes TCGA cohort. (a–c) Boxplots showed that the low-risk group
presented with lower copy number variation (CNV), aneuploidy score, and tumor purity (p < 0:001). (d) Heatmap presented with
differential expression of immune checkpoint genes in TCGA cohort. Numerous immune checkpoint genes were significantly higher in
the low-risk group (log 2 − fold change ðFCÞ > 1 and an adjusted p value < 0.05, “LRisk-UP” in the annotation on the right means that
the expressions of these genes are upregulated in the low-risk group, and “No-Sig” means that there is no statistical difference between
these two groups).
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Figure 6: MicroRNAs related to cell components in the prognostic model. (a) Network map showed miRNAs that are related to 10 cell
components in the prognostic model. (b) Forest plot of 20 miRNAs related to overall survival time and status. HR: hazard ratio; CI:
confidence interval. A univariate Cox hazard ratio analysis demonstrated that among them, 18 miRNAs were risky (HR > 1:0) and 2
miRNAs were protective (HR < 1:0).
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4. Discussion

The TME of HNSCC is a mixture of immune cells and
stromal cellular elements. This complex and dynamic micro-
environment is now recognized to be involved in promoting
and inhibiting tumor growth, invasion, and metastasis. At
present, single-cell RNA-seq has been widely used to explore
TME cell interactions in various types of tumors. However,
there were few human HNSCC single-cell RNA-seq profiles
(GSE164690, GSE103322, and GSE150321). Unfortunately,
the patients included in these studies were restricted by
single origin and HPV status, which may have limited our
study. Hence, we used xCell, a cell-type enrichment analysis
based on bulk gene expression data, to explore the cell com-
ponent changes in HNSCC. The prognostic model contained
10 different cell components of HNSCC, most of which were
immune cells. Accumulating evidence has shown that the
outcome of HNSCC depends on the balance between anti-
tumor and immunosuppressive immune cells, and the dis-
ruption of this balance always promotes tumor progression
and influences survival time [15]. Immune components
account for a large part of our signature, including tumor-

infiltrating lymphocytes (pro-B cells, naive B cells, memory
B cells, class-switched memory B cells, and CD4+ Tcm cells),
myeloid lineage cells (basophils), and stem cells (platelets and
CMP). The high enrichment of these immune components,
immune score, and microenvironment score correlated with
an improved OS time, which is in accordance with previous
studies that patients with an active immune class had a signif-
icantly favorable prognosis. B lymphocytes are important
cells that participate in the immune response to cancer. B
cells do not only produce antibodies against a tumor but also
serve as antigen-presenting cells to activate T cells. Moreover,
B cells can also shape the immune response in the TME
toward a pro- or antitumor direction by secreting distinct
cytokines [16]. In contrast to T cells, B cells have not been
well described in HNSCC. CD20+ B cells have been reported
to influence the prognosis of various tumors, including non-
small-cell lung cancer, gastric cancer, melanoma, and
colorectal cancer. Lechner et al. found that memory B cells,
which play key roles in antibody-mediated responses,
account for the largest proportion of B cells in the TME of
HNSCC and were speculated to have antitumor activity
[17]. Increased peritumoral B cells in lymph node metastases
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Figure 7: Kaplan–Meier plots of microRNAs related to cell components in the prognostic model and GSEA of their targeted genes.
(a) Representative Kaplan–Meier plots of microRNAs related to cell components in the prognostic model, with red line representing
the high-risk group and blue line representing the low-risk group. (b) KEGG pathway enrichment of 11 miRNA targeted genes in
TCGA-HNSCC cohort. (c) GO enrichment of 11 miRNA targeted genes in TCGA-HNSCC cohort.
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have been proven to be associated with improved outcomes
of HNSCC [18]. High expression of CD19 and IGJ, two
surface markers of B cells, results in dramatically improved
3-year overall survival, and the depletion of B cells can
promote tumor growth [19]. Similar to these results, in this
study, the enrichments of pro-B cells, naive B cells, memory
B cells, and class-switched memory B cells were relatively
higher in the low-risk group, with improved OS and antitu-
mor immunity. For T cells, our analysis indicated that CD4
+ Tcm correlated with a good outcome in patients with
HNSCC, and this is consistent with previous studies [20].
Platelets can mediate the TME by secreting granules. The
cargo from these granules is released into the extracellular
environment, leading to platelet aggregation and vasocon-
striction. It then regulates the cell proliferation through the
secretion of numerous growth factors [21]. Our study
revealed that the enrichment of platelets improved the
patient outcomes from the perspective of transcriptome
information.

As HNSCC tumors progress, stromal cells have been
shown to play direct and indirect roles in facilitating
HNSCC invasion [22]. Tumor cells can coopt reactive stro-
mal cells and convert them into tumor-associated stromal
cells, which promote extracellular matrix remodeling, cell
migration, drug resistance, and immunosurveillance evasion
through the production of a variety of growth factors, che-
mokines, and cytokines [23]. We found that enrichment in
stromal cells, including smooth muscle cells and osteoblasts,
contributed to poor patient outcomes. Evidence suggests
that osteoclast activation and subsequent bone destruction
are involved in the pathological process of HNSCC, which
supports our analysis [24]. Although there is a consensus
that stromal α-SMA+ myofibroblasts can play an important
role in creating a permissive environment for tumor inva-
sion in oral and laryngeal squamous cell carcinoma [25],
there is still a lack of understanding of smooth muscle cells
in the TME, thus requiring further validation and research.

It is well established that the tumor cell coevolves with
the surrounding microenvironment, and during tumor
progression, there is substantial crosstalk between various
cell types in the TME, which promotes tumor growth and
development. miRNAs are important molecules involved in
posttranscriptional regulation. Studies have shown that
miRNAs play an important role in mediating and control-
ling various cell interactions in the TME and may serve as
prognostic indicators in many types of cancers, including
HNSCC [13, 14, 26, 27]. We identified 173 miRNAs
involved in the regulation and communication of cell
components in the prognostic signature, and 11 miRNAs
were confirmed to influence the OS of patients with HNSCC.
Previous studies have demonstrated that miR-421 upregula-
tion is associated with the occurrence of gastric, liver, and
lung cancer [28–30]. Moreover, knockdown of miR-421
remarkably suppresses the proliferation, migration, and
invasion of non-small-cell lung cancer cells [31]. Ji et al.
illustrated that miR-421 promotes cell invasion and prolifer-
ation in HNSCC cell lines [32], which is in accordance with
our results. Studies have shown that miR-541 inhibits the
proliferation, migration, and invasion of osteosarcoma cells

and that miR-622 downregulation is significantly associated
with poor prognosis in various other tumors; these are con-
trary to our predicted miRNA functions in HNSCC [33–35].
However, there have been few studies on their functions in
HNSCC. The miRNAs miR-329-2, miR-4519, miR-4539,
miR-6741, miR-6787, miR-6828, miR-6857, and miR-7111
have not been reported in previous tumor-related studies.
Thus, additional research is warranted to determine their
functions in patients with HNSCC. Deregulated cell prolifer-
ation, in combination with suppressed cell death, is an
intrinsic factor in tumor occurrence and progression. KEGG
enrichment analysis showed that these miRNA-targeted
genes were primarily enriched in cell cycle, ECM receptor
interaction, HPV infection, and cancer pathways, which all
play important roles in tumor. Mounting evidence supports
that the idea that cell cycle in tumor cells is coupled with
immune behavior and miRNAs can affect the cell cycle by
inhibiting or initiating cell division [36–38]. Among these
miRNAs, miR-421 and miR-622 were reported to be
involved in tumor progressing via cell cycle dysregulation
previously [30, 39], while others have not been studied.
The ECM is an important noncellular component of the
TME, and alterations in its density and composition contrib-
ute to tumor growth and progression [40]. Expression of
miRNAs is critical for extracellular matrix remodeling, thus
regulating cancer cells to initiate cell proliferation, migra-
tion, adhesion, and invasion [41]. Our data supported these
ideas and gave a clue that the cell components in our model
may regulate cancerous cells through secretion of miRNAs,
by which to determine the degree of malignancy and the
response to treatment in HNSCC. The results also suggest
that the 11 miRNAs may participate in these pathways to
regulate the interaction of cell components, and inhibition
of these miRNAs might provide novel therapeutic opportu-
nities. The GO results revealed that these miRNA-targeted
genes mainly function in muscle development, which may
support the risk factor, smooth muscle, in our prognos-
tic model. Further research is needed to validate this
hypothesis.

ICIs have led to breakthroughs in cancer treatment. To
date, the U.S. Food and Drug Administration (FDA) has
approved many immune checkpoint drugs, including anti-
PD1 and anti-CTLA4, for the treatment of HNSCC. How-
ever, a major limitation is the low response rate of patients
to ICI therapy. In the present study, we clarified the benefits
of ICI therapy in our classifier-defined HNSCC subgroups.
Significant differences were detected in immune checkpoint
expression between the low- and high-risk groups. Immune
checkpoints, including costimulators, coinhibitors, ligands,
receptors, and molecules functioning in cell adhesion and
antigen presentation, were observed, and most of them were
significantly upregulated in the low-risk group, suggesting
that the low-risk group may have a better response to immu-
notherapy. Moreover, the expression of CTLA4 and PD-L1
was upregulated in the low-risk group, indicating that
immune inhibition remained in the TME and that ICI ther-
apies are still promising with clinical benefits. Chemokines
and their receptors play an essential role in the crosstalk
between cells in the TME to promote cancer cell growth
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and metastasis. Manipulation of chemokine-receptor signal-
ing helps to reshape immune status and modulate ICI
responsiveness. Among these, the chemokine receptor 4
(CXCR4) and its ligand, CXCL12, are the most studied in
the TME [40]. While no significant difference in the expres-
sion of CXCL12 was observed between subgroups in our
classifier, this could be attributed to the fact that increased
CXCR4/CXCL12 axis activity was found to be associated
with metastasis and recurrence of HNSCC [42]; however,
our model is not based on this. In contrast, CCL5, CXCL9,
and CCL10 were upregulated in the low-risk group; high
expression levels of CXCL9 and CXCL10 were correlated
with improved OS in most tumors, and anti-PD1 therapy
was not beneficial in CXCR3−/− (receptor of CXCL9 and
CXCL10) tumor-bearing mice [43]. In addition, many cyto-
kines and CD28 superfamily members were all upregulated
in the low-risk group, suggesting that the low-risk group in
our model benefited more from ICIs and may have a better
outcome.

Our study was based on bulk gene expression data.
Although xCell provided a relatively detailed cell component
landscape, more precise studies are also needed to validate
our model by using single-cell RNA-seq data and clinical
practices. In addition to cell components, non-cell compo-
nents are involved in the TME, and they act as a medium
for cell interactions and regulate cell development. The
KEGG results of miRNA-targeted genes illustrated a critical
role of the ECM in tumorigenesis and progression. Hence, to
build a more comprehensive and stable understanding of
HNSCC-TME, further research is warranted to characterize
the specific mechanisms of both cell and non-cell compo-
nents in tumorigenesis.

5. Conclusion

From lumps to cells, our understanding of tumors and
treatment methods is constantly being updated as technol-
ogy advances. Our cell component-related signature is a
promising biomarker for predicting patient outcomes, and
it might be a potential prognostic indicator for immune
checkpoint therapy response. Further studies are required
to validate this prognostic model.
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