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Diagnostic classification 
of cancers using DNA methylation 
of paracancerous tissues
Baoshan Ma1*, Bingjie Chai1, Heng Dong1, Jishuang Qi1, Pengcheng Wang2, Tong Xiong1, 
Yi Gong1, Di Li3, Shuxin Liu4* & Fengju Song5*

The potential role of DNA methylation from paracancerous tissues in cancer diagnosis has not been 
explored until now. In this study, we built classification models using well-known machine learning 
models based on DNA methylation profiles of paracancerous tissues. We evaluated our methods 
on nine cancer datasets collected from The Cancer Genome Atlas (TCGA) and utilized fivefold 
cross-validation to assess the performance of models. Additionally, we performed gene ontology 
(GO) enrichment analysis on the basis of the significant CpG sites selected by feature importance 
scores of XGBoost model, aiming to identify biological pathways involved in cancer progression. 
We also exploited the XGBoost algorithm to classify cancer types using DNA methylation profiles 
of paracancerous tissues in external validation datasets. Comparative experiments suggested that 
XGBoost achieved better predictive performance than the other four machine learning methods 
in predicting cancer stage. GO enrichment analysis revealed key pathways involved, highlighting 
the importance of paracancerous tissues in cancer progression. Furthermore, XGBoost model can 
accurately classify nine different cancers from TCGA, and the feature sets selected by XGBoost can 
also effectively predict seven cancer types on independent GEO datasets. This study provided new 
insights into cancer diagnosis from an epigenetic perspective and may facilitate the development of 
personalized diagnosis and treatment strategies.

Cancer continues to be a leading cause of mortality worldwide1. On the basis of the GLOBOCAN 2020 estimates 
of cancer incidence and mortality reported by the International Agency for Research on Cancer, an estimated 
19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer 
deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 20202. Prediction of cancer stage and type 
as the important applications in cancer diagnosis are crucial for planning appropriate treatments.

Previous studies related to cancer diagnosis mainly focused on molecular data of tumor tissues3–6. Broët et al. 
proposed a new statistic for identifying gene expression features that detected tumor progression4. Rahimi et al. 
developed the highly time-efficient benders decomposition algorithm for the forest formulation (BDForest) to 
solve the problem of finding the similarity between different cancers, which is beneficial in classifying the stage 
of tumors7. Some studies have investigated molecular data of human pan-cancer and identified key biomarkers 
for prognosis and diagnosis of pan-cancer8–10.

Paracancer is the place where tumor growth and metastasis start. Wang et al. reported that the complement 
and angiogenesis pathways correlated with cancer progression were activated in the paracancerous tissues11. This 
finding revealed that the changes in paracancerous tissues are crucial complements to the conventional analysis of 
tumor tissues. Clinically, paracancerous tissues are more accessible to obtain than tumor tissues. Therefore, cancer 
stage and type prediction based on molecular data of paracancerous tissues may provide valuable information 
on understanding tumor stage progression and contribute to developing new approaches for cancer diagnosis. 
To the best of our knowledge, there have been no systematic studies that utilize data of paracancerous tissues to 
classify cancer stage and type.
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In this study, we utilized extreme gradient boosting (XGBoost)12 to discriminate tumor stage based on DNA 
methylation profiles of paracancerous tissues. The proposed XGBoost approach obtained better predictive per-
formance than the other four machine learning methods. Moreover, our model extracted significant features 
from genome-wide DNA methylation profiles. GO enrichment analysis provided evidence that DNA methylation 
biomarkers of paracancerous tissues were closely associated with the progression of tumor stage. Additionally, 
we employed the XGBoost algorithm to build a multiclass classifier, which can accurately identify nine different 
cancers on the basis of DNA methylation profiles of paracancerous tissues from TCGA. The feature sets selected 
by the XGBoost model have high accuracy in cancer type prediction on independent GEO datasets.

Results
Predictive performance comparison for cancer stage prediction.  For cancer stage prediction, we 
evaluated the predictive accuracy of five classification methods by fivefold-cv on nine datasets in this study. The 
area under the curve (AUC) of the receiver operating characteristic curve (ROC), the area under the precision-
recall curve (AUPR), accuracy (ACC), matthews correlation coefficient (MCC), Precision and Recall for differ-
ent models on nine datasets were calculated as shown in Table 1. The AUC, AUPR, ACC, MCC, Precision, Recall 
of these algorithms obtained in each fold of all datasets can be found in Supplementary Table S1–S6, respectively. 
To compare the XGBoost model more intuitively with other machine learning methods, we further plotted ROC 
curves of five classification models, which were shown in Fig. 1.

We compare the AUC values of the five classification algorithms on nine datasets. We observe that XGBoost 
obtains significantly better results than baseline algorithm NB on all nine datasets, and it improves the average 
AUC by 22.6%. SVM outperforms NB on eight out of nine datasets and it improves the average AUC by 8.8%. RF 
performs better than NB on seven out of nine datasets and it improves the average AUC by 8.8%. KNN is able to 
outperform NB on all nine datasets and it improves the average AUC by 14.4%. We notice that the performance 
of NB is superior to the baseline (i.e. AUC = 0.5) on five out of nine datasets, further indicating that the other 
four classification models yield higher performance.

The results suggest that XGBoost is far better than other classification models. The average AUC score of 
XGBoost is 0.672, which is 12.8%, 22.6%, 7.2% and 12.8% higher than SVM, NB, KNN and RF, respectively. 
Moreover, XGBoost substantially improves the predictive performance of stage prediction for cancer patients 
on nine datasets. Compared to the model with the worst prediction result, XGBoost increases the AUC values 
15.7%, 38.7%, 32.1%, 31.6%, 47.4%, 13%, 40.5%, 39.5% and 18.8%, respectively.

In addition, we calculate the ACC values of the five different classification models on nine datasets. Our 
results show that XGBoost predominantly outperforms NB, KNN, RF, and maintains comparable performance 
compared to SVM. XGBoost is superior to other models on six out of nine datasets and its average ACC is 0.694 
that is 2.5%, 3.1% and 0.4% higher than NB, KNN and RF, respectively.

Furthermore, XGBoost is still more competitive than other methods in terms of AUPR. The average MCC 
of XGBoost is 0.128, which is 88.2%, 80.3%, 13.3% and 21.9% higher than SVM, RF, KNN and NB, respectively. 
The average Precision of XGBoost is 0.385, which is 48.1% and 27.5% higher than SVM and RF, respectively. The 
average Recall of XGBoost is 0.399, which is 30%, 18.8% and 9% higher than SVM, RF and KNN, respectively.

In summary, these results clearly indicate that XGBoost achieves better performance on nine datasets by 
assessing AUC. Moreover, XGBoost marks the best results in most evaluation metrics, suggesting that it is 
superior to other classification methods. Specifically, the maximum AUC scores for nine datasets are 0.780 
(KIRC), 0.516 (BRCA), 0.819 (THCA), 0.658(HNSC), 0.600(KIRP), 0.565(LUSC), 0.721(LIHC), 0.735(COAD) 
and 0.650(UCEC), respectively.

Gene ontology enrichment analysis.  The GO analysis can identify biological pathways for revealing 
the relation between tumor progression and the CpG sites derived from the XGBoost model using the DNA 
methylation data of paracancerous tissues. GO analysis was conducted with the missMethyl package based on 
the top 10% significant CpG sites of nine cancers. Then we respectively obtained 147, 154, 155, 153, 151, 150, 
152, 150, 152 important GO terms for KIRC, BRCA, THCA, HNSC, KIRP, LUSC, LIHC, COAD and UCEC. All 
GO enrichment results of nine datasets can be found in Supplementary Table S7–S15, respectively. From GO 
analysis, many enriched GO terms for each cancer were determined. However, it was difficult to analyze them 
one by one, and these GO terms may be redundant. Therefore, we elected to cluster them into more representa-
tive terms using the Cytoscape plugin ClueGO. ClueGO network diagram was visualized based on the following 
basic parameters: kappa coefficient was set to 0.1, three categories of GO were used for ontology files, where 
each node and line represented a term and the correlation between the terms, respectively. Different node colors 
denoted the classification of terms according to the functions. ClueGO network diagrams of nine cancers were 
depicted in Fig. 2. The results from ClueGO enrichment clearly illustrated that the most significant GO terms 
were transcription by RNA polymerase II, transmembrane receptor protein serine/threonine kinase signaling 
pathway, neuron projection guidance, female sex differentiation, DNA-binding transcription repressor activity, 
forebrain development and cell junction assembly in KIRC, BRCA, THCA, HNSC, KIRP, LUSC, LIHC, COAD 
and UCEC. Among the most significant GO terms, we determined common GO terms related to tumor progres-
sion in nine cancers. Further analyses for these GO terms can be found in the discussion.

Classification of distinct cancers using XGBoost.  Based on DNA methylation data of paracancerous 
tissues, we exploited XGBoost to construct a tumor specific classifier for cancer type prediction. Table 2 pre-
sented all prediction results for TCGA and GEO datasets, respectively. XGBoost model obtained an accuracy 
of 100% for KIRC, 100% for BRCA, 100% for THCA, 100% for HNSC, 100% for KIRP, 100% for LUSC, 100% 
for LIHC, 100% for COAD and 100% for UCEC, exhibiting an average accuracy of 100% across all nine cancer 
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Table 1.   Comparison of prediction performance of different classification models on different datasets. 
KIRC kidney renal clear cell carcinoma, BRCA​ breast invasive carcinoma, THCA thyroid carcinoma, 
HNSC head and neck squamous cell carcinoma, KIRP kidney renal papillary cell carcinoma, LUSC lung 
squamous cell carcinoma, LIHC liver hepatocellular carcinoma, COAD colon adenocarcinoma, UCEC 
uterine corpusendometrial carcinoma, XGBoost Extreme gradient boosting, SVM Support vector machine, 
RF Random forest, KNN K-Nearest Neighbor, NB Naive Bayes. AUC​ the area under the receiver operating 
characteristic curve, ACC​ accuracy, AUPR the area under precision-recall curve, MCC matthews correlation 
coefficient. Significant values are in bold.

Cancer type Model AUC​ ACC​ AUPR MCC Precision Recall

KIRC

XGBoost 0.780 0.675 0.842 0.353 0.703 0.747

SVM 0.764 0.650 0.827 0.298 0.700 0.750

RF 0.743 0.600 0.817 0.205 0.643 0.683

KNN 0.741 0.669 0.795 0.392 0.807 0.542

NB 0.674 0.656 0.795 0.350 0.747 0.631

BRCA​

XGBoost 0.516 0.789 0.323 0.079 0.200 0.040

SVM 0.456 0.779 0.292 0.000 0.000 0.000

RF 0.372 0.779 0.184 0.000 0.000 0.000

KNN 0.505 0.726 0.263 -0.051 0.050 0.050

NB 0.432 0.632 0.207 -0.126 0.133 0.080

THCA

XGBoost 0.819 0.735 0.538 0.137 0.400 0.183

SVM 0.773 0.735 0.566 0.202 0.400 0.250

RF 0.719 0.733 0.441 0.045 0.200 0.050

KNN 0.681 0.662 0.604 0.103 0.333 0.317

NB 0.620 0.679 0.515 0.259 0.400 0.550

HNSC

XGBoost 0.658 0.840 0.925 0.000 0.840 1.000

SVM 0.622 0.840 0.928 0.000 0.840 1.000

RF 0.614 0.820 0.924 -0.022 0.838 0.978

KNN 0.603 0.840 0.917 0.000 0.840 1.000

NB 0.500 0.840 0.920 0.000 0.840 1.000

KIRP

XGBoost 0.600 0.444 0.683 0.087 0.406 0.670

SVM 0.541 0.444 0.680 0.110 0.404 0.760

RF 0.514 0.511 0.621 0.011 0.533 0.549

KNN 0.576 0.467 0.709 0.089 0.632 0.402

NB 0.407 0.422 0.582 -0.163 0.450 0.404

LUSC

XGBoost 0.565 0.828 0.180 0.000 0.000 0.000

SVM 0.513 0.828 0.197 0.000 0.000 0.000

RF 0.517 0.828 0.315 0.000 0.000 0.000

KNN 0.556 0.828 0.282 0.087 0.200 0.100

NB 0.500 0.828 0.586 0.000 0.000 0.000

LIHC

XGBoost 0.721 0.675 0.477 -0.087 0.000 0.000

SVM 0.550 0.725 0.645 0.000 0.000 0.000

RF 0.625 0.725 0.483 0.000 0.000 0.000

KNN 0.638 0.725 0.473 0.087 0.200 0.100

NB 0.513 0.725 0.608 0.030 0.100 0.067

COAD

XGBoost 0.735 0.589 0.671 0.291 0.617 0.550

SVM 0.527 0.618 0.658 0.000 0.000 0.000

RF 0.713 0.643 0.599 0.340 0.433 0.567

KNN 0.732 0.582 0.737 0.188 0.333 0.433

NB 0.682 0.693 0.689 0.374 0.633 0.567

UCEC

XGBoost 0.650 0.667 0.688 0.296 0.300 0.400

SVM 0.617 0.638 0.699 0.000 0.000 0.000

RF 0.547 0.581 0.608 0.061 0.067 0.200

KNN 0.612 0.557 0.562 0.124 0.333 0.350

NB 0.600 0.614 0.605 0.217 0.567 0.400
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Figure 1.   The ROC curves of XGBoost, SVM, RF, KNN and NB on nine datasets. (a) KIRC, (b) BRCA, (c)
THCA, (d) HNSC, (e) KIRP, (f) LUSC, (g) LIHC, (h) COAD, (i) UCEC.
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types. Thirty-one features ranked by their importance scores were selected by XGBoost and validated using inde-
pendent GEO datasets. For GEO datasets, XGBoost achieved an accuracy of 100% for KIRC, 97.6% for BRCA, 
97.6% for THCA, 96.6% for HNSC, 71.4% for LUSC, 65.1% for LIHC and 81.8% for COAD, showing an average 
accuracy of 86.1% across seven cancer types. These results indicated that XGBoost can accurately distinguish 
different cancer types using DNA methylation data of paracancerous tissues.

Discussion
In previous studies, researchers mostly paid attention to the tumor itself and sought for the initiation and progres-
sion indicators of cancer from tumor tissues. However, more and more studies have suggested that inflammatory 
microenvironment is closely correlated with tumorigenesis and development. When the tumor develops to a 
certain stage, the paracancerous tissues are in the state of ischemia and hypoxia, and the increase of autophagy 
level will also promote the chemotherapy resistance, recurrence and metastasis of cancer, suggesting a poor 
prognosis13. In this sense, certain molecular responses and activities in paracancerous tissues may be related to 
the characteristics and status of cancer, thus providing potentially useful information for cancer type and stage 
prediction.

It is well recognized that reliable tumor stage prediction is critical for determining therapeutic strategies. 
Moreover, tumor treatment is highly dependent on the correct identification of the tumor origins. Tumor growth 
and metastasis affect paracancerous tissues, thereby it is valuable to investigate the relationship between molecu-
lar data of paracancerous tissues and pathological tumor stage.

To explore the potential role of DNA methylation profiles from paracancerous tissues in predicting cancer 
stages, we exploited the XGBoost algorithm to construct a classification model for cancer progression. We 
evaluated the performance of five classification methods by fivefold-cv.The comparison results of five advanced 
machine learning methods on nine datasets showed that XGBoost outperformed other classification models by 
assessing AUC and performed the best in the majority of metrics.

Previous studies almost utilized DNA methylation of tumor tissues for cancer stage prediction. Ma et al. 
employed the XGBoost model on the basis of multi-omics data to distinguish early and late stage tumors14. For 
KIRC, it achieved ACC of 0.719 and AUC of 0.797 based on DNA methylation data, whereas our results indicated 
that the ACC and AUC scores of XGBoost were 0.675 and 0.780, respectively. Deng et al. utilized gene expres-
sion and DNA methylation to build three networks for identifying the KIRC stages15. The prediction accuracy 
of the network using DNA methylation profiles was 0.696, which was 3.1% higher than the accuracy of our 

Figure 1.   (continued)
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Figure 2.   Cluego analysis for GO terminology on nine datasets. Node: GO term; the bigger the node, the 
smaller the P value; Each line indicates the correlation between functions, and a larger kappa coefficient 
represents the line is more thicker; different colors denote the function enrichment classification of GO terms. 
Networks were generated with ClueGO (version 2.5.7) in Cytoscape (version 3.6.0) (http://​apps.​cytos​cape.​org/​
apps/​cluego). (a) KIRC, (b) BRCA, (c) THCA, (d) HNSC, (e) KIRP, (f) LUSC, (g) LIHC, (h) COAD, (i) UCEC.

http://apps.cytoscape.org/apps/cluego
http://apps.cytoscape.org/apps/cluego
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Figure 2.   (continued)
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model. Bhalla et al. identified key biomarkers using gene expression data for distinguishing stages of KIRC16. 
The experiments showed that the model obtained accuracy of 0.726 and AUC of 0.81, both of which were higher 
than the results of our model. Although our results are lower than the previous results, our study suggests that 
DNA methylation profiles of paracancerous tissues could possibly be used to identify cancer stages, which may 
be an alternative strategy for diagnosis and personalized target therapies in the case where tumor tissues are 
difficult to obtain.

Figure 2.   (continued)



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10646  | https://doi.org/10.1038/s41598-022-14786-7

www.nature.com/scientificreports/

We performed GO analysis for the CpG sites identified by XGBoost model. The results indicate that the 
enriched GO terms associated with tumor progression are neuron projection guidance, cell junction assembly, 
transmembrane receptor protein serine/threonine kinase signaling pathway, transcription by RNA polymerase 
II and DNA-binding transcription repressor activity. Neuron projection guidance and cell junction assembly 
mainly refer to cellular processes. It is consistent with the knowledge that the defective functioning of cell 
biological processes is considered to be associated with tumor progression17. As a signal transduction pathway 
contributing to the pathogenesis of cancer, transmembrane receptor protein serine/threonine kinase signaling 
pathway describes a series of molecular signals initiated by the binding of an extracellular ligand to a receptor on 
the surface of the target cell18. Another GO term, transcription by RNA polymerase II, as the endpoint of signal 
transduction pathways, is the basis of development and differentiation19. The pathogenic mechanisms leading 
to cancer frequently involve altered signal transduction pathways. Furthermore, there remains a specific GO 
term of molecular function (MF), DNA-binding transcription repressor activity, which represses or decreases 
the transcription of specific gene sets. Aberrant regulation patterns at transcriptional level is regarded as a cause 
of human diseases20. Overall, these enriched GO terms demonstrated that underlying regulatory processes may 
participate in tumorigenesis. Moreover, the biological interpretation of the enriched GO terms suggested the 
relation between tumor progression and the significant CpG sites, which may serve as surrogate biomarkers for 
cancer diagnosis.

To our knowledge, it is the first research to establish a classification model for separating tumor stages on the 
basis of DNA methylation data of paracancerous tissues. Our study gave a systematic assessment of the perfor-
mances of several machine learning algorithms for discriminating tumor stage and revealed the significance of 
paracancerous tissues for cancer progression. We also used XGBoost to construct the tumor specific multiclass 
classifier which can predict cancer type with high accuracy based on DNA methylation of paracancerous tissues. 
Furthermore, the utility of our model was emphasized by identification of the key CpG sites and GO terms asso-
ciated with oncogenesis and tumor progression. Altogether, the investigation of DNA methylation profiles from 
paracancerous tissues may be helpful for understanding cancer progression and discovering new biomarkers. 
Our findings suggested that paracancerous tissues could be used as surrogate tissues for cancer stage prediction 
when tumor tissues were quite challenging to obtain.

Nevertheless, our study still has some limitations. First, the main limitation is the small sample size of nine 
cancer types used in the study. The inherent problem of the small sample size resulted in imprecision of prediction 
models. Second, we observed that the patients at different stages of KIRC and THCA can be well distinguished, 
whereas different stages of BRCA patients can’t be clearly separated. The reasons for this are probably tumor 
heterogeneity and differences in tumor type. Because of tumor heterogeneity, there are obvious individual differ-
ences among BRCA patients21. Due to the imbalanced sample ratio of early stage and late stage being about 5:1, 
our model can not achieve better performance on LUSC. In addition, the reason for the low AUC of KIRP on our 
model may be due to a small sample size. Third, the races of patients include Asian, Black or African-American, 
White and not available, and White group accounts for the majority. Considering racial differences in cancers, 
our findings may not be suitable for paracancerous tissue data collected from other races.

In conclusion, our study suggested the potential role of paracancerous tissues in cancer diagnosis. One of 
our future efforts is to examine the possibility of other molecular data of paracancerous tissues in predicting the 
stage of tumors. The further application of our findings will contribute to understanding tumor progression and 
ultimately improving tumor treatment.

Methods
Data collection and pre‑processing.  We obtained DNA methylation profiles (HumanMethylation450; 
Level 3) and the corresponding clinical data of several cancers from The Cancer Genome Atlas (TCGA)database. 
Only paracancerous tissue samples were taken into account in the study. Paracancerous tissues in TCGA were 

Table 2.   Classification accuracy of XGBoost on TCGA and GEO datasets. KIRC kidney renal clear cell 
carcinoma, BRCA​ breast invasive carcinoma, THCA thyroid carcinoma, HNSC head and neck squamous 
cell carcinoma, KIRP kidney renal papillary cell carcinoma, LUSC lung squamous cell carcinoma, LIHC liver 
hepatocellular carcinoma, COAD colon adenocarcinoma, UCEC uterine corpus endometrial carcinoma. 
XGBoost Extreme gradient boosting.

Cancer type XGBoost (TCGA dataset) (%) XGBoost (GEO dataset)

KIRC 100 100

BRCA​ 100 97.6

THCA 100 97.6

HNSC 100 96.6

KIRP 100 –

LUSC 100 71.4

LIHC 100 65.1

COAD 100 81.8

UCEC 100 –

Overall accuracy 100 86.1



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:10646  | https://doi.org/10.1038/s41598-022-14786-7

www.nature.com/scientificreports/

represented as normal samples in some previous studies22,23. We utilized nine cancer types with the sample size 
larger than 20, including 160 kidney renal clear cell carcinoma (KIRC) patients, 96 breast invasive carcinoma 
(BRCA) patients, 56 thyroid carcinoma (THCA) patients, 50 head and neck squamous cell carcinoma (HNSC) 
patients, 50 liver hepatocellular carcinoma (LIHC) patients, 46 uterine corpus endometrial carcinoma (UCEC) 
patients, 45 kidney renal papillary cell carcinoma (KIRP) patients, 42 lung squamous cell carcinoma (LUSC) 
patients and 38 colon adenocarcinoma (COAD) patients. For DNA methylation, we excluded the CpG sites with 
missing values in more than 20% of samples, and then imputed the remaining missing values using “na.rough-
fix” function in the “randomForest” package24. Table 3 presents the number of early stage samples, late stage 
samples and DNA methylation profiles for nine datasets.

We also collected clear cell renal cell carcinoma (GSE6144125), breast carcinoma (GSE6991426), thyroid car-
cinoma (GSE8696127), head and neck squamous cell carcinoma (GSE7553728), lung squamous cell carcinoma 
(GSE9478529), liver hepatocellular carcinoma (GSE5450330) and colon adenocarcinoma(GSE4275231) from Gene 
Expression Omnibus (GEO). Each dataset contained paracancerous tissues and tumor tissues. The GEO datasets 
were only utilized for cancer type prediction due to the lack of pathological stage information. Therefore, we 
selected all paracancerous tissues of the seven datasets for independent validation. Table 4 shows the number of 
patients and DNA methylation profiles for the GEO datasets.

The samples from the public databases have obtained ethical approval. And all methods were conducted in 
accordance with the relevant guidelines and regulations.

Classification for cancer stage.  We combined the samples annotated with stages I and II as early stage, 
and the samples annotated with stages III and IV as late stage. We used Python (version 3.7.3) and R (version 

Table 3.   The description of TCGA datasets used in this study. KIRC kidney renal clear cell carcinoma, 
BRCA​ breast invasive carcinoma, THCA thyroid carcinoma, HNSC head and neck squamous cell carcinoma, 
KIRP kidney renal papillary cell carcinoma, LUSC lung squamous cell carcinoma, LIHC liver hepatocellular 
carcinoma, COAD colon adenocarcinoma, UCEC uterine corpus endometrial carcinoma.

Cancer type Patient class Total of patients Total of methylation profiles

KIRC
Early 71

395,708
Late 89

BRCA​
Early 74

395,479
Late 21

THCA
Early 41

395,661
Late 15

HNSC
Early 8

395,363
Late 42

KIRP
Early 22

395,392
Late 23

LUSC
Early 34

395,680
Late 7

LIHC
Early 29

395,564
Late 11

COAD
Early 23

395,552
Late 15

UCEC
Early 22

395,616
Late 12

Table 4.   The description of GEO datasets used in this study. KIRC kidney renal clear cell carcinoma, BRCA​ 
breast invasive carcinoma, THCA thyroid carcinoma, HNSC head and neck squamous cell carcinoma, LUSC 
lung squamous cell carcinoma, LIHC liver hepatocellular carcinoma, COAD colon adenocarcinoma.

Cancer type Accession number Total of patients Total of methylation profiles

KIRC GSE61441 46 229,845

BRCA​ GSE69914 42 485,512

THCA GSE86961 41 448,547

HNSC GSE75537 29 485,512

LUSC GSE94785 28 452,162

LIHC GSE54503 66 485,577

COAD GSE42752 22 485,577
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4.0.4) for data pre-processing, classification and feature selection32. Figure 3 describes the framework developed 
for cancer stage prediction.

Extreme gradient boosting.  Chen et al. developed a highly efficient and flexible gradient boosting algo-
rithm called Extreme gradient boosting (XGBoost)12. It utilizes a more precise objective function and regulariza-
tion term that improves its generalization ability33. This algorithm has been widely applied to many fields and 
shows its advantages in classification and regression studies34–37. Given a dataset D =

{(
xi , yi

)}
 , here xi denotes 

CpG site of DNA methylation, yi ∈ {0, 1} is the class label of sample. Assuming that K is the number of trees, F 
represents the basic tree model. ŷi is denoted as the prediction of xi and given by Eq. (1):

where fk(xi) represents the predictive score of the k-th tree. Equation (2) denoted the objective function of 
XGBoost.

The loss function l  denotes the mean square error between the prediction ŷi and the target yi . The term � is 
utilized for smoothing the final learnt weights. The formula is shown as follows:

where w denotes the score on each leaf, T denotes the number of leaves, γ and � represents the degrees of regu-
larization. The objective function at the t-th iteration can be described as Eq. (4).

where gi and hi refer to first and second order gradient statistics on the loss function.
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Figure 3.   Schematic overview of the framework developed for classifying tumor stages.
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Other machine learning methods.  For comprehensive analysis and comparison, we also employed other 
four well-known machine learning algorithms for building prediction models. Support vector machine (SVM) 
is a powerful supervised learning classifier38,39. As a kernel-based method, it aims to find optimal hyperplane 
that can perfectly distinguish different classes40. Random forest (RF) is a machine learning ensemble technique 
that constructs numerous decision trees based on different subsets of the data41,42. K-Nearest Neighbor (KNN) 
is a kind of simple classifier that has been extensively used for data classification43. Its performance is highly 
dependent on measuring the distance between the test samples and the training samples44. Naive Bayes (NB) is 
a probabilistic classifier that implements Bayesian techniques. The main characteristic of the classifier is that it’s 
robust to noise and irrelevant attributes45–47.

Model optimization.  In this study, we employed fivefold cross validation (fivefold CV) for assessment of 
the classification models. The processes were that the dataset was randomly divided into five equal folds, and 
taken turns to use each fold to estimate the trained model, while the remaining four folds were used to train 
model. The relevant parameters for each model were optimized on the training set using threefold cross valida-
tion and grid search. The classification model was trained on the training set in combination with the optimal 
parameters. We obtained the performance metrics of the model by averaging all results of five test sets.

For SVM, the parameters C and gamma were selected to optimize in the RBF kernel. For RF, the number 
of decision trees was adjusted. For KNN, we tuned hyperparameters of weights and the number of neighbors. 
For XGBoost, the configuration of parameters was a daunting task due to its many parameters. The optimized 
parameters included: ‘learning_rate’, ‘colsample_bytree’, ‘subsample’, ‘gamma’, ‘min_child_weight’, ‘max_depth’, 
‘reg_lambda’, ‘reg_alpha’. Grid search made an exhaustive evaluation for various combinations of parameters and 
found the optimal set of parameters with the best performance.

Performance metrics.  To examine the performance of models, we utilized various evaluation metrics, 
commonly used to measure the classifier performances. The selected evaluation metrics include the area under 
the ROC curve (AUC), the area under the precision-recall curve (AUPR), accuracy (ACC), matthews correlation 
coefficient (MCC), Precision and Recall. FP, FN, TP and TN respectively indicate false positive, false negative, 
true positive and true negative predictions.

•	 AUC is applied to reflect the overall classification performance of the classifier by setting the discrimination 
threshold for comparing with the predicted probability from the classifier.

•	 AUPR considers the recall and precision over different thresholds.
•	 Accuracy is metric of model robustness and represents the percentage of correct classifications by the clas-

sifier on the test set.

•	 MCC is commonly considered as a balanced indicator that can be utilized even though the classes are heavily 
imbalanced.

•	 Precision shows the ratio of correctly predicted positive samples accounts for the total number of the pre-
dicted positive samples.

•	 Recall shows the ratio of correctly predicted positive samples accounts for the total number of real positive 
samples.

Feature selection with XGBoost.  We utilized the XGBoost algorithm to identify the key CpG sites that 
differentiated early- and late-stage cancers, and these features gave insight into the biological mechanisms of 
cancer formation and progression. For the XGBoost algorithm, the importance score of feature can be obtained 
on the basis of its participation in making key decisions with boosted decision trees12. All input features are 
ranked in descending order based on their importance scores. A higher score represents that the feature is more 
important. We selected the top 10% CpG sites as the significant feature sets to further explore the relationship 
between the feature sets and cancer stage.

Gene ontology enrichment analysis of the significant CpG sites.  To explain the underlying biolog-
ical mechanisms of above-mentioned important CpG sites identified by XGBoost, Gene Ontology (GO) enrich-
ment analysis was conducted using gometh function in missMethyl package, taking into account the number of 
CpG sites per gene48. The GO terms with FDR < 0.05 were considered to be significant. Subsequently, Cytoscape 

(5)ACC = TP + TN

TP + TN + FP + FN

(6)MCC = TP ∗ TN − FP ∗ FN√
TP + FP ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)

(7)Precision = TP

TP + FP

(8)Recall = TP

TP + FN
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(version 3.6.0) plugin ClueGO (version 2.5.7) (http://​apps.​cytos​cape.​org/​apps/​cluego) was utilized to cluster GO 
terms and showed the distribution of the clusters over the GO terms, where the kappa statistic was set to greater 
than or equal to 0.149. By using ClueGO, the redundant GO terms were reduced and the more representative 
terms were preserved in our study.

Construction of tumor specific multiclass classifier.  Constructing a tumor specific classifier to 
identify cancer type may be valuable in the common case where the primary origin of the tumor is unknown, 
since determining cancer type is critical to guide more detailed diagnosis and therapy. To this aim, we built a 
CpG-based tumor specific model using the XGBoost algorithm that can accurately classify cancer type. We 
first matched nine cancer datasets (KIRC, BRCA, THCA, HNSC, KIRP, LUSC, LIHC, COAD and UCEC) from 
TCGA with seven corresponding cancer datasets from GEO and retained a total of 208,745 common CpG sites 
for every dataset. We further merged DNA methylation profiles of different cancer types from TCGA and GEO, 
respectively. The sample sizes of TCGA and GEO datasets are 559 and 274, respectively. XGBoost model was 
built using 80% of the TCGA datasets as the training set, with the remaining 20% used to assess model perfor-
mance. In addition, we utilized independent GEO datasets to validate our tumor specific classifier developed 
using TCGA datasets, which included thirty-one CpG sites as the feature sets by XGBoost-based feature selec-
tion. For multi-classification, we used accuracy to evaluate the performance of XGBoost.

Data availability
The datasets analyzed for this study can be downloaded from The Cancer Genome Atlas (TCGA) (http://​cance​
rgeno​me.​nih.​gov/) and Gene Expression Omnibus (GEO) (https://​www.​ncbi.​nlm.​nih.​gov/​geo/). The code used 
in this study is available at https://​github.​com/​lab319/​Cancer_​class​ifica​tion_​parac​ancer​ous_​tissu​es.
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