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The use of Phyllanthus emblica (gooseberry) leaf extract to synthesize Boron-doped zinc
oxide nanosheets (B-doped ZnO-NSs) is deliberated in this article. Scanning electron
microscopy (SEM) shows a network of synthesized nanosheets randomly aligned side by
side in a B-doped ZnO (15 wt% B) sample. The thickness of B-doped ZnO-NSs is in the
range of 20–80 nm. B-doped ZnO-NSs were tested against both gram-positive and gram-
negative bacterial strains including Staphylococcus aureus, Pseudomonas aeruginosa,
Klebsiella pneumonia, and Escherichia coli. Against gram-negative bacterium (K.
pneumonia and E. coli), B-doped ZnO displays enhanced antibacterial activity with 26
and 24mm of inhibition zone, respectively. The mass attenuation coefficient (MAC), linear
attenuation coefficient (LAC), mean free path (MFP), half-value layer (HVL), and tenth value
layer (TVL) of B-doped ZnO were investigated as aspects linked to radiation shielding.
These observations were carried out by using a PTW

®
electron detector and VARIAN

®

irradiation with 6 MeV electrons. The results of these experiments can be used to learn
more about the radiation shielding properties of B-doped ZnO nanostructures.
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INTRODUCTION

Scientists have been motivated by the growing environmental
issues to avoid using toxic materials that could pose a severe
ecological impact. As a result, researchers have recently been
looking for novel solutions that are more environmentally
friendly and sustainable (Adil et al., 2015). Various techniques,
including physical and chemical techniques, can be used to
synthesize nanomaterials. Alternative approaches, such as
green chemistry, have been developed as a result of the
challenges in scaling-up physical processes and the use of
harmful synthetic chemicals that could be carried over by the
nanostructures in chemical processes. Synthesis of nanomaterials
using the green chemistry approach is started recently, while
these approaches were used in agriculture, consumer items, and
health for several years (Marslin et al., 2018). The green chemistry
approach is based on a redox reaction in which the components
of an organism or its extract convert metal ions to stable
nanostructures. Plant extract-mediated synthesis of
nanostructures has gained wide acceptance due to its eco-
friendly nature, simplicity, easiness to scale up and low cost
(Kumar and Yadav, 2009; Marslin et al., 2015).

Zinc oxide (ZnO) is such an important material that has plenty
of uses and applications in almost any field of modern technology
both in bulk and nano. ZnO, with a wurtzite crystal structure, is a
naturally occurring wide-bandgap (3.44 eV) semiconductor
material (Takahashi et al., 2007). It is an n-type
semiconductor by nature having a hexagonal wurtzite phase
and is known to be the most stable phase of ZnO. Because of
its stability, ZnO is a good choice for electrically conductive
materials (Banerjee and Guha, 1991; Borysiewicz, 2019;
Wojnarowicz et al., 2020). Transparency, high conductivity,
and electron mobility are all some of the excellent properties
of ZnO (Ilican et al., 2011). Because of its high excitation binding
energy, it can act as a transparent conductive oxide (TCO) at
ambient temperature. In comparison to other wide bandgap
semiconductors, ZnO has three times bigger (60 MeV) exciton
binding energy (Liang and Yoffe, 1968; Look, 2001). ZnO is a
versatile material and doping has a substantial impact on the
optical and electrical properties, making it ideal for many
applications such as piezoelectric and ferroelectric layers, UV
lasers at room temperature, optoelectronic devices at short
wavelength (Banerjee and Guha, 1991; Ilican et al., 2011),
spintronic devices, dielectric or insulating layers, transparent
conducting electrodes and radiation shielding (Hiramatsu
et al., 1998; Kluth et al., 2003).

Bacterial infections are considered a severe health problem
around the world. Novel bacterial mutations, pathogenic strain
outbreaks, antibiotic resistance, and other factors are on the rise,
necessitating the invention of more effective antibacterial agents.
Antibacterial activities of ZnO have been documented earlier
from time to time (Frederickson et al., 2005). ZnO is an important
mineral for humans, and when given in controlled doses, it has
high activity and can therefore be a good alternative for
antibiotics (Zhang et al., 2007). ZnO antibacterial properties
can be used in the preservation of packaged foods (Chitra and
Annadurai, 2013). ZnO has been shown to prevent the intestinal

tract and stomach from E. coli infection (Yamamoto et al., 2004).
ZnO-NPs antibacterial activity depends directly on their
concentration and varies inversely to their size (Raghupathi
et al., 2011; Ali et al., 2021).

Boron (B) is found in both diet and the environment. B
supplements are used to treat osteoarthritis, boost cognitive
abilities, strengthen bones and muscles. As a result, boron (B)
doping in ZnO will be very effective for a variety of biomedical
applications. It has the potential to bring about a medical
revolution. The as-produced B-doped ZnO thin films are
found to be better antibacterial agents than pure ZnO (Kayani
et al., 2020). Radiation sources are commonly used in various
areas including radiation treatment centers and nuclear power
plants etc. (Salinas et al., 2006; Gurler and Akar Tarim, 2012).
Since radiation is used in diagnosis and treatment centers,
therefore, a shield against it should be built to safeguard
patients and the workers who work there. Despite all the
efforts, we cannot eliminate radiation from our daily lives. As
a result, basic rules such as distance, time, and shielding should be
followed to mitigate the consequences of radiation (El-Khayatt
et al., 2014; Agar, 2018). Precautionary measures in radiation
applications are needed in a variety of disciplines (Sarachai et al.,
2018). ZnO properly doped with an element having excellent
properties for the desired shielding could be the best option in this
regard. In such a case, B-doping could be most effective from
group A-III elements of the periodic table. B-doped ZnO is a
radiation shielding material famous for its clear or transparent
nature. Such material is particularly desired in radiation
treatment and diagnostic centers as radiation-retaining glasses
indoors (for example in X-ray rooms as shielding materials), and
spectacles. B-doping is mainly performed on an n-type
semiconductor, which results in a larger carrier density and
hence a higher tunneling current (Steinhauser et al., 2008).
Boron has the smallest ionic radius (0.23 Å), as well as the
greatest electronegativity (2.04, Pauling). Furthermore, B3+

(10.7) has a significantly greater Lewis’s acid strength
compared to Al3+ (3.04). As a consequence, doping boron may
be beneficial in fine-tuning the physical properties of ZnO
nanostructures (Caglar et al., 2011). Many fabrication
techniques have been used for the synthesis of B-doped ZnO
in the past including radiofrequency (Rf) magnetron sputtering
(Minami et al., 1985), chemical vapor deposition (CVD) (Dong
et al., 2005), electrochemical deposition, atomic layer deposition
(Hu and Gordon, 1992a), wet chemical synthesis, etc. (Ishizaki
et al., 2002).

Many researchers including Murali et al. (Murali et al., 2021),
Loganathan et al. (Loganathan et al., 2018), Chellappa et al. (Joel
and Badhusha, 2016), and Shubha et al. (Shubha et al., 2019), have
synthesized ZnO nanostructures using P. emblica plant extract
and in literature, no study reported for the synthesis of B-doped
ZnO-NSs synthesized using P. emblica plant extract. In the
current study, B-doped ZnO-NSs were prepared via the
unpretentious cost-effective green chemistry technique by
using P. emblica (gooseberry) leaf extract along with zinc
chloride and Boron-10. The as-prepared B-doped ZnO-NSs
were used to investigate their role in antibacterial and
radiation shielding applications. Free radicals are produced as
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a result of ionizing processes at the start of radiation exposure,
and they are capable of damaging normal tissues. The pure and B
doped ZnO-NSs propose a biological free radical scavenger or
antioxidant action. By virtue of their antioxidant characteristics,
which occur when the nanostructures penetrate the cells, the
unique structure of B doped ZnO-NSs will be helpful in
enhancing cell lifetime and reducing toxic exposures by
reducing the formation of reactive oxygen species (ROS) and
therefore inhibiting the activation of the apoptotic response and
cell death.

MATERIALS AND METHODS

Materials
Zinc dichloride (ZnCl2), and Boron (B10) of 99.9% purity was
procured from Merck. The purchased chemicals were used in
their original form. All the synthesis procedures were carried out
with deionized water.

Preparation of Leave Extract
Fresh leaves of Phyllanthus emblica (gooseberry) were collected
from district Mansehra, Khyber Pakhtunkhwa, Pakistan. The
collected leaves were washed gently with fresh and clean tap
water thrice and then placed under sunlight for 30 min for drying.
Dried leaves were cut into small pieces of the relatively same size
and weighted by using a digital balance. 10 g of fine pieces of
leaves were taken into a beaker containing 100 ml of de-ionized
water. The beaker was then covered with aluminum foil and
placed on the hotplate for 40 min. The temperature of the
hotplate was set to 80°C. The mixed solution of leaves was
then cooled for 20 min at room temperature where its color
was found to change from green to blackish green. Whatman
Grade-1 filter paper has been used for filtering the solution. The
filtered solution was then centrifuged for 15 min at a rate of
4,000 rpm to settle down the dense pollutants at the bottom of the
tube. The final product was collected in separate sterilized glass
vials for further study of the experiment.

Synthesis of Pure and B Doped ZnO
Nanosheets
Pure ZnO and B-doped ZnO-NSs (15 wt% B) were prepared
using a simple green chemistry route. ZnCl2 (1.7 g) was used as a
starting reagent dissolved in 100 ml of de-ionized water along
with 0.5 ml of HNO3. Then, 5 ml (ml) of the as-prepared (10 ml
of leaves extract diluted with 10 ml of deionized water) leaves
extract was poured drop by drop into the salt solution. The same
procedure was followed to prepare B-doped ZnO-NSs using B10

(0.25 g) as a dopant source. The pH of the solution was noted as 4.
Afterward, the solution was heated and stirred gently at 100°C for
2 h. The past-like product was then washed several times with
distilled water and ethanol, and dried in a drying oven at 120°C
for 1 hour. The dried powder of the synthesized B-doped ZnO-
NSs was collected in an ultrafiltration vial.

Characterization
Scanning electron microscopy (MAIA3 TESCAN), X-ray
diffraction (Bruker D8 (Germany)), Energy Dispersive X-Ray
Analysis (Oxford INCA X-sight 200), Fourier-transform infrared
(Nicolet Avatar 370), Photoluminescence analysis (Hitachi F-
4500, Japan) and Linear accelerator (VARIAN®) were used to
study morphology, crystallographic structure, elemental analysis,
structural defects, the role of biomolecules in reduction and
radiation shielding behavior of the as-synthesized B-doped
ZnO nanomaterial.

Antibacterial Activity
The bactericidal potential of B-doped ZnO-NSs was determined
by using the agar well diffusion method against microorganisms
including Pseudomonas aeruginosa, Klebsiella pneumonia,
Escherichia coli (Gram-negative), and Staphylococcus aureus
(Gram-positive). All sample stock solutions have been made in
dimethyl sulfoxide (DMSO) by adding the required amounts of
pure ZnO and B-doped ZnO-NSs to achieve the homogeneous
solution. DMSO was used to make working dilutions from stock
solutions of 0.25 mg/ml, 0.5 mg/ml, and 0.75 mg/ml. To make
culture media, agar nutrient was dissolved in deionized water. For
sterilization, it was autoclaved for 20 min at 120°C. After cooling,
the purified media was placed in 90 mm Petri dishes (autoclaved)
under controlled and aseptic experimental conditions. At room
temperature, the agar was allowed to firm before being stored in
the refrigerator. The bacteria including S. aureus, K. pneumonia,
P. aeruginosa, and E. coli were sub-cultured on the agar plates
with the use of an autoclaved immunizing needle by moving a
very minimal quantity of bacterial isolate to the agar plates to
investigate the antibacterial activity. To examine for bacterial
growth and contamination, the plates were incubated at 37°C for
24 h. Cotton swabs were used to inoculate the Petri plates with the
bacterial inoculum. Following this, all of the plates are arranged in
a laminar airflow chamber in an ordered manner for 15 min.
Then using a disinfected corn borer, 4 wells with a diameter of
8 mm were created within every Petri plate, and 40 µl of each
sample were poured into the corresponding well using a
micropipette. To check for bacterial growth, the plates were
incubated at 37°C for 24 h. After incubation, the antimicrobial
effect of all samples was evaluated in millimeters by the diameter
of the inhibitory zone.

Radiation Shielding Studies
Thin films of B-doped ZnO-NSs were synthesized by using the
sol-gel process and have been irradiated via the VARIAN®
(Kavun, 2019) linear accelerator. Electrons energized to 6 MeV
were applied to thin films placed inside the solid phantoms. The
Dmax of 6 MeV electrons necessitated the employment of a
13 mm solid phantom for experiments. A PTW® (Kavun,
2019) electron detector with a 6 × 6 cm electron field
applicator was used to measure the dosage. As shown in
Figure 1, the thin film samples were placed 100 cm from the
gantry, and the sensor was positioned somewhere under the
material samples.
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RESULTS AND DISCUSSION

The morphology, phase study, elemental analysis of the
synthesized ZnO and B-doped ZnO-NSs sample were carried
out by Scanning electron microscopy (SEM), X-ray diffraction
(XRD), Energy-dispersive X-ray spectroscopy (EDX), Fourier-
transform infrared (FTIR), and Photoluminescence
spectroscopy (PL).

The morphology of pure ZnO and B-doped ZnO-NSs
synthesized by the green chemistry route was investigated by
SEM. Figures 2A,B shows low, and high magnification SEM
micrographs of the acquired material (pure ZnO). The
micrograph in Figure 2C shows randomly aligned different
shapes and morphologies of the synthesized B-doped ZnO-
NSs. Smaller size nanosheets seem packed together in low
magnification whereas, the larger nanosheets can be observed
somehow vertically aligned. The magnified view in the high
magnification SEM micrograph shown in Figure 2D clarifies
the sheets-like shape and morphology of the synthesized B-doped
ZnO-NSs. The vertically aligned nanosheets can be observed
there among the other randomly aligned. The synthesized
sample is found to have B-doped ZnO-NSs in different sizes
and thicknesses. On average, the sample contained B-doped
ZnO-NSs with thickness in the range of 20–80 nm.

The chemical compositional study of pure and B doped ZnO-
NSs was performed by using EDX. The as-obtained EDX
spectrums are shown in Figure 3. Only Zn and O were
detected in the EDX spectrum of the pure sample whereas B
along with Zn and O were detected in the doped ZnO-NSs
samples. The presence of B ions has a considerable influence
on the properties of the material. The EDX spectra also revealed
that the manufactured samples included no other foreign
elements except Cl.

The XRD (an analytical approach for determining the
material’s type, its crystallite size, and phase) patterns of pure
and B-doped ZnO-NSs are shown in Figure 4. The structure,
phase, and crystallite size of the B-doped ZnO-NSs are driven in
assistance to intensities and positions of the peaks. For the
confirmation of the B-doped ZnO-NSs formation in the
synthesized material, miller indices/planes were identified for
every diffraction peak. The major diffraction peaks found at
31.71°, 34.39°, 36.23°, 47.70°, 62.83°, 56.59°, 66.34°, 67.89°,
68.99°, 72.61°, and 77.02° were related to the (hkl) values
(miller indices/planes) of (100), (002), (101), (102), (103),
(110), (200), (112), (201), (004) and (202), respectively.
Crystal-like phases and the formation of a hexagonal wurtzite
structure (with lattice parameters of a = 3.249 Å and c = 5.206 Å)
were identified via X′ Pert High Score by correlating these
polycrystalline ZnO-based nanostructures to the reference
database (standard XRD pattern of ZnO) from ICSD file: 01-
076-0704. The peaks near 33°, 38°, 45° and 54° can also be indexed
to the ZnO phase, as shown in Figure 3. The low strength of these
subsequent peaks shows that the obtained sample contains a very
small percentage of the ZnO phase (JCPDS Card no. 21-1486). To
find the crystallite size, Scherrer’s method was used.

D � kλ

β cos θ
(i)

Where D is the crystal size, λ is the wavelength of X-ray, β is the
full width at half maximum of the peak in radians, and θ is the
Braggs angle in radians.

The intensity of peaks was enhanced and the crystallite size of
the measured (intense) peak of B-doped ZnO-NSs fell marginally
from 14.6 to 13.3 nm when the doping concentration of B was
increased from 0 to 15% (Kayani et al., 2020). It shows that B is
successfully incorporated into the host matrix. Increased B

FIGURE 1 | Schematic illustration of the experimental setup for radiation protection studies.
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dopant incorporation into the ZnO matrix resulted in lattice
deformation, as well as lattice defects and nucleation centers (Hu
and Gordon, 1992b). The nucleation site expansion and the
limiting of particle growth are thus the main mechanisms
underlying the generation of fine nanosheets.

The existence of functional groups and the incorporation of
dopant ions into the host structure can be determined using FTIR
spectra (Vijayaprasath et al., 2016; Khalid et al., 2021a).
Transverse optical and longitudinal optical phonons (TO and
LO) produced significant bands (absorption) in the area of ~405
and ~485 cm−1 as demonstrated in Figure 5. The E2h mode of
ZnO was detected near 440 cm−1 (Jun et al., 1995). The ZnO E2h
mode overlapped by a shoulder peak approximately at 559 cm−1,

were attributed to the O—B—O boron’s deformation vibration.
The existence of B—O bonds (three-coordinated) in bands visible
at 495 and 418 cm−1 caused a clear separation of ZnO stretching
modes in the host doped with boron. Meanwhile, a nicely defined
band at 495 cm−1 shows four coordinated boron deformation
vibrations (Weir, 1966). The strength of a narrow absorption
band at 880 cm−1 linked to the growing concentration of dopant
is found in ZnO-NPs (pseudo-hexagonal) doped with boron,
which is attributed to the B—O bond (symmetric stretching) with
boron atoms (three coordinated) (Othman et al., 2016). The
absorption bands intensity at 3,447 cm−1 and 3,565 cm−1

increased for B doped ZnO-NSs. Vibrations in this region in
solids are often OH stretching modes, showing how water from

FIGURE 2 | Low and high magnifications SEM micrographs of (A,B) pure ZnO, (C,D) B-doped ZnO-NSs.
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ambient moisture may rehydrate terminal oxygens near the
sample surface. Jun et al. (Jun et al., 1995) attributed several
absorption bands observed in B-doped ZnO-NS to hydrated
borates produced at 20 to 100°C temperatures. The efficient
integration of B into the ZnO matrix during synthesis is
confirmed by enhanced performance in the measured band
intensities in B doped ZnO-NSs.

The use of photoluminescence (PL) spectroscopy to explain
the recombination and transport of photo-generated electron-
hole pairs in semiconductors is significant. The existence of
various structural defects in ZnO-NS, such as zinc and oxygen
vacancies lead to varied radiative transitions among electrons
from the trapping levels or conduction band and trapped or
photogenerated holes can be examined by using PL
measurements (Othman et al., 2016). The PL spectra of B
doped ZnO-NSs at room temperature with excitation at

FIGURE 3 | EDX spectrum of pure ZnO and B-doped ZnO-NSs.

FIGURE 4 | The X-ray diffraction pattern for pure (black) and B doped
ZnO-NSs (blue).

FIGURE 5 | FTIR spectrum of ZnO and Boron doped ZnO-NSs.

FIGURE 6 | Photoluminescence (PL) spectrum of ZnO and B-doped
ZnO-NSs.
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320 nm are shown in Figure 6. The excitonic recombination-
induced UV radiation of ZnO is in phase with the near band edge
emission (NBE) of ZnO, whereas the interaction of photo-
generated holes with numerous structural deficiencies, such as
ionized charge states of intrinsic defects, zinc vacancies, and
oxygen vacancies, causes the emission of deep levels in the
visible region spectrum (Das and Mondal, 2014). The PL
spectra display peaks of UV emission at 380 and 395 nm.
Accordingly, the spectrum has a strong blue band at 469 nm,
a violet-blue band at 449 nm, a moderate blue-green emission at
495 nm, a greenish-blue emission at 482 nm, and a broad peak
from 500-650 nm. A peak at 380 nm in UV light indicates normal
NBE or exciton emission from free exciton recombination (Xia
et al., 2011). Surface states (VZn) or band tail states in ZnO are
responsible for the peak at 395 nm (Palni et al., 2007). The optical
centers related to impurities including intrinsic defects are
commonly detected in the wavelength range of 450–650 nm in
the DLE area (Thapa et al., 2016). The faint blue emissions are
primarily caused by surface imperfections in ZnO NSs (Wang
and Gao, 2004). The electron transformations from the interstitial
Zn to the intrinsic defect VZn occurred in the bright blue band at
469 nm. Furthermore, at 543 nm, a green emission known as the

DLE can be seen, which is often ascribed to single ionized oxygen
vacancies (V0+) (Shi et al., 2011). Figure 6 clearly shows that the
intensity of PL spectra has reduced as a result of the addition of B
to ZnO. Based on the observation, The B3+ ion has
been transferred to the lattice sites effectively into the host
matrix (ZnO). The B-doped ZnO has the smallest surface
defect, as seen by the weak green emission on the PL graph
(Wang et al., 2017).

Table 1 and Figure 7 illustrate the antibacterial efficiency of
ZnO and B-doped ZnO against various bacterial isolates. The
findings revealed that doping B enhanced antibacterial activity.
The increase in antibacterial activity could be due to one of two
factors. B-doped ZnO small particle size makes it possible for
them to enter bacterial cell walls more easily. The antibacterial
activity will be damaged and reduced due to the agglomeration of
nano crystallites. In this study, a smaller particle size resulted in
the release of high concentrations of B ions into the environment.
The results show that due to smaller particle size, doping of B
raised the antibacterial action. Antibacterial activity of pure ZnO
shows 16 and 17 mm zone of inhibition for P. aeruginosa (ATCC®
10145) and E. coli (ATCC® 33876) while for K. pneumoniae
(ATCC® BAA-1144) and S. aureus (ATCC® 11632) ZnO shows

TABLE 1 | Information of bacterial isolates and other experimental parameters.

Bacteria ZnO B Doped ZnO

0.25 mg/ml 0.5 mg/ml 0.75 mg/ml 0.25 mg/ml 0.5 mg/ml 0.75 mg/ml

Gram negative P. aeruginosa Inhibition zone (mm) 14 ± 0.12 15 ± 0.11 16 ± 0.18 10 ± 0.12 14 ± 0.13 19 ± 0.15
E. coli 09 ± 0.17 13 ± 0.14 17 ± 0.23 17 ± 0.15 22 ± 0.10 24 ± 0.22
K. pneumoniae 12 ± 0.11 12 ± 0.12 13 ± 0.21 18 ± 0.14 23 ± 0.19 26 ± 0.21

Gram positive S. aureus 16 ± 0.15 18 ± 0.20 20 ± 0.19 15 ± 0.14 18 ± 0.17 23 ± 0.16

FIGURE 7 | (A) ZnO and (B) B-doped ZnO-NSs applied against various microbe (P. aeruginosa, K. pneumonia, E. coli, and S. aureus) in Petri plates.
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13 and 20 mm zone of inhibition. B doped ZnO-NSs was shown
to be exceptional against both E. coli (ATCC® 33876) and K.
pneumonia (ATCC® BAA-1144) tested bacterial strains. E. coli
(ATCC® 33876) had a 24 mm zone of inhibition, while K.
pneumonia (ATCC® BAA-1144) had a 26 mm zone of
inhibition as demonstrated in Figures 8A,B.

This study found a broad range of antibacterial efficacy against
various types of bacteria. These findings revealed that the
antibacterial activity of ZnO was influenced by dopant types.
The complete mechanism of the influence of synthesized B doped

ZnO NSs on various microbial strains is demonstrated in
Figure 9. In our previous works, we have studied the
antibacterial efficiency of pure ZnO, Cu-doped ZnO (Khalid
et al., 2021b), and Co-doped ZnO (Khalid et al., 2021c)
nanostructures. The comparison of the higher concentration of
those results and the current results are given in Table 2, from
which it can easily be observed that the anti-bactericidal efficiency
of B-doped ZnO-NSs is higher than pure, Cu-doped, and Co-
doped ZnO nanostructured material (Khalid et al., 2021b; Khalid
et al., 2021c).

FIGURE 8 | Zone of inhibition values (mm) for various concentrations of (A) ZnO and (B) B doped ZnO-NSs.

FIGURE 9 | Schematic illustration for detailed antibacterial mechanism of pure and B doped ZnO-NSs.
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The radiation protection/shielding efficiency of ZnO and B
doped ZnO thin films can be determined by using linear
attenuation measurements. Boron has been doped into these
coating materials. 6 MeV electrons were used to irradiate the
sample. Table 2 shows the results of linear attenuation (μ), mass
attenuation (µm) coefficients, one-tenth value layer, half-value
layer, and mean free path of pure and doped ZnO thin films. As
can be shown in Table 3B doping has significantly contributed
to these values. The highest value of linear attenuation
coefficient (0.0151 ± 0.0011 cm−1) was achieved for boron-
doped ZnO thin film. Figure 10 shows the linear attenuation
coefficient values that have been fitted linearly. Figure 11
depicts the mass attenuation coefficient of B doped ZnO thin
films. For ZnO-coated thin films, the lowest value is 0.00186 ±
0.00035 cm2/g. The value grows with the B incorporation into
the host matrix. At B-doped ZnO thin film, the mass

attenuation coefficient is maximum at 0.00799 ±
0.00047 cm2/g. The One-Tenth Values (TVL), Mean Free
Path (MFP), and Half-Value Layer (HVL), of pure and
B-doped ZnO thin films, are presented in Figure 12.
Depending on the proportion of dopant (boron) in ZnO thin
films, the Half value layer has altered from 160.03 cm to
106.99 cm−1. The one-tenth layer value has also changed,
going from 117.47 cm to 80.8 cm−1.

Finally, the mean free path of B-doped ZnO thin films has
decreased from 340.09 to 219.12 cm. These values decrease as the
amount of boron content in the thin film increases. In addition,
future studies in the same field can help in building an alternative
experimental setup, where the material’s absorption, their effects,
and the interactions between the various particles can be studied
(Maaza et al., 2006; Mtshali et al., 2013). Thus, the radiation
shielding properties of nanomaterials will be best known with the

TABLE 2 | Antibacterial efficiency of B-doped ZnO-NSs in comparison with pure, Cu-doped, and Co-doped ZnO.

Bacteria ZnO Cu Doped ZnO
(Khalid et al., 2021b)

Co Doped ZnO
(Khalid et al., 2021c)

B Doped ZnO

E. Coli Inhibition zone (mm) 1 mg/ml 1 mg/ml 1 mg/ml 0.75 mg/ml
14 ± 0.28 18 ± 0.36 17 ± 0.34 24 ± 0.22

K. pneumoniae 15 ± 0.3 17 ± 0.34 19 ± 0.38 26 ± 0.21
S. aureus 13 ± 0.26 24 ± 0.48 15 ± 0.3 23 ± 0.16
S. pyogenes 9 ± 0.18 20 ± 0.4 16 ± 0.32 ---
P. aeruginosa --- --- --- 19 ± 0.15

TABLE 3 | Various parameters (LAC, MAC, MFP, HVL, TVL) to analyze the radiation shielding efficiency of B doped ZnO.

Sample Composition % LAC (cm−1) MAC (cm2/g) MFP (cm) HVL (cm) TVL (cm)

ZnO Boron

1 100 0 0.00845 0.00186 340.09 160.03 117.47
2 85 15 0.01517 0.00799 219.12 106.99 80.8

FIGURE 10 | Linear Attenuation Coefficient of B doped ZnO (0
and 15%).

FIGURE 11 |Mass attenuation Coefficient of B doped ZnO (0 and 15%).
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additional studies to be done (Izerrouken et al., 2011; Ahmad
et al., 2022; Khalid et al., 2022).

CONCLUSION

Phyllanthus emblica (gooseberry) leaves extract in the green
chemistry method can effectively be utilized in the synthesis of
B-doped ZnO-NSs. A comparative study of B-doped ZnO-NSs
showed a stimulating effect of B-doping on radiation protection
and anti-bacterial characteristics. All of the microorganisms
tested were found to be inhibited by B-doped ZnO-NSs. The
inhibitory impact is dose-dependently increased. Gram-negative
isolates are more sensitive to B-doped ZnO-NSs than gram-
positive isolates. The antibacterial activity of ZnO-NSs is
greatly enhanced by the addition of B-dopant. According to
this study, doping appears to be a successful technique for the

synthesis of the most effective antibacterial agent. As per the
radiation shielding characteristics of the material, the linear
attenuation coefficient is enhanced due to an increase in the
amount of boron (0 to 15%) in the material. The one-tenth value
layer, half-value layer, mass attenuation coefficient, andmean free
path of B-doped ZnO-NSs all behaved in the same manner. These
findings suggest that B-doped ZnO-NSs can be employed in
radiation shielding applications in the modern world.
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