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SUMMARY

Colorectal cancers (CRCs) arise from precursor polyps whose cellular origins, molecular 

heterogeneity, and immunogenic potential may reveal diagnostic and therapeutic insights when 

analyzed at high resolution. We present a single-cell transcriptomic and imaging atlas of the 

two most common human colorectal polyps, conventional adenomas and serrated polyps, and 

their resulting CRC counterparts. Integrative analysis of 128 datasets from 62 participants 

reveals adenomas arise from WNT-driven expansion of stem cells, while serrated polyps derive 

from differentiated cells through gastric metaplasia. Metaplasia-associated damage is coupled 

to a cytotoxic immune microenvironment preceding hypermutation, driven partly by antigen-

presentation differences associated with tumor cell-differentiation status. Microsatellite unstable 

CRCs contain distinct non-metaplastic regions where tumor cells acquire stem cell properties 

and cytotoxic immune cells are depleted. Our multi-omic atlas provides insights into malignant 

progression of colorectal polyps and their microenvironment, serving as a framework for precision 

surveillance and prevention of CRC.

In brief

A single-cell resolution atlas of human colorectal polyps maps out distinct paths for pre-cancer to 

cancer transformation, accompanied by differential immune microenvironment features.
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Graphical Abstract

INTRODUCTION

Classification schemes for human colorectal cancer (CRC) focus largely on intrinsic 

features of tumor cells, including histopathology, bulk gene expression (Consensus 

Molecular Subtypes or CMS), chromosomal instability (CIN), hypermethylation (CpG 

Island Methylator Phenotype or CIMP), and microsatellite-instability (MSI) (Guinney et 

al., 2015; Ogino and Goel, 2008). The tumor immune microenvironment is also critical to 

CRC pathogenesis (Pelka et al., 2021). Hypermutated MSI-high (MSI-H) tumors exhibit a 

neoantigen-triggered cytotoxic immune infiltration that contributes to their responsiveness 

to immunotherapy (Le et al., 2015; Llosa et al., 2015). However, a significant subset of 

low mutation burden CRCs appears to exhibit an activated immune microenvironment via 

ill-defined mechanisms (Mlecnik et al., 2016). We hypothesize that mapping the routes 

toward tumorigenesis in precursors of MSI-H and MSS CRCs will uncover mechanisms that 

define the CRC cellular landscape and identify targets with diagnostic or therapeutic utility.

Most MSS and MSI-H CRCs develop from pre-cancerous conventional adenomas (ADs) 

and sessile serrated lesions (SSLs; formerly sessile serrated adenomas/polyps), respectively. 

As proposed by Vogelstein and co-workers, ADs arise from truncating mutations in APC, 

which result in activation of the WNT pathway and CIN (Fearon and Vogelstein, 1990). 

ADs subsequently accumulate gain-of-function mutations in oncogenes (chiefly KRAS) and 
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loss-of-function mutations in tumor suppressor genes such as TP53, ultimately forming MSS 

CRCs. Conversely, SSLs resemble MSI-H CRCs molecularly and are distinct from ADs in 

that tumorigenesis is not initiated by genetic disruptions of APC (Crockett and Nagtegaal, 

2019; Thorstensen et al., 2005). Instead, they have epigenetic disruptions, including MLH1 
hypermethylation and a 40%–75% prevalence of CIMP (Leggett and Whitehall, 2010; 

Yang et al., 2004). These tumors harbor BRAF mutations in contrast to KRAS mutations 

commonly present in ADs. Mirroring the relatively lower incidence of MSI-H CRCs and 

their prevalence in the proximal colon, SSLs represent only 10%–20% of polyps and are also 

found in the proximal colon more often, unlike the more frequently distal ADs (Crockett and 

Nagtegaal, 2019; Markowitz and Bertagnolli, 2009).

We present a multi-omic human pre-cancer atlas integrating single-cell transcriptomics, 

genomics, and immunohistopathology describing the two most common pathways toward 

CRC. We identify and functionally validate distinct origins and molecular processes that 

establish divergent tumor landscapes. Notably, this clearer understanding of advanced and 

highly heterogeneous cancers was enabled only by looking at CRCs through the lens of their 

originating lesions, paving a path to new strategies for precision prevention, surveillance, 

and therapeutics.

RESULTS

Distinct histopathologic and molecular features define colonic pre-cancer subtypes

Polyps, as well as matching normal biopsies, were collected from COLON MAP study 

participants. Most polyps were small (median diameter ≤5 mm) and were bisected for multi-

assay analysis. Single-cell RNA sequencing (scRNA-seq), multiplex immunofluorescence 

(MxIF), and multiplex immunohistochemistry (MxIHC) were performed on two independent 

sets of specimens collected approximately 1 year apart. The discovery (DIS) set consisted 

of 65 specimens analyzed including 30 tumors. The validation (VAL) set consisted of 63 

specimens analyzed including 32 tumors (Figure 1A). Overall, 128 independent scRNA-seq 

datasets on 62 tumors were generated (Table S1). Specimens were collected from diverse 

sex, racial, and age groups (Table S2). In addition, we performed bulk RNA-seq and targeted 

gene sequencing on an orthogonal set of 66 and 281 polyps, respectively (Figure S1A; Table 

S2). Polyps were histologically categorized by two pathologists into two subtypes: ADs 

consisting of tubular ADs (TAs) and tubulovillous ADs (TVAs), or serrated polyps (SERs) 

consisting of hyperplastic polyps (HPs) and SSLs (Figure 1B). While standard histological 

features were observed for polyps, HPs were further subdivided into goblet cell-rich HPs 

(GCHPs) and microvesicular HPs (MVHPs), with MVHPs appearing more advanced and 

may progress to SSLs (Crockett and Nagtegaal, 2019). Epithelial serrations of GCHPs, if 

present, were subtle and confined to the mucosal surface, while, for MVHPs, serrations 

extended from the surface to two-thirds down the crypt, sparing the morphologically normal 

crypt base. In contrast, SSLs showed epithelial serrations that extended to the base of crypts, 

which were dilated and spread laterally above the muscularis mucosae.

We characterized the mutational profiles of ADs and SERs by conducting whole-exome 

sequencing (WES) and somatic mutation calling (Figure 1C). Due to small polyp sizes and 

the prioritization of fresh tissue for single-cell assays, we used the clinical formalin-fixed 
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paraffin-embedded (FFPE) material for WES. About half generated sufficient sequence 

quality for analysis, and the predominant mutational patterns were consistent with published 

literature. APC mutations were detected in 85% of the TAs and in both TVAs. Only one 

(8%) TA had a KRAS mutation, while both TVAs did, consistent with TVAs being more 

histologically advanced. All but one SSL (89%) had the oncogenic BRAFV600E mutation; 

none of the three GCHPs harbored BRAF mutations, but two (67%) MVHPs did, consistent 

with MVHPs being SSLs in evolution. Neither APC nor KRAS mutations were detected in 

SSLs, and none of the ADs had BRAF mutations. Somewhat surprisingly, none of the SSLs 

exhibited a hypermutation phenotype, while a portion of TA/TVAs did. Whereas MLH1 

expression is usually lost in MSI-H CRCs due to promoter methylation, MLH1 protein and 

gene expression in SSLs were comparable to ADs, both higher than the mean MSI-H CRC 

level (Figures S1B and S1C). Biallelic loss in mismatch repair genes was not detected in any 

polyp, further supporting that these SSLs had not yet acquired a hypermutation phenotype.

We validated this mutational analysis using targeted gene sequencing of a separate set of 281 

premalignant tumors (Figure S1A). General trends were consistent, with mutations in APC 
increasing from 67% to 91%, and KRAS from 5% to 42% between TAs and TVAs. BRAF 
mutations were enriched in SSLs (67%) compared to TAs (1%) and TVAs (4%). Again, 

none of the SSLs exhibited a high mutation load, where several TA/TVAs did, confirming 

WES results. Non-APC mutations in WNT pathway genes, such as RNF43 or ZNRF43, 

were uncommon in SSLs from either dataset. Signaling pathway analysis from combined 

mutational analysis paints a picture of WNT-driven tumorigenesis in TA and TVAs but not in 

SSLs.

Single-cell analysis identifies neoplastic cells that arose from subtype-specific 
tumorigenic processes

We generated scRNA-seq data on 70,691 (DIS dataset) and 71,374 cells (VAL dataset) 

(total: 142,065), after filtering for high-quality barcodes using dropkick (Heiser et 

al., 2021), and cells from specimens with unconfirmed histology (labeled UNC) were 

transcriptomically classified (Table S3). We conducted UMAP dimension reduction on raw 

scRNA-seq data and observed intermixing of epithelial cells from normal colonic biopsies 

and immune cells from different participants, indicating the absence of batch effects (Figure 

S1D). However, neoplastic cells clustered by sample, demonstrating intertumoral variability 

consistent with unique tumorigenic processes.

Since transcription factor (TF)-defined regulon activities are considered to be a determinant 

of cell identity, we used SCENIC (single-cell regulatory network inference and clustering), 

which is a regulon-based, batch-robust feature extraction tool, to adjust for polyp-specific 

effects (Aibar et al., 2017; Van de Sande et al., 2020). Clustering and co-embedding 

epithelial cells from the DIS dataset in regulon space revealed seven normal, canonical 

epithelial cell populations using normal biopsy datasets as reference landmarks (Figures 

2A and 2B; Figure S2A). Polyp specimens also contained substantial numbers of normal 

cells consistent with their histopathology (Figures 1B, 2B; Figure S2B; Table S3). However, 

two cell populations were overwhelmingly represented in polyp samples, as determined 

by sample-by-sample breakdown of proportional cluster representation (Figures 2B and 
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2C; Figure S2C). One population was enriched in TA and TVA, hereafter referred to as 

ASCs (AD-specific cells, p < 1E-4 Mann-Whitney U [MWU] test) (Tables S3 and S4). The 

second neoplastic population was enriched in SSLs and HPs, hereafter referred to as SSCs 

(serrated-specific cells, p < 1E-4 MWU test). Importantly, these results, as well as others 

below, were consistent across DIS and VAL datasets (Figures 2A–2C; Figures S2A–S2D), 

demonstrating rigor and reproducibility.

We identified gene programs and pathways differentially activated in ASCs and SSCs 

compared to normal epithelial cells. ASCs resembled colonic stem and progenitor cells, 

expressed genes indicative of WNT pathway activation (LGR5, OLFM4, ASCL2, AXIN2, 

RNF43, and EPHB2) (Figure 2A), and possessed a stem cell signature greater than 

normal stem cells from the same individuals (Figure 2D; Figure S2D; Tables S4, S5, 

and S6). Because ASCs resembled normal stem cells, we used CytoTRACE to infer their 

stem potential (Gulati et al., 2020). Normal stem cells had high CytoTRACE scores and 

transitioned into differentiated cells with lower scores (Figure 2E; Figure S2E), forming a 

score distribution that was relatively uniform between stem, transitioning, and differentiated 

cells. In contrast, CytoTRACE analysis of ASCs yielded a distribution skewed toward cells 

with high predicted stem potential (Figure 2E; Table S4). This variation in stemness suggests 

the presence of tumor stem cells, supported by the enrichment of WNT-driven stemness 

GO terms in specific ASC subclusters (Figure S2F; Table S6). These analyses describe a 

model wherein WNT-dependent stem cell expansion initiates tumorigenesis in ADs most 

often driven by loss-of-function mutations in APC.

In marked contrast to ASCs, SSCs did not exhibit WNT pathway activation nor a stem 

cell signature (Figures 2A and 2D; Figures S2A and S2D). CytoTRACE scores of SSCs 

skewed toward a lower predicted stem potential, opposite to ASCs (Figure 2E; Figure 

S2E), although heterogeneity in stemness was still observed (Figure S2F; Table S6). The 

transcriptomic profiles of SSCs resembled absorptive-lineage cells, but SSCs also expressed 

functional goblet cell genes, including TFF3 and MUC2, but surprisingly without the master 

secretory cell TF ATOH1 and the ATOH1 regulon, suggesting SSCs harbor a mixed cellular 

identity (Figure 2A; Figure S2G). To this point, SSCs highly expressed genes not normally 

observed in the colon (MUC5AC, AQP5, TACSTD2 [TROP2], TFF2, MUC17, and MSLN) 

but rather found in other endodermal organs, most notably, the gastric epithelium (Figures 

2A and 2D; Figure S2D; Tables S4, S5, and S6). This surprising finding, along with the 

expression of differentiated cell gene signatures in SSC, led us to hypothesize metaplasia 

may underlie the pathogenesis of SSLs.

Metaplasia is a process by which differentiated cells transdifferentiate to non-native cell 

types, often occurring as a regenerative mechanism after damage. Loss of CDX2, a hindgut 

homeobox TF, in the colon is associated with an imperfect pyloric-type gastric metaplasia 

and a shift toward expression of genes more rostral in the rostral-caudal gradient (Balbinot 

et al., 2018; Tong et al., 2017). CDX2 was expressed in most colonic cell types, including 

ASCs; however, it was downregulated in SSCs, supporting a loss of regional identity in these 

cells (Figure 2A). This loss of caudal identity in SSCs was accompanied by a reversion 

to an embryonic stage, supported by a fetal gene-expression signature, including the MDK 
gene, which encodes a heparin-binding growth factor only transiently expressed in early 
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colonic development (Figures 2A and 2D; Figures S2A and S2D; Tables S4 and S5) (Park 

et al., 2005). Luminal retinoic acid-induced absorptive cell-differentiation genes (RXRA/
RARA/ALDOB) were increased in SSCs (Lukonin et al., 2020), while rostral identity genes 

suppressed in absorptive cell differentiation (ANAX10/ANXA1) were also paradoxically 

increased (Figure 2A). These gene signatures depict a loss of colonic identity and provide 

further evidence that SSCs arise from a metaplastic process.

We used TF target similarity to create a common TF regulatory network depicting the 

coordinated regulation of genes as programs and pathways. Some coordinated clusters of 

regulons, which we referred to as super-regulons, were overrepresented in ASCs versus 

SSCs, including WNT- and Hippo-driven super-regulons marked by MYC, ASCL2, TCF7, 

and TEAD1 activities (Figure 2F; Figure S2G), consistent with the role of these programs 

in the regeneration and renewal of intestinal stem cells (Ayyaz et al., 2019; Murata et 

al., 2020). For SSCs, supporting the role of a damage-induced metaplastic process, a 

super-regulon indicating interleukin signaling and microbiota interaction was observed 

(Figure 2G; Figure S2G). Specifically, upregulated transcription factor activities for SSCs 

included RELB (nuclear factor κB [NF-κB] signaling), IRF1, IRF6, and IRF7, reflecting an 

immunogenic state (Figures 2A and 2G), which was corroborated by gene set enrichment 

for microbial infection response, innate immune activation, and epithelial wound-healing 

pathways (Table S6) (Raudvere et al., 2019). Supporting the activation of interferon 

response elements, coordinated upregulation of inflammasome-related genes such as IL18 
and gasdermins further implicated responses to external pathogens as triggers of metaplasia 

(Figure 2A) (Man, 2018). Similarly, regulons related to FOSL2, KLF4, and ATF3 were 

enriched (Figure 2G; Figure S2G), drawing parallels to recent work documenting increased 

chromatin accessibility of these TF targets in a mouse model of microbiota-driven colitis 

(Ansari et al., 2020). Gene signatures classifying polyp subtypes were validated with bulk 

RNA-seq on an additional 58 ADs (36 TAs, 22 TVAs) and eight SSLs (Figure S2H). These 

results confirmed our findings of a WNT-activated program of stem cell expansion in ADs, 

and a program of gastric metaplasia, likely arising from a committed cell lineage, in SSLs.

Serrated polyps arise from a cellular origin distinct from adenomas

Because SSCs may arise from metaplasia of differentiated cells, we hypothesized that SERs 

originate from differentiated cells in a “top-down” model of tumorigenesis, compared to 

ADs arising from proliferative stem cells in a “bottom-up” fashion. To provide histological 

evidence of tumor origins, we mapped the location of neoplastic cells by multiplex imaging. 

Stem cell markers, OLFM4 and SOX9, were abundant in ADs but were significantly 

reduced in HPs and SSLs (Figures 3A and 3B; Figures S3A and S3B). Nuclear CDX2 

was detected in the normal colon and in ADs but was decreased in HPs and absent in 

SSLs (Figure 3C; Figure S3C). MUC5AC, a marker of SSCs, was highly expressed in HPs 

and SSLs but not in normal biopsies and ADs (Figure 3D; Figure S3D). Interestingly, 

MUC5AC-positive, neoplastic cells were often observed at the top of the crypt with 

normal-appearing MUC5AC-negative cells at the crypt bottom, implying a non-crypt origin 

of SERs. MUC5AC-positive cells first appeared at the luminal surface in GCHPs and 

then extended further to the crypt base in MVHPs and SSLs (Figures S3D and S3E), 

consistent with the histopathological progression of these SERs (Figure 1B) and supporting 
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the luminal surface origin of SSCs. MUC5AC-positive cells were detected in the majority 

of abnormal crypts from SERs (Figure S3F) but were largely absent in the normal colon. 

However, occasional MUC5AC staining was detected, again, at the luminal surface in 

a few specimens, and was further increased in ulcerative colitis patients (Figure S3G). 

Luminal surface colonic cells appear susceptible to damage-induced metaplasia that may 

elicit serrated polyp formation if the damage is not resolved.

We inferred transition trajectories from epithelial cells using p-Creode on batch-robust 

SCENIC regulons, which produced a stereotypical colonic differentiation hierarchy (Herring 

et al., 2018). CytoTRACE score and WNT target gene overlays identified the stem cell 

branch, which was shared with ASCs, suggesting aberrantly expanded stem cells as the 

origin of ADs (Figure 3E; Figure S3H). In marked contrast, SSCs were inferred to develop 

from absorptive progenitors and colonocytes. RNA velocity analysis on individual tumors 

largely confirmed these findings (Figure 3F; Figure S3I) (Bergen et al., 2020; La Manno et 

al., 2018). In normal specimens, velocity vectors originated from stem cells and flowed into 

differentiated cell types. ASCs were implicated to develop from stem cells, but the velocity 

vectors were reversed for SSCs, suggesting the origin of these cells to be non-stem cells.

To further infer shared origins, we determined phylogenetic distances from genetic variants 

between normal and neoplastic cells. We used DENDRO (DNA-based evolutionary tree 

prediction by scRNA-seq technology), a phylogenetic reconstruction algorithm on scRNA-

seq data that adjusts for inherent data sparsity (Zhou et al., 2020). We improved on 

DENDRO’s robustness, and exonic variants detected were further validated through WES of 

paired FFPE tissues. DENDRO reconstruction of 34 polyps showed that ASCs were more 

genetically related to crypt base stem cells than SSCs (p < 5E-02 MWU test) (Figures 

S3J and S3K; Table S1). In fact, SSCs often clustered genetically with differentiated 

colonocytes and absorptive progenitors (Figure S3J). Orthogonal methodologies produced 

histological, transcriptomic, and genetic evidence to support the hypothesis that ADs 

arise from dysregulation of the stem cell compartment, but SSLs appear to arise from a 

developmentally committed cell.

Subtype-specific features are altered during malignant progression from pre-cancer to 
cancer

We performed scRNA-seq on seven (two MSI-H, five MSS) fresh CRC specimens and 

procured a CRC scRNA-seq dataset (n = 60; 32 MSI-H, 28 MSS) from the Broad Institute 

for validation. Furthermore, we analyzed whole tumor blocks from 26 additional CRC 

patients (14 MSI-H, 12 MSS) (Table S7). WES of CRC specimens revealed expected 

mutational features in MSS CRCs following the conventional tumorigenesis pathway with 

APC (100%), KRAS (35%), and TP53 (71%) mutations (Figure S4A). MSI-H CRCs 

had fewer of these conventional mutations (33%, 0%, 7%, respectively) but more BRAF 
mutations (53% in MSI-H versus 0% in MSS). All MSI-H CRCs were hyper-mutated 

compared to MSS CRCs. Histologically, all CRCs showed invasive adenocarcinoma with 

cribriform architecture (Figure S4B), with MSI-H CRCs exhibiting mucinous features.

scRNA-seq data of malignant CRC cells revealed substantial tumor-to-tumor variability, as 

seen by others (Lee et al., 2020; Pelka et al., 2021) even after regulon-based embedding 
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(Figure 4A). Combined with our pre-cancer data, an increase in intertumoral heterogeneity 

was observed as epithelial cells transition from normal to pre-cancer to malignant cells. We 

considered that the intrinsic complexity and heterogeneity of CRC transcriptomics might 

be reduced by looking at CRC cells through the lens of pre-cancerous polyps. By using 

pre-identified gene sets from ADs and SERs, we observed that both MSS and MSI-H CRC 

cells retained aspects of their respective precursors. Comparing the two subtypes, MSS 

CRC cells overexpressed a signature of regenerative crypt base stem cells, and MSI-H CRC 

cells retained a metaplastic signature (Figures 4B and 4C; Figure S4C; Tables S4 and S5). 

These patterns were observed using another scRNA-seq dataset (Lee et al., 2020) (Figure 

S4D). To further support commonalities between pre-cancer and cancer, we classified ASCs, 

SSCs, and CRC cells by consensus molecular subtype (CMS) (Eide et al., 2017; Guinney 

et al., 2015) (Figure 4D; Table S4). ASCs and MSS CRC cells scored highly for CMS2, 

the subtype most often associated with WNT pathway dysregulation. In contrast, both SSCs 

and MSI-H CRC cells scored low for CMS2, but high for CMS1 and CMS3, which feature 

immunogenic and RAS pathway activation, respectively (Chi et al., 2009; Feng et al., 2011; 

Liao et al., 2018). None of the examined cells enriched strongly for CMS4, consistent 

with previous reports (Chang et al., 2018; Komor et al., 2018). Shared features between 

malignant cells and pre-cancerous cells provide additional evidence of precursor-cancer 

relationships.

We also examined the characteristics acquired or lost during the transition from pre-cancer 

to malignancy. MSI-H CRC cells showed relatively decreased metaplastic and fetal features 

compared to SSCs. However, key genes within the WNT-activated stem cell program 

were increased relative to SSCs (Figure 4C; Figure S4C; Tables S4 and S5). Supporting 

reactivation of stemness, CytoTRACE analysis demonstrated MSI-H CRC cells had higher 

inferred stem potential than SSCs, while scores of MSS CRC cells also were higher than 

ASCs (Figure 4E; Table S4). Gene regulatory network analysis more clearly demonstrated 

how molecular pathways were either maintained or altered during malignant transition, 

supported through GSEA (Figures 4F–4I; Figure S4E; Table S7). Both CRC subtypes 

activated their proliferative super-regulon compared to polyps, with enrichment of DNA 

synthesis and repair programs (Figures 4F–4I). The WNT signaling super-regulon was 

consistently upregulated in ASCs and MSS CRC cells (Figures 4F and 4G). For MSI-H 

CRC cells, the super-regulon describing pathogen damage response in SSCs was suppressed, 

but the WNT signaling super-regulon, previously suppressed in SERs, was activated 

(Figures 4H and 4I). The differences in super-regulon enrichment were maintained in the 

Broad dataset (Figure S4F). Activation of the WNT pathway was supported by acquisition 

of activating mutations in non-APC WNT pathway components in MSI-H CRCs, including 

RNF43 (60%), TCF7L2 (53%), ZNRF3 (33%), APC2 (27%), AXIN2 (20%), FAT1 (33%), 

FAT2 (47%), and FAT4 (40%) (Figure S4A). TCGA WES data also showed enrichment of 

non-APC WNT pathway gene mutations in MSI-H CRC (Figure S5A) (Cancer Genome 

Atlas Network, 2012). These results suggest MSI-H CRC acquired metaplasia-independent 

events by transitioning into more aggressive stem-like cells.
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Transition from metaplasia to stemness contributes to tumor heterogeneity in MSI-H CRCs

We further queried 63 bulk RNA-seq datasets from the TCGA and validated the association 

between CMS subtypes and stem/metaplastic signatures (Figure S5B). However, the data 

were noisier than scRNA-seq data on an individual tumor basis, likely due to poor data 

quality and/or additional intratumoral heterogeneity. This led us to perform spatial profiling 

using whole slide scanning of entire CRC specimens. Strikingly, none of the MSS CRCs 

(0/17) stained positive for MUC5AC, but most MSI-H CRCs (13/14) did (Figures 5A and 

5B). However, the amount of tumor area stained by MUC5AC was variable within the 

positive MSI-H CRCs. CDX2 staining followed the inverse trend; virtually all tumor cells 

in MSS CRCs were CDX2 positive, and MSI-H CRCs had variably decreased CDX2 

staining. Stem cell markers (OLFM4, SOX9) were expressed throughout MSS CRCs, 

and they uniformly lacked MUC5AC expression (Figures 5C and 5D; Figure S5C). In 

contrast, MSI-H CRCs displayed considerable intratumoral MUC5AC heterogeneity, with 

low staining in certain regions of MSI-H CRCs; these regions were positive for OLFM4 

and to some degree CDX2 (Figures 5E–5H). SOX9 was generally overexpressed in MSI-H 

CRCs, suggesting all malignant cells gained some level of stemness (Figure 5H). Focused 

analysis of a single scRNA-seq dataset validated these results. Positive MUC5AC and 

MSLN expression, coupled to loss of CDX2 expression, distinguished metaplastic cells from 

LGR5/β-catenin-expressing proliferative stem cells within the same tumor (Figures 5I, 4C, 

and 4E). We further confirmed heterogeneity of CDX2 and MUC5AC expression in a CRC 

tissue microarray using MLH1 staining to infer the microsatellite status of cells (Figure 

S5D). In multiple instances of MSI-H CRCs, we observed intratumoral heterogeneity 

characterized by mutual exclusivity of stem-like cells and metaplastic cells.

Serrated polyps associate with a cytotoxic microenvironment prior to hypermutation

Because SERs did not demonstrate hypermutation and MSI-H CRCs did, we sought to 

determine whether SERs possess a distinct tumor microenvironment at this early stage. 

We combined analyses of the non-epithelial scRNA-seq data from pre-cancers and CRCs 

and identified different cell types based on marker gene expression and their compositional 

changes between tumor subtypes (Figures 6A and 6B; Figures S6A–S6C). Most immune 

cell types were increased in polyps compared to normal tissues, including CD4+ T cells, 

although many were not different between polyp subtypes (Figure 6C; Figure S6D; 

Tables S3 and S4). Strikingly, CD8+ T cells, natural killer (NK) cells, and γδT cells 

(labeled cytotoxic cells) were significantly increased in SERs compared to ADs (Figure 

6C). The overrepresentation of cytotoxic, but not CD4+ T cells, was also observed in 

MSI-H CRCs compared to MSS CRCs, suggesting a consistent dichotomy in the adaptive 

microenvironment between subtypes regardless of hypermutation.

Gene signatures related to cytotoxicity and exhaustion within CD8+ T cells did not differ 

between ADs and SERs, but they were intensified in CD8+ T cells of MSI-H compared 

to MSS CRC (Figure S6E; Tables S4 and S5), signifying neoantigen hyper-interaction 

in the malignant, but not pre-malignant, microenvironment. FOXP3 regulon activity was 

higher in AD-derived versus normal colonic CD4+ T cells, consistent with a degree of 

Treg-dependent immunosuppression (Figure 6D). ASCs expressed a monocyte-attracting 

chemokine signature, while SSCs expressed a lymphocyte-attracting cytokine signature 
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important for establishing an adaptive immune environment (Figure 6E; Tables S4 and S5) 

(Hieshima et al., 1997; Nelson et al., 2001). An antigen-processing and presentation gene 

signature (Lee et al., 2020; Pelka et al., 2021) was significantly higher in SSCs relative to 

ASCs, which was also increased in MSI-H CRC cells relative to MSS CRC cells (Figure 

6E; Tables S4 and S5). These data illustrate the persistence of some adaptive immunity 

regulation mechanisms from pre-cancer to cancer that appear independent of hypermutation.

Multiplex imaging showed that SERs had a higher number of T cells, CD8+ T cells, and 

a higher ratio of CD8+ to CD4+ T cells compared to ADs (Figures 6F and 6G; Figures 

S6F and S6G), while other immune cell populations were not significantly different. CD8+ 

T cells infiltrated into the epithelial compartments of SERs. More CD8+ T cells were 

observed in ADs with higher mutational loads, although our analysis was underpowered 

statistically (Figure S6H). Myeloid cell abundance was not different by both scRNA-seq 

and imaging, but CD68+ macrophages were distributed throughout the AD stroma, while 

they were concentrated at the luminal surfaces of SERs, coinciding with the surface location 

of MUC5AC+ metaplastic cells (Figure 6H; Figure S6I). A similar striking distribution 

of CD68+ macrophages was reported after fecal transplant and successful immunotherapy 

response (Baruch et al., 2021), supporting the influence of epithelial-microbial interactions 

on cytotoxic immune responses. MSI-H CRCs had a heterogeneous distribution of CD8+ T 

cells mirroring the observed tumor cell heterogeneity. There was a significant enrichment of 

CD8+ T cells in MUC5AC+ metaplastic regions and reduced numbers in OLFM4+ stem-like 

regions (Figure 6I; Figures S6J–S6L). In contrast, MSS CRCs had fewer T cells throughout 

the tumors, which were homogeneously composed of OLFM4+ stem-like cells (Figure 6I; 

Figures S6J–S6L). These results strengthen the association between the metaplastic origin 

of SERs and the cytotoxic immune microenvironment and implicate immune suppression as 

tumor cells gain stemness.

Tumor cell-differentiation status shapes the adaptive immune microenvironment

To determine whether the cytotoxic response in serrated tumorigenesis is intrinsic to tumor 

cell state prior to hypermutation, we used genetically engineered mice that model the earliest 

tumorigenic events. The Lrig1CreERT2/+;Apc2lox14/+ is a model of the AD pathway, resulting 

in adenomatous tumors in the distal colon (Powell et al., 2012). Driving a Braf-activating 

mutation (Lrig1CreERT2/+;BrafLSL-V600E/+) did not result in macroscopic tumors but induced 

villiform metaplasias in the proximal colon (Figure 7A). Apc mutant tumors had elevated 

β-catenin staining and a reduced number of CD8+ T cells compared to control normal 

colon, consistent with human ADs and MSS CRCs. In contrast, Braf mutant lesions were 

associated with increased CD8+ T cell infiltration, strikingly, only in the differentiated cell 

compartment and not in mutant crypts (Figures 7B and 7C). Similar results were observed 

in a parallel Kras-activating mouse model (Lrig1CreERT2/+;KrasLSL-G12D/+) (Figures S7A–

S7C). Thus, mutant differentiated cells in lesions, but not stem cells, drive the cytotoxic 

immune microenvironment.

To determine how a differentiated cell versus stem cell state influences the immune 

microenvironment, we normalized the genetic event by driving the same Apc mutation from 

stem (Lrig1CreERT2) versus non-stem (Mist1CreERT2) cells. While Lrig1+ cells are bona fide 
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stem cells (Powell et al., 2012), lineage-tracing studies showed Mist1+ cells are non-stem 

cells in the proximal colon under both homeostasis and DSS-induced damage (Figures S7D–

S7F). Using immunostaining and transcriptomics, we determined Mist1+ cells represent a 

subset of committed (goblet/enteroendocrine) cells outside the colonic crypt base (Figures 

S7G–S7K).

Importantly, Mist1+ cells initiated colonic tumors (abbreviated as Mist1 tumors) with 

biallelic recombination of Apc (Mist1CreERT2/+; Apc2lox14/2lox14) followed by 2.5% DSS 

damage, representing a non-stem-driven tumor model. At most, one or two Mist1 tumors 

developed per mouse in the proximal versus distal colon by a 7:1 ratio (Figures 7D and 

7E; Figures S7L and S7M), which differs from the distal colon predominance of tumors 

in the Lrig1CreERT2/+; Apc2lox14/+ model (Powell et al., 2012). We developed a stem cell-

driven tumor model (abbreviated as Lrig1 tumors) for comparison, using Lrig1CreERT2/+; 
Apc2lox14/2lox14 mice and focal Cre activation, followed by DSS. Blinded histological 

assessment revealed that Lrig1 tumors were high-grade dysplastic tumors, but Mist1 tumors 

were low grade (Figure S7N). To decipher the molecular landscape of the two tumor types, 

we performed scRNA-seq on tumor tissues along with control colons and identified cells 

specific to tumors, including abnormal Paneth cells (Figures 7F–7H; Figure S7O). Due to 

a common WNT-driven mutational process, tumor-specific cells (TSCs) from both tumor 

types formed an Lgr5-overexpressing cell population without a metaplastic gene signature 

(Figures 7G–7I). Moreover, both tumor types exhibited elevated β-catenin staining reflecting 

WNT activation (Figure 7E; Figure S7M).

While the mutational processes between the tumor types were identical, we revealed marked 

differences in the immune microenvironments. Mist1 tumors, similar to SERs, harbored 

higher proportions of CD8+ T cells (Figures 7J–7M; Figures S7P and S7Q). These cells 

expressed markers of active cytotoxicity and killing effectors (Figure 7N; Figure S7Q; 

Table S5). Lrig1 tumors possessed a distinct population of dysfunctional CD4+ T cells that 

may have transitioned into anergy or exhaustion (Figures 7J–7M; Figure S7P). These cells 

expressed immunosuppressive markers, such as Pdcd1 (PD1), Ctla4, Prdm1, and Havcr2 
(TIM3), as well as genes of the Foxp3 regulon, implicating dysfunctional T cells exhibiting 

regulatory characteristics (Figure 7N; Figure S7Q; Table S5). Strikingly, Lrig1 tumors, but 

not Mist1 tumors, had a large infiltration of myeloid cells that include tumor-associated 

macrophages and myeloid derived suppressive-like cells, and distinct neutrophils expressing 

Cd274 (PDL1) (Figures 7J–7N; Figures S7P and S7Q; Table S5). Multiplex imaging showed 

a significantly higher number of tumor-infiltrating CD8+ T cells but not CD4+ T cells in 

Mist1 tumors compared to Lrig1 tumors (Figures 7O and 7P; Figures S7R and S7S). In 

separate mouse models with identical Apc mutations, tumors originating from differentiated 

cells promote a cytotoxic microenvironment, while tumors driven by stem cells associate 

with a suppressive immune microenvironment.

To relate epithelial stemness to microenvironmental differences, we applied CytoTRACE to 

show that Lrig1 TSCs had significantly higher inferred stem potential, and expressed more 

stem and less differentiated cell genes than Mist1 TSCs (Figure 7Q; Figure S7T). In turn, 

Lrig1 tumor cells were significantly more successful in forming organoids than Mist1 tumor 

cells (Figure 7R). Gleaning from previous work defining a gradient of stemness (ISCI > 
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ISCII > ISCIII) in normal intestinal stem cells associated with immune cell interactions 

(Biton et al., 2018), we found Lrig1 TSCs exhibited a higher ISCI score while Mist1 TSCs 

exhibited higher ISCII and ISCIII scores (Figure 7S). Consistent with ISCII’s and ISCIII’s 

increased antigen-presentation capacities, Mist1 TSCs also had increased expression 

of antigen-presentation machinery (Figures 7T and 7U). Lrig1CreERT2/+;BrafLSL-V600E/+ 

villiform metaplasias also exhibited increased epithelial expression of antigen-presentation 

machinery compared to Lrig1CreERT2/+;Apc2lox14/+ tumors, but only in the differentiated 

and not in the stem compartment (Figure S7U). GSEA demonstrated Mist1 TSCs were 

significantly enriched for genes associated with immune-mediated processes, with antigen 

presentation being the most significant (Figure S7V). These results demonstrate how the 

degree of stemness within neoplastic compartments, as dictated by cellular origins, is linked 

to the tumor immune microenvironment.

To validate expression of antigen-presentation machinery actually reflects function, we 

assayed for antigen processing and presentation in Lrig1 and Mist1 tumor-derived tumoroids 

using the class 2 antigen ovalbumin (OVA). Mist1 tumoroids processed and presented 

more antigen than Lrig1 tumoroids, reflected by endocytosis and proteolysis of DQ-OVA 

coupled to I-A/I-E staining indicating surface antigen presentation (Figure 7V; Figure 

S7W). In support of this observation, Mist1 tumoroids had an increased ability to stimulate 

T cell proliferation upon presentation of OVA peptide compared to Lrig1 tumoroids 

(Figure 7W; Figure S7X); suppression of this effect was observed in Lrig1 tumoroids 

compared to normal distal colonoids. Human tumoroid assays revealed a decrease in 

stem capacity alongside an increased antigen-presentation gene signature in human SERs 

compared to ADs (Figure S7Y; Figure 6E). Between tumors, cytotoxic cell infiltration 

positively correlated with metaplastic signatures in SERs (Figure S7Z). Differentiation 

media, interferon-γ (IFN-γ) (representative of type 1 immune environment found in SERs), 

or the two combined were used to induce human AD tumoroids. All three conditions 

increased expression of antigen-presentation machinery, although the effect of IFN-γ 
was greater (Figure S7A′). In the human colon epithelium, expression of the antigen-

presentation machinery was inversely proportional to stemness (Figure S7B′; Tables S4 

and S5). Our data implicate how stemness influence antigen-presentation ability, which may 

partly underlie the differential stimulation of a cytotoxic immune response.

DISCUSSION

By definition, metaplasia is a process by which differentiated cells transition into cell types 

non-native to the tissue. Metaplasia often arises in response to damage of the epithelium, 

which activates a regenerative program to direct the conversion to reparative mucous-

secreting lineages resembling those of pyloric glands (Goldenring, 2018). Metaplastic 

programs have been observed in other organs of the GI tract (Goldenring and Mills, 2021). 

In SERs, we observed misexpression of genes found in the gastric pylorus, reversion to 

a fetal gene program, and loss of regional identity with reduced CDX2 expression. It is 

important to distinguish metaplastic transitions from dedifferentiation of committed cells 

into stem cells (Buczacki et al., 2013; van Es et al., 2012; Schonhoff et al., 2004; Tetteh 

et al., 2016), because the latter still retains the identity of the original organ. We propose a 

new paradigm in which damage to the proximal colon, possibly from microbiota, initiates 
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a metaplastic cascade that may eventually select for survival/proliferative pathways, such 

as activating BRAF mutations. Reversion to a fetal developmental identity is a feature of 

WNT-independent tumorigenesis found in recent mouse models (Han et al., 2020), which 

can be triggered by MAPK activation either via Braf-activating mutations, epithelial damage 

response, or stress triggered by mismatch repair deficiency (Bommi et al., 2021; Leach et 

al., 2021). Critically, Braf mutations in mouse models must be accompanied by a “second 

hit,” such as perturbation of transforming growth factor-β (TGF-β) signaling, for tumor 

induction (Han et al., 2020; Leach et al., 2021; Tong et al., 2017). This “second hit” may be 

provided by microenvironmental signals.

Methylation of the CDX2 locus has been frequently observed in serrated tumors, potentially 

leading to its downregulation, and loss of Cdx2 can provide the “second hit” in a 

serrated tumorigenesis model (Tong et al., 2017). Increased methylation has been found 

to be dependent on extrinsic factors such as aging (Tao et al., 2019), consistent with the 

preponderance of BRAFV600E mutations in MSI-H CRCs in older individuals (Lieu et al., 

2019). Shown more recently, microbial dysbiosis can also be an environmental trigger for 

hypermethylation (DeStefano Shields et al., 2021). Antibiotic suppression of the microbiota 

reduces colonic tumorigenesis in a Braf mutant model (Leach et al., 2021), whereas in 

another study, enterotoxigenic Bacteroides fragilis (ETBF) infection is a required trigger 

for tumorigenesis in the proximal mid-colon in a Braf mutant mouse model (DeStefano 

Shields et al., 2021). In the latter report, the earliest events of the ETBF response in 

epithelial cells prior to tumor formation occur at the colonic mucosal surface, where colonic 

epithelial cells and luminal contents interact. The importance of the microbiota to this type 

of tumorigenesis is underscored by the co-occurrence of polymicrobial biofilms in ~90% 

of right-sided CRCs, which are enriched for serrated tumors, versus ~12% biofilm-positive 

left-sided CRCs (Dejea et al., 2014). Considering the crypt-to-lumen vertical axis of the 

colonic mucosa, differentiated cells at the luminal surface are exposed to the microbiota, 

are more susceptible to damage, and utilize repair mechanisms reliant on cellular plasticity. 

Conversely, stem cells residing in the crypt base are more protected from luminal stressors 

(Kaiko et al., 2016). We speculate that adenomatous and serrated tumorigenesis originate 

from fundamentally different mechanisms: the former from DNA replication-induced 

mutations in continually renewing stem cells and the latter from damage and repair at the 

colonic surface triggered and maintained by foreign stressors in the luminal environment. 

Distinct origins of neoplastic cells then select for different mutational pathways required for 

tumorigenesis.

Several of our findings have clinical value. SSLs can be challenging to identify as the 

diagnosis is based on the presence of a single “architecturally distorted serrated crypt” as 

defined by the recently revised WHO classification (Kim and Kang, 2020). Our results 

suggest biomarkers, such as MUC5AC staining coupled to the absence of CDX2, may 

confirm the diagnosis of lesions suspicious for SSLs. In addition, the cytotoxic immune 

response in SSLs precedes hypermutation in human tumors, which is consistent with 

recent mouse modeling showing the same order of events (DeStefano Shields et al., 2021). 

Hypermutation is a characteristic of MSI-H CRCs, and the resulting high neoantigen 

load is thought to be the critical driver of the cytotoxic microenvironment. What then 

drives the cytotoxic immune response without hypermutation? Our data implicate that 
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tumor cells with a differentiated state, by virtue of their previous exposure to the luminal 

microenvironment, are more adept at antigen presentation and setting up an active immune 

environment. Differentiated goblet cells that potentially develop from Mist1+ precursors 

have shown capacity for luminal antigen passage (Knoop et al., 2015). How tumor cells with 

a differentiated phenotype acquire and maintain immuno-stimulating properties remains 

to be determined. In contrast, acquisition of stem cell characteristics by MSI-H CRCs 

contributes to spatial intratumoral heterogeneity: metaplastic compartments retain their 

association with cytotoxic immune cells, and stem cell compartments become associated 

with immunosuppressive cells and signals. In addition to mutations, transition to stemness 

can also be modulated by recruitment of fibroblasts that express stem cell niche factors 

(Pelka et al., 2021). Colon cancer stem-like cells have been shown to downregulate their 

antigen-presentation machinery (Tallerico et al., 2013; Volonté et al., 2014). The degree 

to which MSI-H CRCs acquire stem-like properties is variable; future studies will be 

needed to determine whether acquisition of stemness in these cancers impacts the likelihood 

of an immunotherapeutic response. The top-down spatial organization, differentiated and 

metaplastic transcriptional program, and cytotoxic immune environment associated with 

SSLs may open novel strategies for interception of cancer progression, including better 

informed interval guidelines for surveillance, chemoprevention, or pre- and pro-biotic 

therapies.

LIMITATIONS OF THE STUDY

Since our study profiled largely small polyps, the material for multi-omic analyses was 

limiting, as seen from our inability to obtain high-quality DNA from a number of samples. 

Enriching for specific cell populations was not performed due to potential material loss, 

which contributed to the heavy epithelial representation in our scRNA-seq data, and 

non-comprehensive characterization of some non-epithelial cell populations. Longitudinal 

analysis of polyps was not possible due to complete colonoscopic removal of polyps 

identified. Finally, while we performed functional validation experiments in vitro and in 
vivo, the exact molecular pathway(s) by which tumor cells maintain the characteristics of 

their origins and when the immune system engages tumor neoantigens remain undefined.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by Lead Contact: Ken S. Lau, PhD at 

ken.s.lau@vanderbilt.edu.

Materials availability—This study did not generate any unique reagents.

Data and code availability

• The raw single-cell RNA sequencing (scRNA-seq), final QC-filtered data for 

analysis, as well as all raw imaging data generated from this study are available 

on the HTAN data portal: https://data.humantumoratlas.org/. This paper also 
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analyzes existing, publicly available data. These accession numbers for the 

datasets are listed in the key resources table.

• All original code used to process scRNA-seq data has been deposited at https://

github.com/Ken-Lau-Lab/STAR_Protocol and is described in detail in (Chen 

et al., 2021). A code repository containing the analysis of post-processed 

sequencing data, as performed in this study, can be found at https://github.com/

Ken-Lau-Lab/STAR_Methods. DOIs are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECTS DETAILS

Colorectal Molecular Atlas Project (COLON MAP)—COLON MAP participants 

were recruited from adults undergoing routine screening or surveillance colonoscopy or 

surgery for resection of a polyp at Vanderbilt University Medical Center in Nashville, 

TN, USA that began in March 2019 and is still on-going, participant characteristics are 

shown in Table S2. The participants included in this study are the first 56 participants from 

COLON MAP with polyps collected for analysis by scRNA-seq. All participants provided 

written informed consent approved by the Vanderbilt University Medical Center Institutional 

Review Board.

Eligibility criteria for COLON MAP include ability to provide informed consent, free-living 

(not a resident of an institution), ability to speak and understand English, aged 40 to 

75 years, permanent residence or telephone, and no personal confirmed or suspected 

histories of hereditary polyposis syndromes, familial or genetic colorectal cancer syndromes, 

inflammatory bowel disease, primary sclerosing cholangitis, colon resection or colectomy, 

cancer, neoadjuvant therapy, or cystic fibrosis. Eligible individuals were first identified from 

the schedule within the electronic health record (EHR) and assigned a random number. 

Potential participants undergoing colonoscopy were further selected using a stratified 

weighted random sampling design to increase the inclusion of non-White or Latinx 

participants in the study. Within strata of colonoscopy appointment day and time, random 

sampling was weighted by EHR-derived racial/ethnic category (White non-Latinx versus all 

other races and ethnicities) such that non-White or Latinx patients were first selected at 

random within colonoscopy day and time. White, non-Latinx patients were then selected at 

random within remaining time slots.

Following selection, study staff conducted a manual review of the EHR to confirm study 

eligibility. The majority of eligible individuals were mailed a letter to introduce the 

study and a few days later were attempted to be reached by telephone to discuss their 

willingness to participate in the study. Individuals who were willing to participate completed 

an additional screening form to confirm eligibility, and eligible and willing individuals 

completed an interviewer-administered, computer-assisted telephone interview to solicit 

information on personal health history, family history of cancer and polyps, lifestyle factors, 

and other risk factors for colorectal polyps and cancer. When the schedule of the study 

staff would allow, individuals who were not reached by telephone were approached in 
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the colonoscopy waiting room or at the surgical appointment to determine eligibility and 

willingness as well as some individuals who did not receive a mailing.

For histopathological diagnosis, standard clinical histology was performed. Information 

on the colonoscopy or surgery and diagnosis was initially abstracted from the EHR 

colonoscopy, surgery, and pathology reports by study staff including in vivo size and polyp 

location. Two study pathologists additionally reviewed each case to standardize diagnoses 

and identify HP subtypes which are not part of routine clinical practice. For polyps which 

were partial due to the sampling for this study, the portion which had been reserved for 

clinical diagnosis was reviewed. SSLs were defined using the World Health Organization 

criteria of at least one distorted, dilated, or horizontally branched crypt within the polyp 

(Rex et al., 2012). Subtypes of ADs were identified using standard diagnostic criteria based 

on the villous component (tubular (< 25% villous component), tubulovillous (25%–74% 

villous component), and villous (≥75%)). HPs were classified as microvesicular HP or 

goblet cell HP (Leggett and Whitehall, 2010). In this analysis, participants were classified 

based upon the diagnosis of their index polyps but may have had synchronous polyps with 

the same or different histopathologies as shown in Table S1.

Cooperative Human Tumor Network—Tissue was collected for COLON MAP from 

33 colorectal cancer (CRC) patients via the CHTN Western Division. These participants 

were aged between 21 and 82 years of age from both sexes (51.5% male, 48.5% female) 

and were white (75.8%), Black (21.2%), or Asian (3.0%). De-identified clinical metadata 

from each patient was extracted from clinical pathology reports in accordance with policies 

from CHTN. Tumors were classified by grade and staging, ranging from G1 to G3 and I to 

IV, respectively. The majority (75.6%) of the tumors were classified as G2, or moderately 

differentiated, and staged primarily as IIA (30.3%) and IIIB (33.3%). Additionally, 51.5% 

were microsatellite stable (MSS) and 49.5% were microsatellite-high (MSI-H). Participant 

characteristics of the 33 CRC patients obtained from the CHTN Western Division are shown 

in Table S7.

A colorectal carcinoma progression tissue microarray (TMA) was also provided by the 

CHTN Mid-Atlantic Division which included cores from 54 individuals. The mean (standard 

deviation) age of the individuals included on the TMA was 56.9 (14.7), 56.9% were men, 

and 43.1% were women. Race and ethnicity were not provided. Information on the TMA is 

available at https://chtn.sites.virginia.edu/chtn-crc2

Tennessee Colorectal Polyp Study—The TCPS was a large colonoscopy-based case-

control study among individuals undergoing colonoscopy in Nashville, Tennessee, USA 

between February 2003 and October 2010. Institutional approval for human subjects 

research was provided by the VUMC and VA Institutional Review Boards and the VA 

Research and Development Committee. TCPS participants were aged between 40 to 75 

years of age and had no personal history of colon resection, cancer, polyposis syndrome, 

inflammatory bowel disease, hereditary colorectal cancer syndromes, or previous adenoma. 

In TCPS, the diagnostic criteria for polyps were identical to the criteria used for COLON 

MAP. Additionally, all polyps were reviewed by one of the COLON MAP pathologists. 

Features of these archived participants and polyps included are shown in Table S2.
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Detailed methods have been previously published (Davenport et al., 2018). In this analysis, 

a subset of TCPS formalin-fixed paraffin-embedded polyps which were previously analyzed 

by bulk RNA-seq were included to validate findings from the COLON MAP scRNA-seq 

analysis. In addition, a subset of fresh frozen polyps which were selected for targeted gene 

sequencing were also included.

Mouse models—All animal experiments were performed under protocols approved by 

the Vanderbilt University Animal Care and Use Committee and in accordance with NIH 

guidelines. Mice were 8 weeks old at the start of experiments and were humanely euthanized 

at the end of experiments according to approved guidelines. Animal weights were recorded 

at initiation of experiment and at the time of euthanasia. All animals used in this study 

were predominantly of the C57BL/6J background and both sexes were used. Littermate 

controls were used for experiments when possible. All animals were housed 2 to 5 per cage 

in a controlled environment in standard bedding with a standard 12-hour daylight cycle, 

cessation of light at 6 PM, and free access to standard chow diet and water. Experiments 

were conducted during the light cycle, excluding continuous dietary interventions.

Human organoids—Polyps were dissociated and washed as described in the COLON 

MAP scRNA-seq, Encapsulation and Library Generation section. After dissociation, 

cells were washed 3 times with PBS containing 10 μM ROCK inhibitor (STEMCELL 

Technologies) and pelleted by quick-pulse centrifugation for 7 s. Human organoid 

models were generated from COLON MAP individuals of both sexes (70% female, 30% 

male). Polyp-derived cells were grown with Human IntestiCult organoid growth media 

(STEMCELL Technologies) supplemented with 10 μM Y-27632, 10 nM Gastrin I (Sigma-

Aldrich), 1 mM N-acetyl-L-cysteine (Sigma-Aldrich), 500 nM A83–01 (Tocris), 50 ng/mL 

FGF-2 (Thermo Fisher), 100 ng/mL IGF-1 (BioLegend), 100 μg/mL Primocin (InvivoGen), 

and Matrigel (Corning) in a 3:1 ratio of Matrigel to media. Media was replaced every 

2–3 days, and passaging was performed by dissociating the organoids in TrypLE Express 

(Thermo Fisher) with 10 μM Y-27632 for 15 minutes at 37°C while shaking and triturating.

Mouse organoids—Mouse organoids were generated from the same pool of mice used 

in mouse model experiments, with both sexes being used. Mouse tumors were dissociated 

using TrypLE Express, and cell pellets were resuspended in Matrigel and seeded in 25 μL 

droplets in a 24-well or 12-well plate. Once solidified, samples were incubated in 1 mL 

Mouse IntestiCult culture medium (STEMCELL Technologies) with 100 μg/mL Primocin 

for 5 days. Fresh media was replaced on day 3. Passaging was performed similarly to human 

organoids.

METHOD DETAILS

COLON MAP biological specimen collection and processing, blood and oral 
rinse—Prior to the procedure, an oral mouthwash rinse sample was collected from 

participants. Blood was also collected through the IV line, prior to colonoscopy, in EDTA 

and serum tubes. The EDTA and serum samples were spun at 1,500 g for 10 minutes, using 

a refrigerated centrifuge (at 4°C). The plasma was pipetted into four sterile 2ml cryovials, 

white blood cells were aliquoted into two 2ml vials, and red blood cells were stored in 
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two 2ml vials after being washed two times with cold saline solution. Serum was pipetted 

into four 2ml vials and the blood clot into two 2ml vials. The mouth rinse samples were 

centrifuged, and the pellets were suspended using TE buffer, then aliquoted into a 2ml vial. 

All samples were placed into —80°C freezers for storage until use.

COLON MAP biological specimen collection and processing, colorectal tissue
—During the colonoscopy, the gastroenterologist used biopsy forceps to collect normal 

appearing mucosa samples from the ascending and descending colon for all participants. 

One of the biopsies from each colon segment was placed into RPMI. Any polyps were 

removed during the colonoscopy per standard clinical practice. In this analysis, the first 

polyp which was removed from a participant that was larger than 0.5 cm was selected for 

scRNA-seq analysis (index polyp). Polyps which were removed intact were bisected along 

the vertical axis using a sterile razor blade and half was placed in RPMI. For polyps which 

were removed piecemeal, the second largest piece was placed in RPMI. The other portions 

of the polyps were placed into formalin for diagnosis and fixed and processed using standard 

clinical practice in the Vanderbilt Pathology Laboratory. All polyps which were placed in 

RPMI were immediately transported to the research lab for use in scRNA-seq analysis.

COLON MAP bulk DNA extraction—For germline, DNA was isolated from thawed 

buffy coat or mouth rinse samples using a QIAmp DNA kit (QIAGEN). For tumors, DNA 

for whole exome sequencing (WES) was purified with the truXTRAC FFPE microTUBE 

DNA Kit-Column Purification kit (Covaris). In brief, tumor tissues were scraped from 1–5 

of 10 mm FFPE sections, deparaffinized using xylene, and lysed in an optimized lysis buffer 

that contains proteinase K. Following the proteinase K digestion to release DNA from the 

tissue, a higher temperature was used incubation to reverse formalin crosslinking alongside 

RNase treatment using RNase A (Thermo Fisher). The DNA and RNA samples were stored 

at −80°C before being used for assays.

COLON MAP whole exome sequencing and alignment—Standard WES was 

performed on S4 flow cells on NovaSeq6000 (PE150) to the targeted coverage. WES reads 

were aligned to the human reference genome hg19 using BWA (Li and Durbin, 2009), sorted 

and indexed by Sambamba (Tarasov et al., 2015). Duplicated reads were removed by the 

mark duplicates function with Picard. Somatic mutations were called using sequenced DNA 

extracted from specimens detailed in the COLON MAP Biological Specimen Collection and 

Processing, Blood and Oral Rinse section. These somatic mutations were then called using 

GATK4 Mutect2 in “normal-tumor” paired mode (Van der Auwera et al., 2013).

COLON MAP scRNA-seq, single-cell encapsulation and library generation—
Colonic biopsy samples were first placed into RPMI solution, minced to approximately 

4mm2, and washed with 1x DPBS. These samples were then incubated in chelation buffer 

(4mM EDTA, 0.5 mM DTT) at 4 °C for 1 h 15 min. Then, the resulting tissue suspension 

was dissociated with cold protease and DNase I for 25 minutes (Banerjee et al., 2020; Liu 

et al., 2018). This suspension was titurated throughout the process, every 10 minutes, then 

washed three times with 1x DPBS before encapsulation. Cells were encapsulated using a 

modified inDrop platform (Klein et al., 2015), and sequencing libraries were prepared using 
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the TruDrop protocol (Southard-Smith et al., 2020). Libraries were sequenced in a S4 flow 

cell using a PE150 kit on an Illumina NovaSeq 6000 to a target of 150 million reads.

COLON MAP scRNA-seq, alignment and droplet matrix generation—We 

demultiplexed, aligned, and corrected the detected read counts of these libraries with 

the DropEst pipeline (Petukhov et al., 2018), using the STAR aligner with the Ensembl 

reference genome (Dobin et al., 2013), GRCh38 release 25. This was paired with the 

corresponding GTF annotations. The protocol for running this pipeline is described by 

(Chen et al., 2021).

COLON MAP scRNA-seq, droplet matrix quality control—We identified high-

quality, cell-containing droplets and their respective barcodes through the joint application 

of cumulative sum inflection point thresholding, our dropkick QC algorithm (Heiser et al., 

2021), and prior-knowledge gene expression profiling. This droplet matrix was processed as 

an AnnData object using our preprocessing pipeline which utilizes the Scanpy toolkit (Wolf 

et al., 2018). First, we ran dropkick with 5-fold cross validation on the unprocessed droplet 

matrix, which assigned each barcode a probability of being a high-quality cell. Second, the 

droplet matrix was preprocessed for low dimensional analysis through finding the inflection 

point of the cumulative sum curve, and droplets with low information content were removed. 

Third, the remaining cells were normalized to the median number of counts per single-cell 

library per dataset, inverse hyperbolic sine transformed, and then scaled as a Z-score. Fourth, 

normalized matrices were projected into 2 dimensions by using its 50 principal component 

decomposition to initialize a UMAP (McInnes et al., 2018). Fifth, gene expression and 

dropkick probability scores were overlaid and checked for consistency. The genes overlaid 

were based on prior knowledge of the colonic epithelial markers, deferring to dropkick 

scores when no markers were found. Sixth, the selection of the final set of high-quality 

cell-containing droplets were determined by setting a binarization threshold on the dropkick 

probability scores, given concordance to marker gene expression and other general quality 

metrics such as total counts, mitochondrial count percentage, and transcriptional diversity. 

The full protocol for running this QC pipeline is described by (Chen et al., 2021).

CHTN bulk DNA extraction of fresh frozen samples—Fresh frozen samples were 

stored in Tissue-Tek O.C.T. (Fisher Scientific) compound until ready for processing. These 

samples were washed in cold 1x PBS followed by centrifugation before using the QIAGEN 

DNeasy Blood and Tissue kits (QIAGEN) for DNA extraction. All following processing 

was performed according to the manufacturer’s guidelines. The DNA extract collected from 

these samples were sequenced and aligned as detailed in the COLON MAP Whole Exome 

Sequencing (WES) and Alignment section.

COLON MAP and CHTN TMA MxIHC—MxIHC was performed by iterative antibody 

staining and chromogen removal based on the protocol in (Tsujikawa et al., 2017). 

Chromogen was removed between sequential rounds through sequential alcohol baths, 

and antibody was stripped by high temperature (95°C for 15 minutes). Single antibody 

stains using 3,3′-Diaminobenzidine were performed using standard protocols. Incubation 
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and detection conditions are listed in the methods github repository: https://github.com/Ken-

Lau-Lab/STAR_Methods/blob/main/Methods_Tables.xlsx (Methods Table 1)

COLON MAP and CHTN TMA MxIF—Cyclical antibody staining, detection, and dye 

inactivation was performed as described previously by (Gerdes et al., 2013). Briefly, 

fluorescence imaging was performed on a GE IN Cell Analyzer 2500 using the Cell DIVE 

platform. Images were acquired at x200 magnification with exposure times determined for 

each antibody. Antibody reagents are listed in the Key Resources Table. Staining sequence, 

conditions, and exposure times are listed in tables found in the methods github repository: 

https://github.com/Ken-Lau-Lab/STAR_Methods/blob/main/Methods_Tables.xlsx (Methods 

Table 2). For each round of staining, DAPI images were aligned using rigid transformations 

to the first imaging round. The registered images were corrected for uneven illumination and 

autofluorescence was removed for each channel.

TCPS bulk DNA and RNA extraction—DNA was extracted from FFPE tissue sections 

using QIAamp DNA FFPE Tissue Kit (QIAGEN), following the manufacturer’s instructions. 

Briefly, tumor tissues were scraped from 1–5 of 10 μm FFPE sections, deparaffinized using 

xylene, and lysed under denaturing conditions with proteinase K. The sample lysate was 

incubated at 90°C to reverses formalin crosslinking and then applied to a QIAamp MinElute 

spin column, where DNA was captured on a silica membrane. The genomic DNA was then 

washed and eluted from the membrane.

DNA and total RNA were extracted from fresh frozen polyps and purified using QIAGEN’s 

AllPrep DNA/RNA/miRNA Universal Kit (QIAGEN), following the manufacturer’s 

instructions. Briefly, the frozen tissue samples were first disrupted and homogenized using 

Lysing Matrix E (MP Bio) by shaking the tubes on a bead-beater at 5.5 m/sec for 30 

s. The lysate was then passed through an AllPrep DNA Mini spin column. This column 

allows selective and efficient binding of genomic DNA. Following on-column Proteinase 

K digestion, the column was then washed and pure, ready-to-use DNA was eluted. Flow-

through from the DNA Mini spin column was then digested by Proteinase K in the presence 

of ethanol and applied to the RNeasy Mini spin column, where the total RNA binds to 

the membrane. Following DNase I digestion, contaminants were efficiently washed away 

and high-quality RNA was eluted in RNase-free water. The quantity and quality of the 

DNA/RNA samples were checked by Nanodrop (E260/E280 and E260/E230 ratio) and by 

separation on an Agilent BioAnalyzer.

TCPS targeted DNA sequencing and alignment—The list of candidate genes 

included in the targeted sequencing was developed from a literature review of candidate 

mutations which showed 1) evidence that mutation is common in adenoma (> 5% of 

adenomas), 2) evidence that the mutation is associated with or predictive of adenoma 

recurrence in previous studies, 3) evidence that mutation is associated with clinically 

more significant adenoma (i.e., advanced adenoma or multiplicity), 4) evidence that 

mutation is associated with colorectal field carcinogenesis, and 5) evidence that mutation 

is associated with colorectal cancer aggressiveness and survival. In addition, additional 

candidate mutations were identified from potential mutations observed in Lrig1-Cre:Apc 

adenomas. All primer development and next-generation sequencing were conducted by 
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Covance. Sequencing depth was 500X. Targeted sequencing reads were aligned to the 

human reference genome hg19 using BWA (Li and Durbin, 2009),and then were sorted 

and indexed by Sambamba (Tarasov et al., 2015). Alignments were further refined, and 

variants were called using GATK Best Practices tools (Van der Auwera et al., 2013), 

including mark duplicates with Picard, base quality-score recalibration, and variant calling 

with HaplotypeCaller and GenotypeGVCFs (Poplin et al., 2017). SNPs were filtered using 

GATK VariantFiltration function with the parameters “QD < 2.0 ‖ Qual < 30.0 ‖ FS > 60.0 ‖ 
SOR>3.0 ‖ MQ < 40.0 ‖ MQRankSum < —12.5 ‖ ReadPosRankSum < —8.0,” while indels 

were filtered with the parameters “QD < 2.0 ‖ Qual < 30.0 ‖ FS > 200.0 ‖ ReadPosRankSum 

< —20.0.” The variants with a minor allele frequency > 0.1% in ExAC, gnomAD, TOPMed 

or 1000 Genomes were also removed. The functional effects of variants were annotated by 

ANNOVAR (Wang et al., 2010; Yang and Wang, 2015).

TCPS bulk RNA sequencing and alignment—Bulk RNA-sequencing was performed 

by Aros Applied Biotechnology A/S. This process involves the initial QC on an Agilent 

Bioanalyzer, with a minimum quality threshold of the DV200 at 30%. Total RNA-seq 

libraries which pass this QC threshold are prepared alongside a high-quality human 

reference RNA control. 100ng of RNA per sample is input to an Illumina TruSeq RNA 

Access Library Prep Kit, with protocol version 0.2. The yielded libraries undergo another 

round of QC through qPCR and quantified with a Qubit 2.0 Fluorometer, using its 

corresponding DNA BR Assay kit (Qubit), and size profiled on an Agilent Bioanalyzer. 

Pools of 4 libraries in equimolar amounts are created and undergo a final round of QC. 

These pools are loaded onto paired-end flow cells of a HiSeq2500 equipped with a cBot for 

sequencing at: 101 read cycles, 7 index cycles, and 101. The samples will be sequenced on 

a HiSeq2500 using 101 cycles for read 1, 7 index reads, and another 101 cycles for read 

2. Following sequencing data generation, the reads are demultiplexed through Illumina’s 

Genome Studio CASAVA software, which detected an average of 120 million reads per 4 

sample pool.

COLON MAP pre-cancer organoid replating efficiency assay—COLON MAP 

samples that successfully formed organoids were dissociated and counted using a Bio-RAD 

TC20 automated cell counter and plated at 1,000 cells/well in 5 μL Matrigel domes in a 96-

well plate. Organoids were imaged and counted using an inverted microscope (Fisherbrand) 

after 8 days in culture. Patient IDs were matched to histopathology results after compilation 

and tabulation of results. GraphPad Prism 9 was used for plotting and statistical analysis 

using unpaired t-tests.

COLON MAP pre-cancer organoid differentiation assay—COLON MAP organoids 

were cultured in appropriately supplemented Human IntestiCult organoid growth media 

(OGM) for 3 days. They either remained in OGM for control or switched to supplemented 

Human IntestiCult organoid differentiation media (ODM) (STEMCELL Technologies) for 

3 more days. For IFN gamma treatment, human recombinant IFN-gamma (Biolegend) was 

added to each media condition at 100 ng/mL for 24 hours prior to harvesting.
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Murine lineage tracing—For homeostatic lineage tracing studies, 

Lrig1CreERT2/+;Rosa26LSL-EYFP/+ mice were injected intraperitoneally (i.p.) for 3 

consecutive days with 2.5 mg tamoxifen (Sigma-Aldrich; T5648) in corn oil, while 

Mist1CreERT2/+;Rosa26LSL-EYF/+P were injected i.p. for 3 consecutive days with 5 mg 

tamoxifen. Mice were euthanized 24 h, 10 days, and 28 days later. For damage-induced 

lineage tracing, Mist1CreERT2/+;Rosa26LSL-EYFP/+ and Mist1CreERT2/+;Rosa26mT/mG/+ mice 

were injected i.p. for 3 consecutive days with 5 mg tamoxifen, and were then administered 

2.5% DSS (TdB Consultancy; Batches DB001–37, DB001–42) in drinking water for the 

following 6 days. After cessation of DSS, mice were euthanized 24 h and 28 days later.

Murine induction of recombination using different promoters—To recombine 

genes, Lrig1CreERT2/+;BrafLSL-V600E/+ and Lrig1CreERT2/+;Apc2lox14/+ mice were induced 

and had their tissues harvested using established protocols (Kondo et al., 2020; Powell et al., 

2012). Tissues were harvested from these mice approximately 12 weeks after induction of 

recombination. Lrig1CreERT2/+;KrasLSL-G12D/+ mice were anesthetized and induced with 100 

μL of 10 mg/mL 4-hydroxytamoxifen (Sigma-Aldrich) in ethanol delivered with an enema 

using a gavage feeding needle, and tissues were harvested around 8 weeks later.

For generating tumors, Mist1CreERT2/+;Apc2lox14/2lox14 were injected intraperitoneally for 3 

consecutive days with 5 mg tamoxifen in corn oil. They were administered 2.5% DSS in 

drinking water for the following 6 days, followed by a 9-day rest period, and a second round 

of DSS. Lrig1CreERT2/+;Apc2lox14/2lox14 were injected with 0.01mM 4-hydroxytamoxifen 

through colonoscopy-guided orthotopic injections into the mucosal lining of the distal colon 

(Roper et al., 2017), and were administered 2.5% DSS in drinking water for the following 

6 days. Control mice received PBS injections followed by DSS. Mice were euthanized 

approximately 28 days following Cre induction.

Murine immunofluorescence and histological imaging—Upon euthanasia of an 

animal, colonic tissue was removed, washed with 1X DPBS, spread longitudinally onto 

Whatman filter paper and fixed in 4% PFA (Thermo Scientific) overnight. Fixed tissues 

were washed with 1X DPBS, swiss-rolled, and stored in 70% EtOH until processing and 

paraffin embedding. Tissues were sectioned at 5 mm thick onto glass slides. Slides were 

processed for deparaffinization, rehydration, and antigen retrieval using citrate buffer (pH 

6.0; Dako) for 20 minutes in a pressure cooker at 105°C followed by a 20-minute bench 

cool down. Endogenous background signal was reduced by incubating slides in 1% H2O2 

(Sigma-Aldrich) for 10 minutes, before blocking for 30 minutes in 2.5% Normal Donkey 

Serum in 1X DPBS prior to antibody staining. Primary antibodies against selected markers 

were incubated on the slides in a humidity chamber overnight, followed by three washes 

in PBS, and 1 hour incubation in Hoechst 33342 (Invitrogen), and compatible secondaries 

(1:500) conjugated to Invitrogen AlexaFluor-488 (AF-488) or Invitrogen AF-647. Slides 

were washed in 1X DPBS, mounted in Prolong Gold (Invitrogen) and imaged using a Zeiss 

Axio Imager M2 microscope with Axiovision digital imaging system (Zeiss; Jena GmBH). 

Multiplexed imaging using an immune cell-based antibody panel was performed by using 

a multiplex iterative staining and fluorescence-inactivation protocol, as previously described 

(McKinley et al., 2017, 2019), and imaged on an Olympus X81 inverted microscope (20X 
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magnification) with a motorized stage. For histological analysis, slides were processed 

and stained for hematoxylin and eosin and beta-catenin using standard approaches. Blind 

scoring was conducted by a pathologist (Dr. Kay Washington) using brightfield microscopy 

and a standard grading scale for dysplasia. Antibodies, working concentrations, and 

incubations can be found in the methods github repository: https://github.com/Ken-Lau-Lab/

STAR_Methods/blob/main/Methods_Tables.xlsx (Methods Table 3)

Murine organoid formation assay—Organoids derived from Lrig1 and Mist1 tumors 

were dissociated using TrypLE Express. Cell pellets were resuspended in matrigel and 

seeded in 25 μL/well in a 24-well plate with 500 mL of Mouse Intesticult (STEMCELL 

Technologies) media. After one week, the number of organoids was counted using the 

GelCount system (Oxford Optronix). The number of organoids formed in each well was 

normalized to the number of single cells plated to determine organoid formation rate. 

Results were tabulated and plotted using Prism 9 (GraphPad) with unpaired t test.

Murine organoid antigen processing and presentation assay—Organoids were 

formed and cultured for one week in Matrigel and Mouse Intesticult media. They were 

collected and reseeded without Matrigel in media with 100 μg/mL DQ-Ovalbumin (Thermo 

Fisher Scientific) for approximately 24 hours. After 24 hours, organoids were fixed, stained 

overnight with antibodies against GFP and Ia/Ie-AF647 (1:100; Biolegend), and analyzed 

using a BD LSRII 5-laser flow cytometer. Flow data were analyzed using Cytobank 

(Kotecha et al., 2010).

Murine T cell activation assay—Naive OTII cells were isolated from the spleen of 

8–10-week-old OT-II mice. Cells were purified using the naive CD4+ T Cell Isolation Kit 

(STEMCELL Technologies) following manufacturer’s protocol. CD11c+ DCs were isolated 

using MagniSort Mouse CD11c Positive Selection Kit (Thermo Fisher) per manufacturer’s 

recommendations. Murine Organoids were dissociated with TrypLE containing 10 μM 

Y-27632 for 15 minutes at 37°C while shaking. Cells were counted using Bio-RAD TC20 

automated cell counter for use in the antigen presentation assay.

To track T cell proliferation, naive CD4+ OTII T cells were labeled using 5 mM CellTrace 

Violet (Thermo Fisher) by incubating for 20 minutes at 37°C, 5% CO2 in PBS and then an 

equal volume of T cell media containing serum was added and incubated an additional 5 

minutes at 37°C, 5% CO2 to quench free dye. 5×104 labeled OTII CD4+ T cells were plated 

in a 96-well round bottom plate with 2.5×105 organoid-dissociated single cells (without 

Matrigel) or 2.5×105 CD11c+ DCs and in the presence or absence of 50 μg/mL ovalbumin 

peptide (Anaspec), spun at 350 x g for 5 minutes and then incubated at 37°C, 5% CO2 for 

72 hours. Following co-culture, cells were analyzed. Wells containing cells were pipetted 

up and down to resuspend all cells and placed in 5mL Falcon Round-Bottom Polystyrene 

Tubes. These were centrifuged briefly at 350 x g for 3 minutes at 4°C, washed in FACS 

buffer (PBS w/o Ca2+Mg2+, 2% FBS, 2 mM EDTA), and resuspended in 100 μL FACS 

buffer containing the antibody cocktail: https://github.com/Ken-Lau-Lab/STAR_Methods/

blob/main/Methods_Tables.xlsx (Methods Table 4), and stained for 15 min at 4°C. Cells 

were spun down as before, washed in FACS buffer, and were resuspended in 250 μL of 

FACS buffer and kept on ice until acquired on a 4-laser Fortessa. Cytometry data analysis 
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was done using FlowJo v10 software and T cell proliferation results were tabulated and 

plotted in GraphPad Prism 9 using ANOVA with post hoc Tukey tests. This protocol was 

adapted from (Biton et al., 2018).

MARIS bulk sequencing of reporter expressing murine cells—After chelation but 

prior to single-cell dissociation, tissue was processed with a modified fixation/dissociation 

protocol (Scurrah et al., 2019). Briefly, tissue was fixed for 15 min (0.1% Saponin in 4% 

PFA, RNase-inhibitor), washed (0.1% Saponin in 1X DPBS RNase-inhibitor), and stained 

overnight with primary antibodies against GFP and EPCAM (1:100; Santa Cruz Biotech) in 

wash buffer. The following day, samples were washed with 1X DPBS, followed by a 1-hour 

incubation with compatible secondary antibodies in wash buffer. Samples were subsequently 

fixed followed by mechanical disassociation into single cells before flow sorting using BD 

FACSAria III.

After sorting, total RNA was isolated from the flow sorted cells using the RecoverAll 

Total Nucleic Acid Isolation kit (Ambion), starting at the protease digestion stage of the 

manufacturer-recommended protocol similarly to Hrvatin et al. (Hrvatin et al., 2014). The 

initial protease digest was scaled to the number of the cells post-sorting. Complementary 

DNA (cDNA) was generated from 160 ng of total RNA with Poly A priming using Maxima 

H minus reverse transcriptase (Thermo Fisher). The poly A capture primers used were the 

identical to unconjugated primers used for inDrop scRNA-seq (Klein et al., 2015) in order 

to generate cDNA libraries comparable to the reference scRNA-seq datasets for downstream 

integrative analysis. RNA-seq libraries were prepared as in (Southard-Smith et al., 2020) and 

sequenced on an Illumina NextSeq 500 as described below. To integrate with scRNA-seq 

datasets, the resulting bulk RNA-seq dataset was treated as a single cell datapoint, and 

normalized and processed accordingly (Heiser et al., 2021).

RNA isolation and qPCR—Total RNA was isolated using the RNeasy Plus Mini Kit 

(QIAGEN) and concentration was quantified using nanodrop (Thermo Fisher Scientific). 

cDNA was synthesized using the QuantiTect Reverse Transcription Kit (QIAGEN) 

according to the manufacturer’s instructions. Gene-specific primers for SYBR Green 

real-time PCR were designed by PrimerBLAST (https://www.ncbi.nlm.nih.gov/tools/primer-

blast/) and published sequences, and synthesized by Sigma Genosis. Real-time PCR 

was performed and analyzed using CFX96 Real-Time PCR Detection System (Bio-Rad) 

and using SsoAdvanced Universal SYBR Green Supermix (Bio-Rad) according to the 

manufacturer’s instructions. PCR conditions are 95°C for 3 min and followed by 40 cycle 

amplification (95°C for 15 s, 60°C 15 s, 72°C for 30 s). Relative mRNA expression was 

determined by normalizing to GAPDH expression, which served as an internal control. See 

Key Resources Table for primers used for qPCR.

QUANTIFICATION AND STATISTICAL ANALYSIS

scRNA-seq, regulon network prediction, activity inference, and visualization—
The Single-Cell rEgulatory Network Inference and Clustering or SCENIC pipeline was used 

to integrate cancer, pre-cancer, and their corresponding normal tissue datasets (Aibar et al., 

2017; Van de Sande et al., 2020). For each group of integrated datasets, we concatenated the 
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individual target datasets with an outer join and generated a combined AnnData object (Wolf 

et al., 2018). This AnnData object underwent further gene filtering, selecting only those 

that were expressed in at least 1% of all cells, primarily for the sake of speedup in running 

the module inference step of SCENIC. The resulting cumulative count matrix was input, 

without normalization, into the first step of SCENIC with default parameters, as suggested 

by the published protocol. We used a Dask client to parallelize the grnboost2 version of 

this step on an AMD Threadripper 2990WX CPU. Subsequently, cisTarget was performed 

using default parameters and three hg19 .feather ranking databases, comparing 10 species: 

tss-centered-5kb, tss-centered-10kb, and 500bp-upstream.

Further, this cisTarget step produced a list of detected regulons, their driving TFs, and 

their corresponding weights for the prediction of individual gene expression. These weights 

were used to build a feature matrix defining each regulon by its predicted targets. This 

feature matrix was then used to generate an adjacency matrix per SCENIC integration 

run, which was the basis of the regulon-regulon target network. This target network was 

based on a k-nearest neighbors graph (with k equal to the square root of the number of 

total regulons) of the adjacency matrix. For each of these target networks, the Louvain 

community detection algorithm was run at a resolution of 2, defining super-regulons (Traag 

et al., 2019). This regulon-regulon target network (along with its cluster labels and average 

enrichment per regulon) was exported as a weighted adjacency matrix for visualization in 

Cytoscape (Shannon, 2003).

Finally, we performed AUCell with default recommended parameters across 64 threads 

to generate a regulon activity enrichment matrix, which was jointly analyzed with the 

count-based matrix. Additional regulon activity enrichment scores were calculated for 

the Broad cohort by performing AUCell with regulon definitions learned from VUMC 

pre-cancer and CRC datasets. For visualization, target-network heatmaps featuring these 

regulon enrichment values were Z-score transformed, color scaled in a regulon-wise manner, 

and standardized to jointly integrated normal biopsies or polyp-derived normal cells when 

possible.

scRNA-seq, count matrix normalization and heatmap generation—Using scanpy 

and numpy functions, raw count data were normalized by median library size, log-like 

transformed with Arcsinh, and Z-score standardized per gene (Harris et al., 2020; Wolf et 

al., 2018). This yielded interpretable unit variance scaled and centered values. Heatmaps 

featuring individual gene expression depict this normalized, transformed, and standardized 

data with color scaling in a gene-wise manner.

scRNA-seq, UMAP and t-SNE visualization—Three modes of UMAP visualization 

were used in this study based on regulons, feature-selected counts, or Harmony-corrected 

components. All human epithelial UMAP visualizations were generated using the 

“scanpy.tl.umap” function with a min_dist parameter of 0.15. The input to this function was 

Z-score standardized AUCell values, their 50-principal component decompositions with no 

feature selection, and a subsequent KNN graph with k equal to the square root of the number 

cells projected. Human nonepithelial UMAP visualizations that included all nonepithelial 

subtypes were performed the same way. To finely resolve T cell subtypes with UMAP, we 
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generated a KNN based on the PCA of a feature-selected set of genes after normalizing, 

log-like transforming with Arcsinh, and Z-score standardizing raw counts. Finally, murine 

validation experiments were integrated with the Harmony algorithm, generating adjusted 

principal components with default parameters (Korsunsky et al., 2019). These components 

were used as the basis for KNN and UMAP generation with the same parameters as used 

in the human data. For t-SNE visualizations, the perplexity was set to the same as the 

k used in the UMAP KNN graph. The bootstrapped variant of t-SNE visualization was 

performed by running t-SNE with the same parameters 100 times to ensure qualitatively 

robust embeddings, given the algorithms inherent stochasticity.

scRNA-seq, gene signature scoring—We used a gene signature scoring method 

implemented in scanpy and first detailed by (Satija et al., 2015). This method scores 

a defined gene set by finding the difference between its average expression against 

the average expression of randomly sampled sets of reference genes, corresponding to 

matched and binned expression levels. Each signature in this study was calculated on 

normalized, transformed, and standardized data (as described in the scRNA-seq, Count 

Matrix Normalization and Heatmap Generation section) using a reference sample size of 

2000 genes across 25 bins. The x axis range of scatterplots featuring these signature data 

was set by excluding single-cell outliers beyond the 1.5x interquartile range. Statistical tests 

of these score distributions encompass an initial Kruskal-Wallis test. If the null hypothesis 

was rejected, these tests were followed by post hoc Mann-Whitney U tests and appropriate 

p value adjustments (Terpilowski, 2019; Varoquaux et al., 2015). The resulting statistics are 

found in Table S4. Genes comprising each human gene signature calculated are listed in 

Table S5 for: exhaustion, cytokines, chemokines, MHC I&II processing and presentation, 

fetal, WNT and stem cell, and metaplasia and damage response (Barker et al., 2007; Cadigan 

and Waterman, 2012; Clevers and Batlle, 2006; Du et al., 2008; Fife et al., 2009; van der 

Flier et al., 2009; Hieshima et al., 1997; Imajo et al., 2015; Lee et al., 2020, 2021; Lili et al., 

2016; Mustata et al., 2013; Nelson et al., 2001; Park et al., 2005; Pelka et al., 2021; Zhang et 

al., 2015). Gene signatures for murine TSC scRNA-seq were calculated for ISCI, ISCII, and 

ISCIII as described by Biton et al., with the same method applied to calculating the murine 

MHCII signature (Biton et al., 2018). Genes used for the identification of cell populations 

or expression programs are detailed in Table S5 for: CD8 T cell cytotoxicity, CD8 T cell 

activation, CD8 T cell effectors, CD8 T cell homing and memory, suppressed CD4 T cells, 

CD4 T cell RORa-dependent/tumor-promoting inflammation, CD4 T cell dysfunction, T cell 

immunosuppressive markers, CD4 T regulatory cells, myeloid TAMs, myeloid suppressive 

TAMs, myeloid MDSC-like, MDSC-like IL6 signaling, MDSC-like cytokine suppression, 

MDSC-like inflammation, MDSC-like secretion, myeloid immunosuppressive, M1 cells, M2 

cells, ISCI cells, ISCII cells, and ISCIII cells (de Almeida Nagata et al., 2019; Alshetaiwi 

et al., 2020; Anderson et al., 2016; Baitsch et al., 2011; Biton et al., 2018; Blackburn et 

al., 2009; Bronte et al., 2016; Carlin et al., 2005; Castello et al., 2017; Duckworth et al., 

2014; Fife et al., 2009; Greenwald et al., 2001; Hwang et al., 2018; Jiang et al., 2017; Jin 

et al., 2017; Joshi et al., 2007; Lee et al., 2020; Lesokhin et al., 2012; Marigo et al., 2010; 

McDonald et al., 2018; Moon et al., 2015; Movahedi et al., 2008; Schwartz, 2003; Trikha 

and Carson, 2014; Utting et al., 2000; Wang and Denhardt, 2008; Wells et al., 2000; Yamada 

et al., 2009; Youn et al., 2008; Zhang et al., 2020; Zhu et al., 2015).
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scRNA-seq, unsupervised clustering and cell type labeling—The labeling of 

single-cell subpopulations was done through the Leiden algorithm, as part of the Scanpy 

toolkit. We performed Leiden clustering based on the KNN derived from the distances 

calculated in the principal component space of Z-score transformed regulon enrichment 

scores, as these represented cell-cell transcriptional states in a more batch-robust manner. 

The resolution of this clustering was based on the detection of rarer populations such as 

enteroendocrine cells, at 2. Since this algorithm detected discrete clusters in a continuum 

of cell states, we aggregated multiple discrete clusters by the observation of marker gene 

expression. Similarly, these methods were applied to nonepithelial datasets given their 

regulon or feature-selected matrices, depending on the subtypes of interest. This Leiden 

algorithm was also used to determine clusters for murine scRNA-seq validation experiments. 

Higher resolution subclustering was also done by performing k-means clustering after 

the initial Leiden clustering. Importantly, some subclusters were identified as a result of 

patient-to-patient variation originating from mitochondrial read enrichment, as evidenced 

by mitochondrial read percentage distributions and GO terms. These subclusters were 

identified and statements regarding their relative, subpopulational variation were excluded. 

These patient-to-patient variations did not affect overall comparisons between tumor-

specific and normal cell types. For example, after excluding these mitochondrially-enriched 

subclusters, the SSC subpopulational analysis focused on GO terms related to intercellular 

communication and stromal interactions.

scRNA-seq, differential gene-expression testing and gene set enrichment 
analysis—The differential testing of gene expression was performed based on cluster 

labels (as defined by the scRNA-seq, Unsupervised Clustering and Cell Type Labeling 

section), both in the context of raw gene counts and regulon enrichment values. For both 

cases, we used Mann-Whitney U tests with Benjamini-Hochberg corrections, on the raw 

values, implemented through the “scanpy.tl.rank_ genes_groups” function, identifying the 

top 200 genes and top 50–100 regulons (Wolf et al., 2018). Further, biological insight 

was gathered through scanpy’s integration of g:profiler gene set enrichment framework 

(Raudvere et al., 2019). The full differential expression, GSEA tables, and their respective 

statistics generated through g:Profiler are available in Tables S6 and S7. This process was 

also performed on the stem and TSC components of the murine scRNA-seq datasets using 

the GSEA webapp (Mootha et al., 2003; Subramanian et al., 2005).

scRNA-seq, proportional cell type representation and identifying polyp-
specific populations—Given the detected clusters (as described in the scRNA-seq, 

Unsupervised Clustering and Cell Type Labeling section), we calculated the proportional 

cell type representations of each individual sample. We counted the raw number of epithelial 

and nonepithelial cells as well as the raw number of cells falling into any given cell cluster. 

These results were cross-tabulated as contingency tables, summarizing how many cells were 

observed in each category and for which samples using pandas. Proportional values were 

then calculated by normalizing cluster counts to the number of epithelial cells per sample 

(Figures 2C and S2C) or to the cumulative number of cells per sample (Figures 6C and 

S6D). Clusters were designated as polyp-specific populations if, proportionally, they were 

significantly overrepresented in polyp samples and not normal samples, which was indicated 
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by post hoc statistical tests following Kruskal-Wallis null hypothesis rejection. The resulting 

statistics are found in Table S4. The x axis range of scatterplots featuring these proportional 

representation data was set by excluding samples with values beyond the 1.5x interquartile 

range. In the context of the murine scRNA-seq datasets, the proportional representation of 

cell types was calculated by normalizing to the total number of epithelial or immune cell 

subtypes for each Mist1 and Lrig1 tumor sample.

scRNA-seq, predicting differentiation potential with CytoTRACE—CytoTRACE 

is a relative scoring method dependent on included datasets for inferring developmental 

potential. CytoTRACE was performed based on the default recommended settings after 

concatenating the batches of interest using an outer join (Gulati et al., 2020). We performed 

CytoTRACE with five separate groupings of single-cell libraries. First, the discovery cohort 

(Figures 2E and S2E), including all epithelial cells from both its normal biopsies and 

polyps. Second, the validation cohort (Figures 2E and S2E), including all epithelial cells 

from both its normal biopsies and polyps. Third, the epithelial VUMC polyp-specific cells 

(Figure 4E), including only tumor-specific cells from VUMC AD, MSS, SER, and MSI-H 

samples. Fourth, the epithelial Broad cohort (Figures 4E), including MSS, MSI-H, and 

Normal samples. The Broad cohort (including n = 32 normal samples) distribution was only 

calculated from 50% random sample of the total cells detected due tomemory constraints. 

Fifth, CytoTRACE was performed on the stemand TSC component ofthe murine scRNA-seq 

datasets. Statistical tests of these score distributions encompass an initial Kruskal-Wallis test. 

If the null hypothesis was rejected, these tests were followed by post hoc Mann-Whitney U 

tests and appropriate p value adjustments. The resulting statistics are found in Table S4.

scRNA-seq, CMS scoring at single-cell resolution—The single-cell distributions 

of CMS scores were calculated on the VUMC ASC, MSS, SSC, and MSI-H and the 

Broad MSI and MSI-H libraries using the CMSclassifier R package as described by (Eide 

et al., 2017; Guinney et al., 2015). To accommodate the heterogeneity of the single-cell 

landscape, the single sample predictor or SSP mode of the software was used after 

converting gene symbols to Entrez IDs. This SSP mode calculated the median correlation 

distance between each single cell to established, standard centroids derived from CMS1, 

CMS2, CMS3, and CMS4 CRC subtypes. Further, these score distributions were visualized 

through a normalized kernel density estimation implemented in the Seaborn python package. 

Statistical tests of these score distributions encompass an initial Kruskal-Wallis test. If the 

null hypothesis was rejected, these tests were followed by post hoc Mann-Whitney U tests 

and appropriate p value adjustments. The resulting statistics are found in Table S4.

scRNA-seq, trajectory inference—pCreode was used to map the developmental state 

transitions of the single-cell transcriptional landscape of our Discovery cohort pre-cancer 

and normal COLON MAP samples (Herring et al., 2018). This algorithm was generalized 

to process regulon-based principal components, inheriting its batch-robust properties. By 

examining the variation captured by the principal components, we selected the first 4 

components based on their capture of rare cell populations, such as Tuft and enteroendocrine 

cells. We developed this algorithm to traverse a density weighted KNN generated from 

the pairwise distances between each single cell; subsequently, we used a histogram 
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thresholding method to estimate the neighborhood distance cutoff for calculating local 

densities. These densities were used as input to a supervised variant of pCreode, which 

established developmental endstates through K-means clustering and marker-defined labels. 

The downsampling and noise parameters were both set to 4, resulting in samples of 

around 6,000 cells per run, and repeated 50 times. Each of these runs was scored by the 

minimization of the Gromov–Hausdorff distance, resulting in a single, most representative 

graph layout. Overlays were generated based on pre-computed single-cell observation 

vectors, such as a CytoTRACE score, or the normalized, transformed, and z-scored gene 

expression values.

scRNA-seq, RNA velocity—RNA velocity analysis was performed using velocyto 

CLI version 0.17 (La Manno et al., 2018). Individual sample BAM files were used as 

input to the “run-dropest” command along with a human gene annotation file (GTF) 

for GRCh38.85, and a tab-delimited text file containing dropkick-filtered cell barcodes 

from the corresponding sample as the “—bcfile” flag. Then, scVelo version 0.2.3 was 

used to build models of splicing kinetics to estimate and visualize RNA velocity 

vector fields in SCENIC integrated UMAP space (Bergen et al., 2020). Each sample 

was individually filtered to the top 2,000 genes expressed in a minimum of 20 cells 

using the function “scvelo.pp.filter_and_normalize.” The moments of all RNA velocity 

vectors were calculated with 30 principal components and 30 nearest neighbors using 

the function “scvelo.pp.moments” prior to estimating velocities using “scvelo.tl.velocity” 

with default parameters. Finally, velocity UMAP embeddings were plotted using the 

function “scvelo.pl.velocity_embedding_stream” and the subset of SCENIC master UMAP 

coordinates for each sample.

sc-RNA-seq, subclone phylogeny estimation—We used DENDRO, an algorithm 

designed to reconstruct subclonal phylogenies within scRNA-seq datasets (Zhou et al., 

2020). Specifically, information of both somatic and germline single nucleotide variations 

(SNVs) are used in this reconstruction, differing from purely somatic variant-based methods. 

Since our sequencing libraries are generated through the tag-based in-Drop method, the 

short, 3′-biased reads necessitated the aggregation of single-cell transcriptomes. For each 

of the 34 sequencing libraries we performed this analysis on (24 ADs, 11 SERs), we 

defined 20 aggregate populations through regulon-based K-means clustering (Hartigan 

and Wong, 1979). Thus, we predicted the average genotypic representation of multiple 

single-cells, or pseudo-bulk RNA-seq libraries, and created a phylogenetic tree between the 

defined clusters. DropEst produced a filtered and sorted .bam file, which we derived read 

information from, and split into 20 distinct .bam files using the sinto python package. These 

bam files were then processed with GATK4 (Van der Auwera et al., 2013), according to 

guidelines detailed by Zhou et al. The GATK4 steps of this pipeline involved the following: 

adding read groups, marking duplicates, splitting N-cigar reads, applying base quality 

recalibration with known single nucleotdie polymorphisms (SNPs), haplotype calling (with 

the GATK4 HaplotypeCaller and an hg38 reference) to generate VCF files, consolidating 

these VCFs into genomicsdb databases, and then genotyping these data.
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Because the measurement of SNVs within transcriptomes is dependent on dynamic 

expression patterns, we used a beta-binomial framework, as described by Zhou et al., 

to model genetic divergence between each pseudo-bulk, cell aggregate. Standard genetic 

divergence frameworks, such as those comparing DNA-derived genomic variants, do 

not consider the varying levels of low nor high gene expression between pseudo-bulk 

populations. Examples of this transcription-specific variation would be stochastic bursts of 

gene expression captured in a minority of populations, yielding low average expression 

across all populations, and constitutively expressed genes, yielding high average expression 

across all populations. These bursty loci will more likely represent genes dropped out from 

the majority of pseudo-bulk populations, so including its respective variants would yield 

an inflated genetic divergence value. Conversely, variants in loci that are expressed and 

observed in the vast majority of pseudo-bulk populations would be uninformative in terms of 

phylogenetic discrimination. The genetic divergence d between each possible cell aggregate 

pair c and c’ at loci g is represented formally as:

dcc′
g = log

P Xcg, Xc′gINcg, Nc′g
P Xcg, Xc′gINcg, Nc′g, Ic = Ic′

Where c and c’ represent two different cell aggregates, while I and I’ represent their 

originating clonal groups. Correspondingly, Xcg is the alternative allele read count for cell 

aggregate c at loci g, while Ncg is the respective total read count. Thus, d is a function of five 

derived probabilities:

Pg

Which, first, represents the alternative allele frequency across cell aggregates estimated by 

the above GATK4 pipeline.

P XcgINcg, Zcg = 0 and P Xc′gINc′g, Zc′g = 0

Which, second and third, represent detected variants due to rare editing and technical 

sequencing error events in c and c’ at g. Here, Zcg is set as 0, modeling scenarios lacking 

SNVs, which can be approximated as the following binomial distribution with ε set to 0.001 

or 0.1%.

P XcgINcg, Zcg = 0 ∼ Binomial XcgINcg, ε

ε, representing the combined error rate, was used according to our sequencing platform, 

a NovaSeq 6000 System. This is in line with empirical studies of Illumina sequencing 

instruments as detailed by Stoler et al., observing a median error rate of 0.109% across 

239 samples on a NovaSeq 6000 device (Stoler and Nekrutenko, 2021). Another previous 

study by Fox et al. had similar estimates for sequencing-by-synthesis platforms, including 
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the Illumina MiSeq and HiSeq2000, with an error frequency of 10–3 (or 0.1%) attributed to 

single nucleotide substitutions (Fox et al., 2014).

P XcgINcg, Zcg = 1 and P Xc′gINc′g, Zc′g = 1

Which, fourth and fifth, represent detected variants due to the presence of SNVs in c and c’ 
at g. In this case, Zcg is set as 1, modeling scenarios with SNVs present.

P XcgINcg, Zcg = 1 ∼ ∫0
1

Binomial XcgINcg, Qcg = q dF(q), q ∼ Beta αg, βg

This can be approximated as a beta-binomial distribution, as previously described by Jiang 

et al. and Skelly et al. in the context of single-cell and bulk RNA sequencing (Skelly et al., 

2011; Xiong et al., 2019). Qcg is the proportion of alternative alleles in cell aggregate c at 

g, using a beta distribution prior, approximated as q. q is parameterized by αg and βg, as 

estimated gene activation and deactivation rates respectively.

Before performing genetic divergence calculations based on these probabilistic models, two 

filters were applied to minimize the inclusion of stochastically or constitutively expressed 

variants:

The first filter is dependent on the observed variant allele frequencies (VAFs) across each 

set of cell aggregates. VAFs were visualized as histograms representing the number of times 

each unique variant was observed across each set of cell aggregates. We observed that 

these VAF distributions were unimodal and positively skewed, with the vast majority of 

variants being detected in very few cell aggregates, which was in line with stochastic gene 

expression. To remove these stochastically expressed variants, we heuristically determined 

a cutoff at observed convex elbow/knee points of the curve, at 10%. This cutoff was 

symmetrically applied to the top 10% of the most pervasive variants as well, as these 

represented constitutively expressed variants.

The second filter is dependent on α and β parameter estimations. If either the α or β 
parameters of the beta prior were estimated to be 0 or 1, it meant that the activation 

and deactivation rates were completely on or off. Akin to the rationale for our first 

filter, these variants would not be informative in the genetic divergence calculation 

since they likely represent genes with a tendency to dropout/be stochastically expressed 

or be constitutively active. These cases would inflate or deflate genetic divergence 

metrics, respectively. The quality of the filtered variants, consisting of about 5.07% (std. 

1.46%) of the initially detected variants, met appropriate QD and DP levels suggested 

by GATK4 guidelines and were also located within genomic regions characteristic 

of the inDrop barcoding chemistry (https://github.com/Ken-Lau-Lab/STAR_Methods/blob/

main/Supplemental_Table_Variant_Type_Func.refGene_Distribution.xlsx). Exonic variants 

detected through this method were validated through the exome sequencing of paired FFPE 

tissue and respective GATK HaplotypeCaller pipeline. If the exact exonic genomic loci 
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and genotypes were detected in both the exome and scRNA-seq pseudo-bulk aggregates, 

the variants were flagged as validated. An average of 53.9% (std. 12.9%, max > 75%) 

of the exonic variants detected through scRNA-seq were validated with this orthogonal 

exome sequencing. Tables of these detected variants per cell population and their exome-seq 

statuses are shown at (https://github.com/Ken-Lau-Lab/STAR_Methods/tree/main/Tables).

After filtering, the genetic divergence is calculated for all possible pairs of cell aggregates, 

and a phylogenetic tree is constructed. The leaves of these trees represent the previously 

defined cell aggregates, which were assigned cell type labels accordingly. For each set of 

pseudo-bulk cell aggregates, we also calculated the minimum genetic divergence between 

tumor-specific cell aggregates (ASCs and SSCs) and canonical stem cell aggregates (STM). 

These values were normalized to the maximum distances observed per tumor sample, 

yielding a value between 0 and 1. This metric was interpolated with a value of 1 in samples 

which lacked measurable canonical stem cell aggregates.

MxIF, single-cell segmentation and image analysis—Cell segmentation was 

accomplished using the MANDO pipeline (McKinley et al., 2019). Briefly, random forest 

pixel classification on manually annotated images was used to define tissue and subcellular 

regions in each image. An initial watershed segmentation using cell nuclei as seed points 

and the learned cell membranes as boundaries was followed by re-segmentation of objects 

containing internal cell membranes. For every identified cell, image intensities for each 

marker were then calculated as well as morphological features such as cell size and location. 

For quantifying marker positive cells in MxIF, we fitted linear mixed effects models on 

the logit transformed cell proportions within epithelial or stromal tissue compartments. We 

estimated the proportion of marker positive cells within each compartment, by dividing the 

number of marker positive cells by the total number of cells within the tissue compartment. 

We added 1/2 to the numerator and denominator of the proportion to accommodate 

zero proportions; this is equivalent to a Bayesian estimator for the proportions using a 

noninformative beta prior. We fit the logit transformed proportions using a linear mixed 

effects model with an interaction between tissue compartment (epithelium/stromal), tissue 

type (AD/SSL), and a random effect for slide to account for the correlation between regions 

on a slide (Bates et al., 2015). We estimated differences between tumor types within each 

tissue compartment using emmeans. We computed false discovery rate (FDR) adjusted p 

values using Benjamini-Hochberg. For murine tissue, tumor areas were established by a 

beta-Catenin mask and cell counts for image quantification were determined the same way 

as human tissues.

MxIF and MxIHC, pixel-based image quantification—MATLAB was initially used to 

create masks to mark positive pixels of each cell type marker from MxIF images. The tumor 

region was divided into an epithelial region (masked by beta-Catenin, pan-Cytokeratin, and 

NaKATPase expression) and a stromal region (tumor mask minus the epithelial mask). 

An overlay of OLFM4, MUC5AC, and PANCK was used as a guide for identifying stem 

(OLFM4+) and metaplastic (MUC5AC+) epithelial (PANCK+) regions, which were then 

manually demarcated. Each region was validated by quantifying MUC5AC and OLFM4 

positive pixels within the regions. Cell types were defined by combinations of marker 
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masks; for example, CD4+ T cells were defined by intersecting CD4 and CD3 pixel masks. 

On the other hand, CD8+ T cells were defined using the CD8 marker. We then calculated 

the fraction of pixels occupied by each cell type, normalized to the number of pixels of 

each tumor region. For example, a ratio of intraepithelial CD8+ cells to stromal CD4+ 

T cells was calculated from two sets of values calculated in this way. The measurements 

from all regions of the same type within each tumor was used to calculate a mean value; 

thus, each patient is a biological replicate. One-way ANOVAs with Dunnett post-tests were 

used for statistical testing. For IHC images, a similar process was used, with whole tumor 

regions demarcated by tissue morphology using hematoxylin nuclear counterstain. Antibody 

stains (3,3′-diaminobenzidine - DAB or 3-amino-9-ethylcarbazole - AEC) were spectrally 

unmixed such that individual marker masks can be generated and quantified as above.
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Highlights

• A single-cell resolution atlas of human adenomas and serrated polyps

• Serrated polyps arise from metaplasia as opposed to stem cell expansion

• Cytotoxic immunity in serrated polyps occurs independently of 

hypermutation

• Distinct immune microenvironments track tumor cell-differentiation states
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Figure 1. Features of human colonic pre-cancers
(A) Experimental design for profiling tumor subtypes across multiple datasets.

(B) Haematoxylin and eosin (H&E) images of normal colonic tissue and polyp subtypes. 

Green brackets, crypt portions occupied by neoplastic cells.

(C) Oncoplot of somatic mutations by WES for polyps. (Top) Mutation burden represented 

by bar plot. (Dark-gray boxes) CRC driver genes are grouped into pathways. (Right) 

Percentage of mutations within subtypes summarized as a table.

See also Figure S1 and Table S1.
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Figure 2. Single-cell gene expression and regulatory network landscape of pre-cancers
(A) Heatmap of top biologically relevant and differentially expressed genes for (left) DIS (n 

= 62) and (right) VAL (n = 59) epithelial datasets. The inset circle indicates prevalence and 

intensity represents scaled expression.

(B) Regulon-based UMAPs of (top) DIS and (bottom) VAL epithelial datasets color overlaid 

with (left) tissue or (right) cell type.

(C) Scatterplots of normalized (left) ASC or (right) SSC representation per tissue subtype. 

Points represent individual specimens. Error bars represent SEM of n = 29 for AD, n = 19 

for SER, and n = 66 for NL.

(D) Stem, metaplasia, and fetal signature scores overlaid onto UMAPs of (C).

(E) Ridge plots of CytoTRACE score distributions for ASC, SSC, and NL cell populations 

across (top) DIS and (bottom) VAL datasets.

(F and G) TF target network created from normal and pre-cancer cells, organized into 

super-regulons for (F) ASCs and (G) SSCs. Color overlays are regulon enrichment scores, 

while edge opacities are the inferred TF-target weightings. ***p < 0.001.

See also Figure S2 and Tables S2, S3, S4, S5, and S6.
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Figure 3. Inferred origins of pre-cancers
(A–D) Multiplex images of colonic polyps and normal tissues for (A) SOX9, (B) OLFM4, 

(C) CDX2, and (D) MUC5AC. (Right) Image quantification (n = 20 polyps per subtype).

(E) p-Creode analysis on epithelial regulon landscapes, for (top) DIS and (bottom) VAL 

datasets. For gene overlays, node size represents cell proportion and intensity represents 

scaled expression.

(F) RNA velocity for representative NL, TA, and SSL overlaid on combined UMAP 

embedding for DIS. Vectors inferring average transitions shown as black arrows. Colored 
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points are cells derived from the representative specimen, and gray points are all other cells 

in the dataset.

*p < 0.05, **p < 0.01, ****p < 0.0001. See also Figure S3.
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Figure 4. Analysis of CRCs through the lens of pre-cancers
(A) Regulon-based UMAPs for tumor-specific cells overlaid with (top) subtypes and 

(bottom) specimen for the (left) VUMC and (right) Broad datasets.

(B) Stem, metaplasia, and fetal signature scores overlaid onto UMAPs in (A).

(C) Heatmap representation of pre-cancer-derived gene sets for VUMC (n = 55 specimens) 

and Broad (n = 60 specimens) tumor-specific cells.

(D) Single-cell CMS scoring based on single sample predictor for tumor-specific cells.

(E) Ridge plots of CytoTRACE score distributions for tumor-specific cells.

(F–I) TF target network created from tumor-specific cells, organized into super-regulons for 

(F) ASC, (G) MSS, (H) SSC, and (I) MSI-H.

See also Figure S4 and Tables S4, S5, and S7.
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Figure 5. Heterogeneity of CRCs with metaplastic and stem-like features
(A) IHC scans for MUC5AC and CDX2 of CRCs.

(B) Image quantification of n = 17 MSS and n = 14 MSI-H CRCs.

(C and D) (C) Low-mag. view and (D) high-mag. view of a MSS CRC with protein markers.

(E) Low-mag. view of a MSI-H CRC.

(F) High-mag. view of MUC5AC high and low areas for metaplasia markers of the CRC in 

(E).
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(G and H) Same as in (E) and (F) but for stem cell markers. Black rectangles in the 

restitched image represent fields of views that were not scanned.

(I) UMAP of scRNA-seq data of the MSI-H CRC in (E) overlaid with markers and cell cycle 

signatures.

*p < 0.05, **p < 0.01.
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Figure 6. The immune landscape of colonic tumor subtypes
(A) Regulon-based UMAP representation of non-epithelial cells.

(B) Heatmap of marker genes defining each cell type in (A). T - T cell, PLA - Plasma B cell, 

MYE - Myeloid, MAS - Mast, FIB - Fibroblast cell, END - Endothelial cell, B - B cell.

(C) Scatterplots of cell type representation of (top) polyp and (bottom) CRC subtypes. 

Points represent individual specimens. Error bars represent SEM of n = 28 for AD, n = 17 

for SER, n = 66 for NL, n = 33 for MSS, and n = 34 for MSI-H.

(D and E) Scatterplots of (D) CD4+ T cell and (E) tumor cell-specific signature scores, with 

each point representing a single cell. Error bars depict SEM of single cells.

(F) MxIF images of CD8+ cells in polyps.
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(G) Image quantification of intraepithelial CD8+ cells for n = 20 polyps per type.

(H) MxIF images of CD68+ and MUC5AC+ in cells in polyps.

(I) MxIF scans of intratumoral heterogeneous regions within CRCs (OLFM4+ stem regions 

versus MUC5AC+ metaplastic regions). MSS CRC only has stem regions. MxIF images 

of CD8 and CD3 within stem and metaplastic regions. The inset is the quantification of 

CD8-positive pixels in these regions from MxIF scans of n = 15 MSS and n = 10 MSI-H 

CRCs.

*p < 0.05, **p < 0.01, ***p < 0.001. See also Figure S6 and Tables S3, S4, and S5.
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Figure 7. Functional validation of the tumor cell-differentiation status and the effects on 
cytotoxic immunity
(A) IF images of Apc-driven colonic tumor and Braf-driven proximal colon villiform 

metaplasia (white arrows).

(B) Quantification of CD8-positive pixels from IF. Red line denotes the mean level detected 

in adjacent normal colon in Braf mice. Error bars represent SEM from n = 3 animals per 

group.

(C) IF images of CD8+ T cells in tumor, villiform metaplasia (white arrows), and control 

colon. Dotted line demarcates border between villus and crypt compartments.
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(D and E) H&E (D) and β-catenin IHC (E) of colonic tissues and tumors of tamoxifen-

induced Lrig1 or Mist1 tumor mice 28 days after DSS.

(F–H) UMAP of epithelial scRNA-seq data generated from mouse colonic tissues and 

tumors, with overlays indicating (F) cell type, (G) gene overlays, and (H) biological 

replicates.

(I) Heatmap of genes defining human metaplastic and cell signatures in specified epithelial 

populations from mouse scRNA-seq.

(J and K) Combined UMAP of immune cell scRNA-seq data from mouse colonic tissues and 

tumors, with overlays indicating (J) conditions and (K) cell type.

(L and M) Quantification of (L) general immune cell types and (M) specific lymphocyte 

populations from Lrig1 (left) and Mist1 (right) scRNA-seq data.

(N) UMAP overlays of genes related to immunosuppression or cytotoxicity in myeloid and 

lymphoid cells.

(O) MxIF images of T cells in tumors.

(P) Image quantification of T cells. Each dot represents a field of view. Error bars represent 

SEM from n = 3 animals per group.

(Q) CytoTRACE score for TSCs from scRNA-seq.

(R) Organoid formation efficiency of single cells isolated from tumors and control colons. 

Each dot represents data from a well with representative images shown in insets. Error bars 

represent SEM from n = 4 animals per tumor, 2 for control.

(S) SCI, II, and III metagene signatures for TSCs from scRNA-seq.

(T) Heatmap of individual antigen-presentation genes at single-cell level.

(U) MHCII metagene signature expression for TSCs.

(V) Quantification of DQ-OVA+/I-AI-E+ epithelial tumoroid cells from flow plots. Error 

bars represent SEM from n = 6 animals per condition.

(W) Percentage of proliferating T cells determined by CellTrace Violet assay when co-

cultured with organoids derived from colonic tumors or normal tissues (+DSS) +/— 50 

mg/mL OVA peptide. Error bars represent SEM of organoids from n = 5 mice for tumors 

and two for normal.

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. See also Figure S7 and Table S5.
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KEY RESOURCES TABLE

Reagent or resource Source Identifier

Biological samples

COLON MAP (Polyp) See Experimental Model 
and Subject Details; Data 
and Code Availability

Synapse: syn23564801
Synapse: syn23630431
Synapse: syn23520239
HTAN Data Portal: HTA11; https://humantumoratlas.org/
HTA11

CHTN TMA (CRC) See Experimental Model 
and Subject Details; Data 
and Code Availability

syn21050481: https://doi.org/10.7303/syn21050481

TCPS (Polyp) See Experimental Model 
and Subject Details; Data 
and Code Availability

syn21050481: https://doi.org/10.7303/syn21050481

Critical commercial reagents

Muc2, F-2 clone, A488 dye, antibody Santa Cruz Catalog: sc-515032 AF488; RRID: AB_2815005

Collagen Peptide, R-CHP clone, Cy3 dye, 
antibody

3Helix Catalog: RED300

SNA, Lectin clone, Cy5 dye, antibody Vector Catalog: CL-1305-1

CD11B, C67F154 clone, A488
dye, antibody

Thermo Fisher Catalog: 53-0196-82; RRID: AB_2637196

CD45, 2D-1 clone, A546 dye, antibody Santa Cruz Catalog: sc-1187 AF546; RRID: AB_627073

CD20, D-10 clone, A647 dye, antibody Santa Cruz Catalog: sc-393894 AF647

PCNA, PC-10 clone, A488 dye, antibody Cell Signaling Catalog: 8580S; RRID: AB_11178664

B-catenin, 12F751 clone, 550 dye, antibody Vanderbilt Antibody and 
Protein Resource

Catalog: In-House

p-STAT3, D3A7 clone, A647 dye, antibody Cell Signaling Catalog: 4324S; RRID: AB_10694637

pEGFR, EP774Y clone, A488 dye, antibody Abcam Catalog: ab205827

CgA, C-12 clone, A546 dye, antibody Santa Cruz Catalog: sc-393941; RRID: AB_2801371

CD4, EPR6855 clone, A647 dye, antibody Abcam Catalog: ab196147

Cox2, D5H5 clone, A488 dye, antibody Cell Signaling Catalog: 13596S; RRID: AB_2798270

CD3d, EP4426 clone, A555 dye, antibody Abcam Catalog: ab208514; RRID: AB_2728789

HLA-A, EP1395Y clone, A647 dye, antibody Abcam Catalog: ab199837; RRID: AB_2728798

PanCK, AE1/AE3 clone, A488 dye, antibody Thermo Fisher Catalog: 53-9003-82; RRID: AB_1834350

OLFM4, D1E4M clone, A555 dye, antibody Cell Signaling Catalog: 14369S; RRID: AB_2798465

CD8, C8/114B clone, A647 dye, antibody Biolegend Catalog: 372906; RRID: AB_2650712

Alpha-actinin, EPR2533(2) clone, A488 dye, 
antibody

Abcam Catalog: ab198608

CD68, KP1 clone, A546 dye, antibody Santa Cruz Catalog: sc-20060 AF546; RRID: AB_2891106

NaKATPase, EP1845Y clone, A647 dye, 
antibody

Abcam Catalog: ab198367

Vimentin, E-5 clone, A488 dye, antibody Santa Cruz Catalog: sc-373717 AF488; RRID: AB_10917747

Sox9, EPR14335 clone, A555 dye, antibody Abcam Catalog: ab202516

FOXP3, 206D clone, A647 dye, antibody Biolegend Catalog: 320114; RRID: AB_439754

Lysozyme, E-5 clone, A488 dye, antibody Santa Cruz Catalog: sc-518012 AF488; RRID: AB_2889359

SMA, 1A4 clone, Cy3 dye, antibody Millipore Sigma Catalog: C6198-100UL; RRID: AB_476856
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Reagent or resource Source Identifier

ERBB2, EPR19547 clone, A647 dye, antibody Abcam Catalog: ab225510; RRID: AB_2889201

P-p44/42 MAPK, Rabbit Monoclonal 
antibody

Cell Signaling Catalog: 4370; RRID: AB_2315112

MUC5AC, Rabbit Monoclonal antibody Cell Signaling Catalog: 61193; RRID: AB_2799603

CDX2, Rabbit Monoclonal antibody Cell Signaling Catalog: 12306; RRID: AB_2797879

Midkine, Rabbit Monoclonal antibody Abcam Catalog: ab52637; RRID: AB_880698

YAP, Rabbit Monoclonal antibody Cell Signaling Catalog: 14074; RRID: AB_2650491

MLH1, Rabbit Monoclonal antibody Abcam Catalog: Ab92312; RRID: AB_2049968

EPCAM antibody Santa Cruz Catalog: Sc-53532; RRID: AB_2277892

GFP antibody Novus Catalog: NB600-308SS; RRID: AB_10005904

DCAMKL1 antibody Abcam Catalog: ab109029; RRID: AB_10864128

CHGA (C20) antibody Santa Cruz Catalog: sc1488; RRID: AB_2276319

MUCIN2 (H-330) antibody Santa Cruz Catalog: sc15334; RRID: AB_2146667

CD3 (Sp7) antibody Thermo Fisher Catalog: RM-9107-50

CD8 (4SM15) antibody Invitrogen Catalog: 14-0808-80; RRID: AB_2572860

CD4 (4SM95) antibody Invitrogen Catalog: 14-9766-80; RRID: AB_2573007

CD11b-AF647 antibody Abcam Catalog: ab204471; RRID: AB_204471

CD11c antibody Biolegend Catalog: 117301; RRID: AB_313770

CD45/B220-AF647 antibody Biolegend Catalog: 103228

Hoechst 33342 Invitrogen Catalog: H3570

Ia/le (M5/114.15.2) Biolegend Catalog: 107601

DQ-Ovalbumin Thermo Fisher Catalog: D12053

Ovalbumin peptide Anaspec Catalog: OVA323-339

CD3-PerCP/Cy5.5, clone 145-2C11 Biolegend Catalog: 100328; RRID: AB_893318

CD4-Apc-Cy7, clone GK1.5 Biolegend Catalog: 100414; RRID: AB_312699

MHCII-PE-Cy7, clone M5/144.15.2 Biolegend Catalog: 107629; RRID: AB_2290801

CD69-FITC, clone H1.2F3 eBioscience Catalog: 11-0691-82; RRID: AB_465119

CD45-BV785, clone 30-F11 Biolegend Catalog: 103149; RRID: AB_2564590

Ia/Ie-AF647 Biolegend Catalog: 10760

ROCK inhibitor STEMCELL Technologies Catalog: Y-27632

Matrigel Corning Catalog: 356231

RNase A Thermo Fisher Catalog: EN0531

Lysing Matrix E MP Bio Catalog: 116914100

Mouse Intesticult STEMCELL Technologies Catalog: 06005

Gastrin I Sigma-Aldrich Catalog: 39024-57-2

TrypLE Express Thermo Fisher Catalog: 12604013

N-acetyl-L-cysteine Sigma-Aldrich Catalog: A9165

H2O2 Sigma-Aldrich Catalog: 216763

A83-01 Tocris Catalog: 2939

IGF-1 Biolegend Catalog: 590904

FGF-2 Thermo Fisher Catalog: PHG0024

Primocin InvivoGen Catalog: am-pm-05
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Reagent or resource Source Identifier

Human IntestiCult (OGM) STEMCELL Technologies Catalog: 06010

Human IntestiCult (ODM) STEMCELL Technologies Catalog: 100-0214

Human IFN gamma Biolegend Catalog: 570206

CD8-alpha, 53-6.7 clone, antibody Biolegend Catalog: 100711; RRID: AB_312750

MHC class I antibody, clone ER-HR 52 Abcam Catalog: ab15681; RRID: AB_302030

MHC class II (I-A/I-E) antibody, clone 
(M5/114.15.2)

Thermofisher Catalog: 14-5321-82; RRID: AB_467561

RT Probe: HLA_A_F Sigma AGATACACCTGCCATGTGCAGC

RT Probe: HLA_A_R Sigma GATCACAGCTCCAAGGAGAACC

RT Probe: HLA_B_F Sigma CTGCTGTGATGTGTAGGAGGAAG

RT Probe: HLA_B_R Sigma GCTGTGAGAGACACATCAGAGC

RT Probe: HLA_C_F Sigma GGAGACACAGAAGTACAAGCGC

RT Probe: HLA_C_R Sigma ACATCCTCTGGAGGGTGTGAGA

RT Probe: CD74_F Sigma AAGCCTGTGAGCAAGATGCGCA

RT Probe: CD74_R Sigma AGCAGGTGCATCACATGGTCCT

RT Probe: C2TA_F Sigma CTACTTCAGGCAGCAGAGGAGA

RT Probe: C2TA_R Sigma GCTGTGTCTTCCGAGGAACTTC

RT Probe: HLA-DRB1_F Sigma GAGCAAGATGCTGAGTGGAGTC

RT Probe: HLA-DRB1_R Sigma CTGTTGGCTGAAGTCCAGAGTG

RT Probe: GAPDH_F Sigma GTCTCCTCTGACTTCAACAGCG

RT Probe: GAPDH_R Sigma ACCACCCTGTTGCTGTAGCCAA

Deposited data

TCGA (CRC) (Cancer Genome Atlas 
Network, 2012)

TCGA GDAC Firehose: COADREAD

SMC (CRC) (Lee et al., 2020)
GEO: GSE132465

Broad (CRC) (Pelka et al., 2021) HTAN Data Portal: HTA1

Software and algorithms

pCreode (Herring et al., 2018) https://github.com/Ken-Lau-Lab/pCreode

Scanpy (Wolf et al., 2018) https://github.com/theislab/scanpy

Pegasus Klarman Cell Observatory https://github.com/klarman-cell-observatory/pegasus

pySCENIC (Aibar et al., 2017) https://github.com/aertslab/pySCENIC

CMScaller (Eide et al., 2017) https://github.com/peterawe/CMScaller

CytoTRACE (Gulati et al., 2020) https://cytotrace.stanford.edu

CMSclassifier (Guinney et al., 2015) https://github.com/Sage-Bionetworks/CMSclassifier

Seaborn Seaborn https://github.com/mwaskom/seaborn

cBioPortal (Cerami et al., 2012; Gao et 
al., 2013)

https://www.cbioportal.org/

Matplotlib Matplotlib https://github.com/matplotlib/matplotlib

GATK4 (Poplin et al., 2017) https://gatk.broadinstitute.org/hc/en-us

DENDRO (Zhou et al., 2020) https://github.com/zhouzilu/DENDRO

dropkick (Heiser et al., 2021) https://github.com/Ken-Lau-Lab/dropkick
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Reagent or resource Source Identifier

DropEst (Petukhov et al., 2018) https://github.com/kharchenkolab/dropEst

STAR (Dobin et al., 2013) https://github.com/alexdobin/STAR

Cytoscape (Shannon et al., 2003) https://cytoscape.org/

g:Profiler (Raudvere et al., 2019) https://biit.cs.ut.ee/gprofiler/

Scipy (Virtanen et al., 2020) https://scipy.org/

Sinto Sinto https://github.com/timoast/sinto

Dendextend (Galili, 2015) https://github.com/talgalili/dendextend

Numpy (Harris et al., 2020) https://numpy.org/

Pandas Pandas https://pandas.pydata.org/

BWA (Li and Durbin, 2009) https://sourceforge.net/projects/maq/

ANNOVAR (Wang et al., 2010; Yang 
and Wang, 2015)

https://github.com/WGLab/doc-ANNOVAR

Picard Broad Institute https://broadinstitute.github.io/picard/

Sambamba (Tarasov et al., 2015) https://github.com/biod/sambamba

lme4 (Bates et al., 2015) https://github.com/lme4/lme4

lmerTest (Kuznetsova et al., 2017) https://github.com/runehaubo/lmerTestR

emmeans emmeans https://github.com/rvlenth/emmeans

Cytobank (Kotecha et al., 2010) https://www.cytobank.org/

MANDO (McKinley et al., 2019) https://github.com/Coffey-Lab/CellSegmentation

UMAP (McInnes et al., 2018) https://github.com/lmcinnes/umap

Dask Dask https://dask.org/

Harmony (Korsunsky et al., 2019) https://github.com/immunogenomics/harmony

Scikit-posthoc (Terpilowski, 2019) https://scikit-posthocs.readthedocs.io/en/latest/

GSEA Webapp (Mootha et al., 2003; 
Subramanian et al., 2005)

https://www.gsea-msigdb.org/gsea/index.jsp
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