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Abstract

Epilepsy is one of the most common neurological disorders in humans with a prevalence of 1% and a lifetime incidence of
3%. Several genes have been identified in rare autosomal dominant and severe sporadic forms of epilepsy, but the genetic
cause is unknown in the vast majority of cases. Copy number variants (CNVs) are known to play an important role in the
genetic etiology of many neurodevelopmental disorders, including intellectual disability (ID), autism, and schizophrenia.
Genome-wide studies of copy number variation in epilepsy have not been performed. We have applied whole-genome
oligonucleotide array comparative genomic hybridization to a cohort of 517 individuals with various idiopathic, non-lesional
epilepsies. We detected one or more rare genic CNVs in 8.9% of affected individuals that are not present in 2,493 controls;
five individuals had two rare CNVs. We identified CNVs in genes previously implicated in other neurodevelopmental
disorders, including two deletions in AUTS2 and one deletion in CNTNAP2. Therefore, our findings indicate that rare CNVs are
likely to contribute to a broad range of generalized and focal epilepsies. In addition, we find that 2.9% of patients carry
deletions at 15q11.2, 15q13.3, or 16p13.11, genomic hotspots previously associated with ID, autism, or schizophrenia. In
summary, our findings suggest common etiological factors for seemingly diverse diseases such as ID, autism, schizophrenia,
and epilepsy.
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Introduction

Epilepsy is one of the most common neurological disorders in

humans with a prevalence of ,1% and a lifetime incidence of up to

3% [1]. The epilepsies present with a broad range of clinical features,

and over 50 distinct epilepsy syndromes are now recognized.

Particularly in a pediatric setting, a broad range of different epilepsy

syndromes can be distinguished. Seizure disorders can roughly be

divided into idiopathic or symptomatic epilepsies. While symptomatic

epilepsies are due to an identifiable cause such as metabolic disorders,

brain trauma or intracranial tumors, idiopathic seizure disorders

occur in the absence of identifiable causal factors and are thought to

have a strong genetic contribution.

Although it has long been observed that the idiopathic epilepsies

have a genetic component, the genetic etiology of only a small

fraction of cases can be determined. The role of copy number

variants (CNVs) in intellectual disability (ID) [2–8], autism [9–14]

and schizophrenia [15–19] has been extensively investigated. It has

become increasingly clear that, collectively, rare variants contribute

significantly to the etiology of these common diseases–following the

rare variant common disease hypothesis. We hypothesize this can be

extended to other neurological disorders and that rare CNVs

significantly contribute to the genetic etiology of epilepsy.

Recently, in a study targeted to six genomic regions, recurrent

microdeletions on chromosome 15q13.3, 16p13.11 and 15q11.2

were identified as important genetic factors predisposing to

idiopathic generalized epilepsy (IGE) [20–22]. Here, we carry

out whole-genome array comparative genomic hybridization

(CGH) in a cohort of 517 individuals with mixed types of

idiopathic epilepsy in order to discover novel copy number

changes associated with epilepsy. We find recurrent microdeletions

of 15q13.3, 16p13.11 and 15q11.2 each in ,1% of affected
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individuals, confirming previous studies [20–22]. In addition to

recurrent rearrangements at rearrangement-prone regions, we

show that, overall, 8.9% of affected individuals have one or more

rare copy number changes involving at least one gene.

Results

We performed genome-wide array CGH to detect copy number

changes in 517 patients with mixed types of epilepsy. Of these, 399

have idiopathic generalized epilepsy (IGE), 50 have benign

epilepsy with centrotemporal spikes (BECTS) and 68 have other

types of idiopathic seizure disorders (Table 1). We used a custom

microarray with high-density targeted coverage of 107 regions of

the genome flanked by large, highly homologous duplications,

termed rearrangement hotspots [23]. In addition, probes were

evenly spaced throughout the remainder of the genome with

average probe spacing of ,38 kb. Overall, we find that 46

probands (8.9%) carry one or more rare CNVs not previously

reported in the 2493 unrelated controls [24]. The rare CNVs

detected in our cohort range in size from 13 kb to 15.9 Mb

(average 1.2 Mb; median 600 kb), and the majority (69%) are

deletion events.

Rearrangements at genomic hotspots
We first evaluated rearrangement hotspots for copy number

changes. We found 20 probands (3.9%) with copy number

changes at known rearrangement hotspots including 15q13.3

deletions (n = 5), 16p13.11 deletions (n = 5), 15q11.2 BP1–BP2

deletions (n = 5), 1q21.1 deletions (n = 2), a 16p12.1 deletion

(n = 1), a 16p11.2 duplication (n = 1) and a more distal 16p11.2

deletion (n = 1) (Table 2, Figure 1). We also identified four

individuals with duplications of 15q11.2 BP1–BP2; because

duplications of this region are frequent in the general population,

we classified these duplications as polymorphic events. These

results confirm our previous studies and emphasize the importance

of deletions of 15q13.3, 16p13.11 and 15q11.2 BP1–BP2 as

frequent genetic susceptibility factors in epilepsy [20–22]. All three

regions have also been associated with ID, autism and/or

schizophrenia [15,17,25–32], as have deletions at 1q21.1

[33,34], two distinct regions of 16p11.2 [10,14,35–37] and

Author Summary

Epilepsy, a common neurological disorder characterized by
recurrent seizures, affects up to 3% of the population. In
some cases, the epilepsy has a clear cause such as an
abnormality in the brain or a head injury. However, in
many cases there is no obvious cause. Numerous studies
have shown that genetic factors are important in these
types of epilepsy, but although several epilepsy genes are
known, we can still only identify the genetic cause in a very
small fraction of cases. In order to identify new genes that
contribute to the genetic causes of epilepsy, we searched
the human genome for deletions (missing copies) and
duplications (extra copies) of genes in ,500 patients with
epilepsy that are not found in control individuals. Using
this approach, we identified several large deletions that are
important in at least 3% of epilepsy cases. Furthermore, we
found new candidate genes, some of which are also
thought to play a role in other related disorders such as
autism and intellectual disability. These genes are candi-
dates for further studies in patients with epilepsy.

Table 1. Phenotypes of probands evaluated by array CGH.

Type of epilepsy N
Hotspot CNVs
detected

Other CNVs
detected Total

IGE (n = 399)

Juvenile myoclonic epilepsy (JME) 189 8‘ 9‘ 17

Absence epilepsy (AE) 94 5 5* 10

IGE with GTCS only 33 0 2 2

IGE unclassified 63 2 4 6

Benign myoclonic epilepsy of infancy 5 0 0 0

Myoclonic astatic epilepsy (MAE) 15 0 2 2

Idiopathic focal epilepsy (n = 63)

BECTS 50 3 2 5

ABPE 13 0 0 0

Other (n = 55)

ESES 4 0 0 0

Landau-Kleffner syndrome 3 0 0 0

Severe IGE of infancy (SIGEI) 15 1 1 2

West syndrome 4 0 2* 2

IC/NC 10 1 2* 3

Unclassified 19 0 2 2

Total 517 20 31 51

IGE, idiopathic generalized epilepsy; GTCS, generalized tonic-clonic seizures; BECTS, benign epilepsy with centrotemporal spikes; ABPE, atypical benign partial epilepsy;
ESES, electrical status epilepticus during slow-wave sleep; IC, infantile convulsions; NC, neonatal convulsions;
*indicates two events in a single individual;
‘ two individuals (EMJ071 and EMJ117) each carrying one hotspot and one non-hotspot event.
doi:10.1371/journal.pgen.1000962.t001

CNVs in Epilepsy
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Table 2. Rare copy number variants in 517 patients with epilepsy.

Case
Chromosome
Location HS

Coordinates
(build36; Mb) Size CNV Inheritance Phenotype

RefSeq
genes (n)

Possible
candidate
genes

Idopathic Generalized Epilepsies (n = 399)

EMJ 049 1q21.1 Y Chr1: 145.0–145.9 900 kb Del - JME 8 GJA8

ND02006 15q11.2 Y Chr15: 20.2–20.8 600 kb Del - IAE 4 CYFIP1

ND03383 15q11.2 Y Chr15: 20.2–20.8 600 kb Del - CAE 4 CYFIP1

ND06631 15q11.2 Y Chr15: 20.2–20.8 600 kb Del Inh (P) CAE 4 CYFIP1

K004 15q11.2 Y Chr15: 20.2–20.8 600 kb Del Inh (P) IGE 4 CYFIP1

EPI 62 15q13.3 Y Chr15: 28.7–30.1 1.4 Mb Del - IAE 6 CHRNA7

EMJ 001** 15q13.3 Y Chr15: 28.7–30.1 1.4 Mb Del - JME 6 CHRNA7

EMJ 002 15q13.3 Y Chr15: 28.7–30.1 1.4 Mb Del - JME 6 CHRNA7

EMJ 020** 15q13.3 Y Chr15: 28.7–30.1 1.4 Mb Del - JME 6 CHRNA7

IA G5 15q13.3 Y Chr15: 28.7–30.1 1.4 Mb Del - IGE + ID 6 CHRNA7

EMJ 162 16p11.2 Y Chr16: 29.5–30.2 700 kb Dup - JME 30 SEZ6L2

ND3074 16p13.11 Y Chr16:15.4–16.3 900 kb Del Inh (M) CAE 6 NDE1

EPI 17 16p13.11 Y Chr16:15.4–16.3 900 kb Del - JME 6 NDE1

EMJ 071* 16p13.11 Y Chr16:15.4–16.3 900 kb Del - JME 6 NDE1

EMJ 117* 16p13.11 Y Chr16: 15.4–18.5 3.1 Mb Del - JME 7 NDE1

ND05586 1p31.1 Chr1: 72.04–72.15 111.3 kb Del Inh (P) CAE 1 NEGR1

ND05260* 4q22.2 Chr4: 94.18–94.83 646.6 kb Del Inh (M) CAE 1 GRID2

K 111 5p15.33 Chr5: 0.72–1.43 713.0 kb Dup Inh (M‘
) MAE 10 NKD2, SLCA18

EP007.1 5q33.2 Chr5: 153.2–160.3 7.1 Mb Del Not in M IGE + ID 44 CYFIP2

EMJ 005 6q12 Chr6: 65.03–66.09 1.06 Mb Dup - JME 1 EYS

ND01440 7q11.22 Chr7: 69.38–69.46 78.7 kb Del - JME 1 AUTS2

K 039 7q36.1 Chr7: 151.35–151.43 85.8 kb Del Inh (P) MAE 1 GALNT11

ND03578 8q21-q22 Chr8: 83.97–97.20 15.9 Mb Dup Inh (P) JME+ID 50 many

EMJ 013 9p21.3 Chr9: 21.21–21.63 427.5 kb Del - JME 9 KLHL9

EP005.1 9q21.32 Chr9: 83.9–85.2 1.30 Mb Del Inh (M) IGE 2 RASEF

ND05260* 9q31.3 Chr9: 113.33–114.33 1.01 Mb Dup Inh (M) CAE 10

EMJ 071* 13q31.1 Chr13: 84.69–85.36 671.8 kb Del - JME 1 SLITRK6

EMJ 067 14q24.2 Chr14: 70.96–71.23 268.6 kb Del - JME 1 SIPA1L1

EPI 66 15q25.2 Chr15: 83.00–83.12 117.4 kb Dup - IAE 3 NBM

ND03244 16q23.1 Chr16: 74.49–75.27 785.8 kb Dup - GTCS only 1 CNTNAP4

EPI 52 17p11.2 Chr17: 19.92–19.94 13.3 kb Del - GTCS only 1 CYTSB

EMJ 117* 17p11.2 Chr17: 19.92–19.94 17.5 kb Del - JME 1 CYTSB

EPI 40 17q12 Chr17: 30.53–30.87 338.5 kb Del - IAE 7 UNC45

EMJ 039 18q11.2 Chr18: 19.66–20.50 840.4 kb Dup - JME 6

EMJ 069 18q11.2 Chr18: 19.66–20.50 840.4 kb Dup - JME 6

ND02416 21q21.1 Chr21: 16.21–18.81 2.59 Mb Dup Inh (M) IGE + ID 7

EPI 26 Xp22.31 ChrX: 7.78–8.39 605.5 kb Dup - IGE 4 PNPLA4

Idiopathic Focal Epilepsies (n = 63)

EPI 60 1q21.1 Y Chr1: 145.0–145.9 900 kb Del - BECTS 8

K 105 16p12.1 Y Chr16: 21.8–22.3 500 kb Del - BECTS 7

EPI 21 16p13.11 Y Chr16: 15.4–16.3 900 kb Del - BECTS 6 NDE1

EPI 58 4q35.1 Chr4: 186.30–186.61 302.4 kb Dup - BECTS 8 SLC25A, SNX25

K 093 8p23.1 Chr8: 10.19–10.37 173.1 kb Del - BECTS 1 MSRA

Other (n = 55)

K 047 15q11.2 Y Chr15: 20.2–20.8 600 kb Del brother‘ IC 4 CYFIP1

K 027 16p11.2 Y Chr16:28.7–28.9 200 kb Del - SIGEI 9

K 109 2q35 Chr2: 218.36–218.94 571.9 kb Dup - SIGEI 11

CNVs in Epilepsy
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16p12 [38], which were also detected in our cohort. Deletions of

16p13.11 (5/517 vs 0/2493 controls, p = 0.00014, Fisher’s exact

test), 15q13.3 (5/517 vs 0/2493, p = 0.00014) and 15q11.2 (5/517

vs. 4/2493, p = 0.010) are significantly enriched in our epilepsy

cohort and together account for 2.9% of cases.

Rare or unique deletions involving potential candidate
genes

We next focused on non-hotspot CNVs that overlap one or

more genes and are not present in the control cohort of 2493

individuals [24]. We identified 28 individuals with at least one rare

gene-containing deletion or duplication, and five individuals each

carry two rare CNVs (Table 2). Fifteen of the events we detected

involve a single gene. Two genes were altered in two patients each:

AUTS2 deletions were identified in one proband with juvenile

myoclonic epilepsy (JME) and one proband with unclassified non-

lesional epilepsy with features of atypical benign partial epilepsy

(ABPE) [39]. Deletions involving CTYSB (SPECC1) were identified

in two probands with IGE. All other single-gene CNVs were seen

only once. Seventeen events involved multiple genes, one of which

was observed in two different individuals with JME (duplication of

18q11, Table 2).

Individuals with multiple rare CNVs
We found five individuals with two rare CNVs (Figure 2). Two

patients with JME and a deletion of 16p13.11 (EMJ071 and

EMJ117) each have a second rare deletion. EMJ071 has a large

deletion on chromosome 13 that removes the SLITRK6 gene, a

member of the SLITRK gene family involved in controlling

neurite outgrowth; individual EMJ117 also has a deletion

involving the CTYSB gene. Case ND05260 (childhood absence

epilepsy, CAE) carries a 647-kb deletion within the GRID2 gene,

which encodes a glutamate receptor expressed in the cerebellum,

and a 1-Mb duplication of 9q31. Though both are maternally

inherited, neither has been reported in controls. Case EPI 51

(idiopathic West syndrome) has two apparently independent

duplications of chromosome 5q35, each containing several genes.

Finally, we identified one proband with neonatal convulsions (NC)

carrying a deletion within the CNTNAP2 gene that spans exons 2–

4 as well as a 370-kb deletion of 17p13 involving 7 genes.

DNA from one of more family members was available for

analysis in 14 cases. Inheritance, if determined, is shown in

Table 2. In twelve cases, we determined that one or both CNVs in

the proband were inherited; in three cases the transmitting parent

is also affected. In one case (EP007.1), the CNV was not found in

the mother, but the father was unavailable. In another case

(K047), parents were unavailable, but a brother was found to carry

the same CNV suggesting one of the parents carries the same

CNV.

Discussion

In this study, we performed whole-genome array CGH in a

series of 517 individuals with a presenting diagnosis of idiopathic

epilepsy in order to discover novel copy number changes

associated with epilepsy. While our previous studies were targeted

to specific genomic regions in probands with IGE [21,22], here we

present data from whole-genome analysis on probands with IGE

and extend our analysis to other idiopathic epilepsy syndromes. In

total, we identified 46 individuals (8.9%) with 51 rearrangements

that may be pathogenic as they were not found in controls or were

significantly enriched in our epilepsy cohort.

Hotspot rearrangements
Rearrangements at several genomic hotspots have been

associated with a range of neurocognitive disorders. In our cohort

of 517 probands with epilepsy, we find deletions at 15q13.3,

16p13.11 and 15q11.2 in 2.9% of our cases. Interestingly, all of the

deletions of 15q13.3 (n = 5) and 4/5 deletions at 16p13.11 and

15q11.2 were in probands with IGE, accounting for 3.3% of the

patients with IGE in our cohort confirming our previous findings.

While it is possible that deletions of 15q13.3 are also predisposing

to non-IGE epilepsy syndromes, we did not find this to be the case

in our series (n = 118). Additional large cohorts of patients with

focal epilepsy or epileptic encephalopathy will be required to

determine whether these deletions also play a significant role in

other subtypes of epilepsy.

Deletions of 16p13.11 have previously been associated with

intellectual disability +/2 congenital anomalies in one study [26].

Three of four probands with 16p13.11 deletions in that series had

epilepsy; two further fetal cases had brain abnormalities. The

findings in this cohort and one previous study of IGE [20] suggest

that deletions of 16p13.11 are more frequent in epilepsy (0.5–1%

of cases) than in other phenotypes including ID and autism

[26,27,32], and may be as frequent as 15q13.3 deletions in

Table 2. Cont.

Case
Chromosome
Location HS

Coordinates
(build36; Mb) Size CNV Inheritance Phenotype

RefSeq
genes (n)

Possible
candidate
genes

EPI 51* 5q35.1 Chr5: 167.62–167.89 268.7 kb Dup - West 4 WWC1

EPI 51* 5q35.1 Chr5: 169.43–169.64 230.0 kb Dup - West 4 DOCK2, FOXI1

K 054 7q11.22 Chr7: 69.38–69.42 38.3 kb Del - Unclassified 1 AUTS2

K034* 7q35 Chr7:146.06–146.36 304.4 kb Del Inh (P‘
) NC 1 CNTNAP2

ND08273 15q13.3-q14 Chr15: 30.66–32.44 1.78 Mb Dup Inh (M) Unclassified 15

K034* 17p13.1 Chr17:10.36–10.72 370 kb Del Inh (P‘
) NC 7 MYH1-3; SCO

HS, hotspot region; Del, deletion; Dup, duplication; Inh, inherited; M, maternal; P, paternal;
‘affected; -, parents unavailable; JME, juvenile myoclonic epilepsy; IAE, idiopathic absence epilepsy; CAE childhood absence epilepsy; IGE, idiopathic generalized

epilepsy; GTCS, generalized tonic clonic seizures only; ID, intellectual disability; BECTS, benign epilepsy with centrotemporal spikes; IC, infantile convulsions; SIGEI,
several idiopathic generalized epilepsy of infancy; NC, neonatal convulsions;

*two CNVs detected in same individual;
**15q13 deletions previously detected by MLPA [60].
doi:10.1371/journal.pgen.1000962.t002

CNVs in Epilepsy
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individuals with IGE. Deletions and duplications of this region

have also been reported in schizophrenia, though the associations

have not been statistically significant [16,29].

Deletions of 15q13.3, detected in five individuals with IGE in

our series, have been associated with a wide range of phenotypes

including ID, autism, epilepsy and schizophrenia [15,17,20–

22,25,28,30,31,40]. The gene within the 15q13.3 region that is

most likely responsible for the epilepsy phenotype is CHRNA7, a

subunit of the nicotinic acetylcholine receptor. At least two

small studies have failed to identify causal point mutations in the

CHRNA7 gene in autosomal dominant nocturnal frontal lobe

epilepsy [41] and JME [42], but additional studies should be

performed to further evaluate affected individuals for mutations.

A recent publication identifying atypical rearrangements with

exclusive deletions of CHRNA7 further emphasizes the impor-

tance of CHRNA7 as the main candidate gene in this region

[43].

Compared to the above structural genomic variants, copy

number variation at 15q11.2 between breakpoints BP1 and BP2 of

the Prader-Willi and Angelman syndrome region is more common

in the general population with the BP1–BP2 deletion present in

0.2% of unaffected individuals. Despite this, deletions between

BP1 and BP2 have now been reported as enriched in patients with

schizophrenia [16,17], ID [27] and epilepsy [20]. Furthermore,

there is evidence that patients with Prader-Willi or Angelman

syndrome who have deletions including BP1–BP2 are more

severely affected [44–46]. In this study, we also find enrichment of

deletions at this locus in affected individuals. Together, these

studies suggest that deletion of the 15q11.2 BP1–BP2 region

confers susceptibility to a wide range of neuropsychiatric

conditions, albeit with incomplete penetrance.

Two patients in our series, one each with JME and BECTS,

have deletions of 1q21.1, which have been previously associated

with a wide range of phenotypes, including intellectually disability

and developmental delay [33,34], schizophrenia [15,17,18],

congenital heart disease [47,48] and cataracts [34,49]. In two

large studies of patients who present primarily with cognitive or

developmental delay, 5/42 (11.9%) patients also had seizures

[33,34]; 1 of 10 patients with schizophrenia and a 1q21.1 deletion

also had epilepsy [15]. Identifying 1q21.1 microdeletions in

patients with idiopathic generalized and idiopathic focal epilepsies

suggests that variation at this locus predisposes to a broad range of

seizure disorders crossing traditional diagnostic boundaries.

In addition, we identified one patient (EMJ162) with JME and a

duplication of 16p11.2 (chr16: 29.5–30.2 Mb), which has been

associated with autism, developmental delay and schizophrenia

[10–12,14,27,35,37]. Finally, we identified one individual with

severe idiopathic generalized epilepsy of infancy (SIGEI) (K027)

with a more distal deletion of 16p11.2 (chr16: 27.7–28.9 Mb),

recently associated with severe early-onset obesity and ID [36],

and one patient with BECTS (K105) and a deletion of 16p12.1

(chr16: 20.2–20.8 Mb), also associated with ID and other

neurodevelopmental defects [38]. Thus, our data adds to the

phenotypic spectrum associated with rearrangements at several

genomic hotspot regions. In particular, we identify hotspot

deletions in two patients with BECTS. Gene identification in

BECTS, despite representing the most common focal epilepsy

syndrome of childhood, has been elusive so far. Here, we suggest

that some recurrent hotspot deletions might predispose to both

idiopathic generalized and focal epilepsies.

Non-hotspot rearrangements
We detected 18 deletions and 16 duplications that are not

associated with rearrangement hotspots. Fifteen events involve a

single gene; of these, 12 are deletions. Although all of the CNVs

reported here are not found in our control set of 2493 individuals,

it is possible that some are rare but benign CNVs. However, many

of the CNVs we identified contain one of more plausible candidate

genes for epilepsy (Table 2).

We identified a deletion of exons 2–4 in the CNTNAP2 gene in a

proband with neonatal seizures. CNTNAP2 has been identified as a

candidate gene for autism [50–52], and heterozygous deletions

involving the gene were reported in three patients with

schizophrenia and autism [53]. The deletion is predicted to cause

an in-frame deletion of 153 amino acids in the resulting protein.

The same patient has a 370-kb deletion of 17p13 that deletes seven

genes and has not been seen in our control cohort. We also

identified a patient with a duplication encompassing a related

gene, CNTNAP4. Finally, two individuals in our cohort have

overlapping deletions within AUTS2. This gene is disrupted by de

novo balanced translocations in three unrelated individuals with

mental retardation [54] and a pair of twins with autism and mental

retardation [55], suggesting a role for AUTS2 in normal cognitive

development. The two deletions we detected are intragenic and

overlapping.

CNVs in epilepsy subtypes
Previous studies of CNVs in epilepsy have focused on probands

with IGE. It is known from studies of families with autosomal

dominant epilepsy that a wide range of seizure types can be caused

by the same single-gene mutation. For example, Dravet syndrome,

a severe early-onset disorder associated with poor cognitive

outcome, and the milder generalized epilepsy with febrile seizures

plus (GEFS+) syndrome are both caused by mutations in the

SCN1A gene [56–58]. Therefore, we included probands with

common idiopathic focal epilepsies and non-lesional, idiopathic

epilepsies. Some of our probands were diagnosed with specific

epilepsy syndromes, including myoclonic astatic epilepsy (Doose

Syndrome), atypical benign partial epilepsy [39], Landau-Kleffner

syndrome, idiopathic West syndrome, severe idiopathic general-

ized epilepsy of infancy [59] and benign neonatal or infantile

seizures. These particular epilepsy syndromes are usually associ-

ated with normal MRI results. We find that 6.6% of probands with

IGE and 7.9% of those with idiopathic focal epilepsy harbor rare

CNVs that may underlie their epilepsy phenotype. Notably, 12.7%

of patients with other, often more severe forms of epilepsy in our

series carry one or more rare CNVs. In our series, the vast

majority of patients with deletions of 15q13.3, 16p13.11 and

15q11.2 BP1–BP2 were in the IGE cohort, accounting for 3.3% of

cases. In the non-IGE patients, a deletion of 15q11.2 was found in

a single patient with infantile seizures and a deletion of 16p13.11

was found in one patient with BECTS, suggesting that deletions at

Figure 1. Deletions and duplications at genomic rearrangement hotspots in 20 probands. Array CGH results are depicted for (A) 15q13.3,
chr15: 28.0–31.0 Mb, (B) 16p13.11, chr16: 14.5–18.5 Mb, (C) 15q11.2, chr15: 20.0–20.9 Mb, (D) 1q21.1, chr1: 144.0–147.5 Mb, (E) 16p12.1, chr16: 21.6–
22.6 Mb, (F) 16p11.2, chr16:28.6–29.1 Mb, and (G) 16p11.2, chr16: 29.0–30.3 Mb. For each individual, deviations of probe log2 ratios from 0 are
depicted by gray and black lines. Those exceeding a threshold of 1.5 s.d. from the mean probe ratio are colored green and red to represent relative
gains and losses, respectively. Segmental duplications of increasing similarity (90–98%, 98–99%, and .99%) are represented by gray, yellow, and
orange bars, respectively. RefSeq genes are depicted in blue.
doi:10.1371/journal.pgen.1000962.g001
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these three genomic hotspots confer greater risk for IGE than

other types of epilepsy.

In summary, we find that 46/517 probands (8.9%) with various

forms of idiopathic epilepsy carry one or more rare CNVs that may

predispose to seizures, a frequency similar to that in studies of patients

who present with other neurocognitive phenotypes, including ID,

autism and schizophrenia. Furthermore, we identified CNVs

involving genes and genomic regions previously identified in patients

with the neurocognitive phenotypes listed above, suggesting common

genetic etiological factors for these disorders. Our data suggest that

rare CNVs are important in many subtypes of idiopathic epilepsies,

including idiopathic generalized and idiopathic focal epilepsies as well

as specific idiopathic, non-lesional epilepsy syndromes. The genomic

regions and genes identified in this study are potential novel candidate

genes for epilepsy.

Materials and Methods

Ethics statement
Patients were collected at five centers after appropriate human

subjects approval and informed consent at each site.

Patient cohorts
Patients were collected at five centers: (1) 140 probands with a

primary diagnosis of JME, CAE, absence epilepsy, IGE or idiopathic

epilepsy were selected from the NINDS repository (http://ccr.coriell.

org/ninds); (2) 160 patients are probands with a primary diagnosis of

JME from Switzerland. Patients from cohorts (1) and (2) were

previously analyzed using MLPA for the CHRNA7 gene [60], and two

probands (EMJ001 and EMJ020) were determined to have 15q13.3

microdeletions by that method; they were not previously analyzed for

any other copy number changes. (3) 186 German patients came from

two cohorts: 76 patients from a population-based cohort from

Northern Germany (POPGEN cohort) and 110 patients with

childhood-onset epilepsy collected at the University of Kiel. Finally,

41 patients with various idiopathic generalized epilepsies collected at

(4) the University of Iowa and (5) at Washington University, St. Louis.

DNA from the NINDS repository was derived from cell lines; DNA

from all other cohorts was directly from blood. Patients were

diagnosed according to the widely used 1989 ILAE classification [61].

In addition, several pediatric patients were diagnosed with specific

syndromes not yet recognized in the ILAE classification (Table 1).

Patients with non-lesional, idiopathic epilepsies in which diagnostic

criteria of the recent ILAE classification for particular epilepsy

syndromes were not met were labeled as ‘‘unclassified’’.

Array comparative genomic hybridization (CGH)
Array CGH was performed using either custom or commer-

cially available oligonucleotide arrays containing 135,000 isother-

mal probes (Roche NimbleGen, Inc.). Customized arrays (459

samples) were designed with higher density probe coverage in

known rearrangement hotspot regions (average probe spacing

2.5 kb) with lower density whole-genome backbone coverage

(average probe spacing 38 kb). A subset of samples (n = 62) was

analyzed using a commercially available whole-genome array

(Roche NimbleGen 126135 k whole-genome tiling array) with

average probe spacing throughout the genome of 21 kb.

Data analysis
Data were analyzed according to manufacturer’s instructions using

NimbleScan software to generate normalized log2 fluorescence

intensity ratios. Then, for each sample, normalized log intensity

ratios are transformed into z-scores using the chromosome-specific

mean and standard deviation. Z-scores are subsequently used to

classify probes as ‘‘increased’’, ‘‘normal’’ and ‘‘decreased’’ copy-

number using a three-state Hidden Markov Model (HMM). The

HMM was implemented using HMMSeg [62], which assumes

Gaussian emission probabilities. The ‘‘increased’’ and ‘‘decreased’’

states are defined to have the same standard deviation as the

‘‘normal’’ state but with mean z-score two standard deviations above

and below the mean, respectively. Probe-by-probe HMM state

assignments are merged into segments according to the following

criteria: consecutive probes of the same state less than 50 kb apart are

merged, and if two segments of the same state are separated by an

intervening sequence of #5 probes and #10 kb, both segments and

intervening sequence are called as a single variant. CNV calls are

filtered to eliminate (i) events containing ,5 probes, (ii) CNVs with

.50% overlap in a series of 2493 control individuals [24] and (iii)

events that had no overlap with RefSeq genes. In addition, when

comparing CNV calls to control CNVs, we eliminated calls for which

there was insufficient probe coverage (,5 probes) in the control data

to identify the same or similar CNV. Filtered copy number changes

are also visually inspected in a genome browser.
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