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Abstract

Corticotropin releasing hormone (CRH) produced by the hypothalamus initiates the hypo-

thalamic-pituitary-adrenal (HPA) axis, which regulates the body’s stress response. CRH lev-

els typically are undetectable in human plasma, but during pregnancy the primate placenta

synthesizes and releases large amounts of CRH into both maternal and fetal circulations.

Notably, placental CRH synthesis increases in response to maternal stress signals. There is

evidence that human fetal exposure to high concentrations of placental CRH is associated

with behavioral consequences during infancy and into childhood, however the direct effects

on of the peptide on the human brain are unknown. In this study, we used a rodent model to

test the plausibility that CRH has direct effects on the developing cortex. Because chronic

exposure to CRH reduces dendritic branching in hippocampal neurons, we tested the

hypothesis that exposure to CRH would provoke impoverishment of dendritic trees in corti-

cal neurons. This might be reflected in humans as cortical thinning. We grew developing cor-

tical neurons in primary cultures in the presence of graded concentrations of CRH. We then

employed Sholl analyses to measure dendritic branching and total dendritic length of treated

cells. A seven-day exposure to increasing levels of CRH led to a significant, dose-depen-

dent impoverishment of the branching of pyramidal-like cortical neurons. These results are

consistent with the hypothesis that, rather than merely being a marker of prenatal stress,

CRH directly decreases dendritic branching. Because dendrites comprise a large portion of

cortical volume these findings might underlie reduced cortical thickness and could contribute

to the behavioral consequences observed in children exposed to high levels of CRH in

utero.
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Introduction

Corticotropin-releasing hormone (CRH), a hypothalamic, 41-amino acid neuropeptide, has a

major role in regulating pituitary–adrenal function and biological responses to stress [1–6].

The expression of CRH in stress-sensitive hypothalamic neurons commences during fetal life

[7–9], and the peptide contributes to the regulation of the response to stress throughout life. In

addition to expression and function within the hypothalamus, CRH is expressed in select

brain regions [10,11], and CRH receptors are distributed throughout the brain [12,13]. During

stress, the peptide is released locally within the amygdala [14], hippocampus [15], and cortex

[16], and contributes to the diverse effects of stress on brain functions, including memory and

anxiety. Thus, during acute stress, CRH enhances memory through actions in the amygdala

[14] and hippocampus [17]. However, exposure to high levels of CRH, or a chronic exposure

to lower levels may have adverse effects throughout life, because the peptide reduces the num-

ber of neuronal synapses by disrupting the structure of dendritic spines [18,19]. During aging,

CRH may also contribute to the pathology associated with dementia, including Alzheimer’s

Disease [20,21]. Developing neurons are particularly sensitive to CRH. Indeed, exposure to

nanomolar levels of the peptide results in neuronal hyper-excitability [22], increased risk for

seizures, and even neuronal death [23,24].

There is experimental information about the role of brain-derived CRH during develop-

ment; however, there is little known about the potential role of placental-derived, maternal

CRH on brain maturation in the developing fetus. Rodent placenta does not seem to synthesize

CRH. In contrast, during the course of human pregnancy the placenta expresses CRH as early

as the seventh week of gestation [25]. This results in an exponential (20- to 40-fold) increase in

CRH levels in maternal and fetal circulation over the course of human gestation. Placental CRH

(pCRH) is identical to hypothalamic CRH, and it is believed that CRH contributes to organiza-

tion of the fetal nervous system, regulates fetal maturation [26], and influences the timing of

birth [27,28]. In the human, maternal signals of stress (e.g. increased cortisol) is associated with

augmented synthesis of pCRH that is released into both maternal and fetal compartments.

An association has been found between fetal exposure to elevated level of CRH and child-

hood outcomes. For example, increased pCRH exposure has been correlated with internalizing

symptoms in children [29,30], but how CRH promotes these outcomes is unclear. The peptide

might mainly function via influencing glucocorticoids and other mediators; alternatively,

CRH may directly influence the development and maturation of brain cells, including neu-

rons. This question is important: in addition to mechanistic understanding of human brain

development, it may open therapeutic opportunities. Here, we query if, in addition to being a

marker of prenatal stress, CRH exposure during periods of cortical neuronal development and

growth might directly stunt the dendritic trees of rodent cortical neurons (Fig 1A). Using an in
vitro model, we find a deleterious, dose-dependent effect of CRH on the development of corti-

cal neurons, at a developmental period approximating human developmental stages when

pCRH levels are maximal (Fig 1B). CRH led to poor development of dendritic trees, which

constitute ~45% of cortical volume [31] (Fig 1C) and are essential for anchoring excitatory

synapses, the basis of normal neuronal function. Thus, CRH-mediated mal-development of

vital cortical structures may contribute to the mechanisms by which prenatal adversity may

influence human neuropsychiatric outcome.

Methods

All animal experiments conformed to National Institutes of Health guidelines and were

approved by the Institutional Animal Care and Use Committee of the University of Califor-

nia-Irvine.
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Fig 1. The relative timing and cortical volume impacts of CRH on dendritic growth in the fetus. A) The

relative timing of placental CRH expression, blood brain barrier development, cortical CRH expression, and

cortical neurogenesis, migration and dendritic outgrowth in human gestation [25,32–34]. B) Relative human

and rat cortical neuronal development. The relative timing of the cell culture experiment and treatment with

CRH is indicated by the grey and orange boxes, respectively. C) Contribution of different cell types and

structures to cortical volume. Based on data from Braitenberg & Schüz (1998).

https://doi.org/10.1371/journal.pone.0180311.g001
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The detailed protocol has been listed for independent citation at protocols.io [35].

Primary cortical neuron cultures

Timed-pregnant Sprague-Dawley rat dams gave birth in the University of California-Irvine

vivarium. Three independent experiments were conducted: Cortical neuron cultures were pre-

pared within 36 hours after birth (P0-P1) from pups of either sex as previously described

[36,37]. Briefly, motor cortices were dissected and incubated in dissection solution (137 mM

NaCl, 5.4 mM KCl, 0.17 mM Na2PO4, 0.22 mM KH2PO4, 33.3 mM D-glucose, and 43.8 mM

sucrose in 9.9 mM HEPES pH = 7.4) with 10 U/mL papain (Worthington, Lakewood, NJ).

After removal of papain, cells were triturated and plated at a density of 400–600 cell/mm2 on

12 mm coverslips (Thermo Fisher, Houston, TX) pre-coated with poly-D-lysine (Sigma,

St. Louis, MO). Cultures were initially maintained in Basal Medium Eagle (BME) with fetal

bovine serum, sodium pyruvate, and L-alanyl-L-glutamine (GlutaMAX; Invitrogen, Grand

Island, NY) at 36˚C and 5% CO2. After 2 hours, half the culture medium was replaced with

Neurobasal Medium (Invitrogen) pre-conditioned for 24 hours over 1-3-week-old glial cell

culture (conditioned medium), and then half of the conditioned medium was refreshed after 2

more hours. Cultures were treated with 1μM arabinoside-cytosine (Sigma) on day in vitro 3

(DIV3) to inhibit glial proliferation and refreshed twice a week with conditioned medium.

Corticotropin Releasing Hormone (CRH) (Bachem, King of Prussia, PA) was added to the

medium on the 7th day in vitro (DIV7) and refreshed on DIV10. Neurons were exposed for a

total of one week to levels of CRH at 0.01, 0.1, 1, 10, or 100 nM. Cultured neurons were fixed

using fresh 4% paraformaldehyde (PFA) on DIV14.

Immunocytochemistry (ICC) for MAP2

Neurons were washed in 0.1 M phosphate buffer (PB) for 1 minute and then fixed with ice-

cold 4% paraformaldehyde in 0.1M PB pH = 7.4 for 1 hour. They were then washed quickly in

phosphate-buffered saline + Triton-X (PBS-T) and treated with a blocking buffer (3% NGS,

1% BSA, 0.3% Triton-X in 0.01 M PBS, pH = 7.4) for 30 minutes. Coverslips were treated with

mouse anti-MAP2 antibody (Sigma) diluted 1:10,000 in 0.3% Triton-X in 0.01 M PBS at 4˚C

for 48 hours. Finally, they were washed 3 times in PBS-T (5 minutes/wash) and then incubated

in AlexaFluor488 goat anti-mouse IgG conjugate at a concentration of 1:400 (Invitrogen,

Grand Island, NY) in 0.3% PBS-T with 1% BSA at room temperature for 2 hours. After wash-

ing for 5 minutes in PBS-T 3 more times, neurons were processed for confocal imaging with

aqueous mounting medium (Gel-Mount; Biomeda, Foster City, CA) to protect against photo-

bleaching.

Systematic imaging and analysis of dendritic length and arborization

(Sholl analysis)

All coverslips were assessed and quantified without knowledge of treatment group. Each

experiment included 12 coverslips per treatment group, and neurons were sampled equally

from each coverslip for imaging. To objectively select neurons, each coverslip was imaged at

lower resolution in four locations: a 1mm x 1mm square was 90˚ apart from each other and

exactly 1 mm from the cover slip edge. These locations were selected in advance to obviate the

potential confounder of high density of neurons and confluence of processes. All neurons with

cell bodies within each 1mm x 1mm region and touching at least two neighboring neurons

were imaged using confocal microscopy, Zeiss LSM 510 (Oberkochen, Germany). Images

were taken using a 20x objective with 2x digital zoom. Overlapping images were stitched

together using Fiji ImageJ (U.S. NIH, Bethesda, MD, USA) [38]. To limit the analyses to
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pyramidal-like neurons, somata were traced and fit to an ellipse, and the major and minor

axes of the ellipse were measured. Neurons with a minor axis/major axis ratio of<0.5 were

considered presumed interneurons and excluded from analysis. Dendrites of all remaining

neurons that could be differentiated from the dendrites of neighboring neurons were manually

traced and analyzed using the Simple Neurite Tracer plug-in [39]. Final n per group were 0

nM = 35; 0.1 nM = 24; 1.0 nM = 26, 10 nM = 30; 100 nM = 21. For total dendritic branching,

two outliers in the 10 nM group (n = 30) were excluded using ROUT outlier method, with a

false discovery rate of 5% [40]. No other group had outliers.

Results

These experiments were designed to probe the plausibility of a direct causal role of CRH in

mediating the effects of prenatal exposure to high levels of placental CRH on neuronal arbori-

zation and maturation that contributes to behavioral outcomes [29]. To this end, we used rat

primary cortical cell culture, an in vitro model of neuronal development. Primary cell culture

allows for the detailed analysis of neuronal dendrites from a neonatal rat, analogous, in terms

of cortical development, to the 3rd trimester in humans [41]. Neurons were exposed to chronic

levels of CRH at 0.01, 0.1, 1, 10, and 100 nM for 7 days of treatment. Fig 2A–2D depicts repre-

sentative neurons and Fig 2A’–2D’ are Sholl drawings of the same neurons (concentric circles

at 20 μm distances). Sholl drawings are used measure dendritic branching, comparing the

number of dendrites at varying distances from the soma.

Chronic exposure to CRH led to a reduction in the dendritic branching of pyramidal-like

neurons (Fig 3A). The effect was maximal at 40–80 μm from the soma (two-way ANOVA,

Bonferroni correction for multiple comparisons, P<0.05). A dose effect was apparent at low

concentrations but was not seen above 10 nM concentrations. Total dendritic branch length

was also analyzed, but there were no significant differences found between treatment groups

(Fig 3B) (one-way ANOVA, Bonferroni correction for multiple comparisons, p = 0.68). Den-

dritic branching is one of the components that drive dendritic length. Our data suggest that

high levels of CRH likely inhibit the branching points of dendrites, probably by eliminating

synaptic connections from other neurons, analogous to the known effects of the peptide [18].

Linear growth of dendrites and branches is not affected, and likely mitigates the overall effects

on dendritic length

Discussion

The principal findings of this paper are (1) cortical neurons at the developmental stage roughly

concordant with late human gestation are sensitive to CRH; (2) CRH influences dendritic

branching in a dose-dependent manner. Importantly, these effects are observed at CRH levels

estimated to be present in the adult stressed brain [42].

Cortical pyramidal neurons are exposed to both local CRH, expressed in cortical interneu-

rons [43] and potentially to CRH from other brain regions and circulating blood. Levels of

CRH are low to undetectable in human blood, except during pregnancy when the human pla-

centa produces large amounts of pCRH and releases it into both maternal and fetal circulation

[44–46]. CRH produced by the placenta travels into the umbilical vein and enters fetal blood,

and may thus reach the developing fetus [47]. Fetal plasma CRH levels throughout gestation

are correlated with maternal plasma levels [48], stimulating the fetal pituitary to synthesize

adrenocorticotropic hormone (ACTH) and drive fetal adrenal cortisol synthesis [47]. Once

CRH enters the fetal circulation, it can also cross the blood brain barrier [33]. Thus, CRH has

the potential to directly influence developing cortical neurons in the fetus.

CRH effects on cortical neuron development
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Both the primate [49] and murine [12,13] cortex widely express CRH receptors, and those

receptors can be found in fetal human neural stem/progenitor cells and in differentiated corti-

cal neurons as early as 13 gestational week [32]. CRH at levels studied here has been found to

directly influence the development of hippocampal neurons, including dendritic differentia-

tion [18,50]. Although placental CRH is poised to influence cortical neurons as well, the direct

effect of CRH on the structural development of cortical neurons had not been studied previ-

ously either in vivo or in vitro. The current study found that exposure to CRH directly reduces

dendritic branching of pyramidal-like cortical neurons, indicating that the levels of this mater-

nal stress hormone during fetal development likely mechanistically regulate the structure of

the cortex.

In the current study, cortical neurons were exposed to chronic CRH at varying levels. There

is little direct information about levels of CRH that bathe the developing human cortex. In the

human cohort that our team has studied, we found maternal blood levels of placental CRH can

reach as high as 3000 pg/mL (0.6 nM) [51], which approaches the levels that decreased den-

dritic branching. In our experiment, cortical neurons were only exposed to CRH for 7 days in
vitro, while human fetal cortical neurons are exposed for months, allowing for more significant

impacts. Additionally, CRH can cross even the developed blood brain barrier and may accu-

mulate in fetal brain [33]. Finally, fetal cortical neurons are also exposed to endogenous CRH

that is produced within fetal brain and has combined effects with placental CRH [52].

Here, the adverse actions of CRH on cortical neurons were only observed at higher levels

tested. This is important, because all fetuses are exposed to pCRH as a normal part of gestation.

The dose-dependent actions of CRH indicate that adverse cortical neuronal maturation will be

limited to fetuses exposed to relatively high levels of pCRH.

Fig 2. Images of cortical neurons treated with varying levels of CRH. A-D: 40x images of representative neurons exposed to 0, 1, 10, 100 nM CRH

respectively. Scale bar is 20 μm. A’-D’: Traces of the same cells in A-D and concentric Sholl circles spaced 20 μm apart.

https://doi.org/10.1371/journal.pone.0180311.g002
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Several negative effects of high levels of CRH on the developing brain have been demon-

strated in rodents. The peptide increases neuronal excitability [22], promoting seizures and

even neuronal death at high levels [23]. Whereas existing work has shown adverse actions of

the peptide in hippocampus [22,50] and amygdala [22,53], this is the first report of untoward

actions of CRH on the developing cortex. It is interesting to note that direct effects of CRH on

the developing organism are found throughout evolution (1). For example, CRH is expressed

in the Western spadefoot toad, which lays its eggs in pools of desert rainwater. If tadpoles

detect that the conditions for normal development are unfavorable (e.g. rapid evaporation of

the pool), CRH accumulates in the hypothalamus, promoting metamorphosis and escape from

Fig 3. CRH exposure of developing cortical neurons influences dendritic branching, but not total

dendritic length. A) Sholl analysis reveals the dose-dependent effects comparing varying levels of CRH.

Significant decreases were found at 40 μm from the soma (10 nM, p = 0. 0006), 60 μm (10 nM, p = 0.009; 100

nM p = 0.014), and 80 μm (10 nM, p = 0.0017, 100 nM, p = 0025). Error bars represent SEM. B) Total

combined dendritic length was not different between groups. (Error bars represent SEM. B) Total combined

dendritic length was not different between groups Error bars represent 2.5–97.5 percentiles on box and

whisker plots. For both figures, 0.01 nM and 0.1 nM had no significant effects and are not shown.

https://doi.org/10.1371/journal.pone.0180311.g003
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imminent peril. Notably, here, too there are adverse effects of high levels of CRH: tadpoles that

survive by accelerating their development are smaller than average at emergence as toads and

have reduced capacity to forage for food and to mate (2,3).

Placental CRH production increases in response to maternal signals of stress which is asso-

ciated with maternal glucocorticoid (cortisol) production. In the hypothalamus, glucocorti-

coids inhibit CRH transcription providing a negative feedback during stress. Surprisingly, in

the placenta, cortisol promotes production and release of pCRH [54], constituting a ‘positive

feedback’ system. Thus, relatively high levels of cortisol and of CRH may both be present in

the stressed pregnant mother [25,55], and steroids and pCRH can act synergistically to change

neuronal structure [56]. The current work reveals for the first time that CRH alone suffices to

alter neuronal development by stunting dendritic branching. Namely, the peptide is not

merely a marker of stress or other conditions influencing fetal neuronal maturation via CRH-

independent mechanisms. These effects of the peptide are important, because neuronal den-

dritic arbors form the bulk of cortical volume [31,57]; thus, changes in dendrites are likely to

be reflected as measurable changes in cortical structure and function. Taken together, these

data indicate that direct actions of CRH on cortical neuron maturation may provide a novel

mechanism by which prenatal maternal signals have a lifelong effect on the neuropsychiatric

outcome of her child.
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