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ABSTRACT Pseudomonas aeruginosa is known for a high adaptive capacity due to
the ability to synthesize several compounds that give advantages for competing with
other microorganisms in the environment. The LV strain synthesizes bioactive com-
pounds, mainly by secondary metabolism, with antitumor and antimicrobial activities
against microbial pathogens.

The extraordinary metabolic and physiological versatility of microbial species of the
Pseudomonas genus allows them to live in large populations in the most diverse

environments, in which they can interact with plants, animals, and humans. The plas-
ticity of Pseudomonas strains makes them important agents for use in biotechnological
applications (1, 2). Pseudomonas aeruginosa strains can produce a variety of polymers
and secondary metabolites, which are widely used in agriculture and medicine (3–10).
Here, we report the draft genome sequence of P. aeruginosa strain LV, which was iso-
lated from an old citrus canker lesion on orange leaves (Citrus sinensis cv. Valencia), in
Astorga, Brazil (23130929.1100S, 5139947.2000W) (11). The P. aeruginosa LV strain was
grown overnight at 28°C on nutrient agar, and one colony was used for DNA extrac-
tion. The DNeasy blood and tissue kit (Qiagen, Germany) was used for genomic DNA
extraction according to the manufacturer’s standard protocols. The LV strain genome
was sequenced on the MiSeq platform at Embrapa Soja in Londrina, Brazil. The library
was assembled using the Nextera XT DNA library preparation kit (Illumina, USA) accord-
ing to the manufacturer's specifications. Paired-end reads obtained by shotgun
sequencing yielded 3,378,198 sequences, with genome coverage of 150-fold. A de
novo genome assembly was constructed with SPAdes v3.11.1 (12) after filtering and
trimming reads to a quality score of .20 with CLC Genomics Workbench v20.0.4
(Qiagen). The assembly was 72 contigs, with a total length of 6,468,334 bp, an N50 value
of 221,502 bp, an L50 value of 9, and a total GC content of 66.4%. The genome was ana-
lyzed on the Rapid Annotation using Subsystems Technology (RAST) v2.0 server
(http://rast.nmpdr.org) (13). The RAST annotation was used for subsequent analyses,
but the public genome was annotated with the NCBI Prokaryotic Genome Annotation
Pipeline (PGAP) (14). The RAST annotation identified 6,015 DNA coding sequences,
with 52% classified in 3,094 subsystems. The major categories were amino acids and
derivatives (23.3%), carbohydrates (15.2%), and cofactors, vitamins, prosthetic
groups, and pigments (11.9%). Secondary metabolite biosynthesis genes were iden-
tified by using antiSMASH v4.1 (https://antismash.secondarymetabolites.org) (15),
and 16 putative gene clusters responsible for secondary metabolite biosynthesis
were identified. Among them, we can highlight genes related to expression of the
b-lactone (thanamycin), bacteriocin, thiopeptide, nonribosomal peptide synthetase
cluster (pyochelin, pyoverdin, and rhizomide), and phenazine (pyocyanine and
streptophenazine) types. The acquired antibiotic resistance genes were identified
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using ResFinder v3.2 (https://cge.cbs.dtu.dk/services/ResFinder) (16); they were related
to resistance to quinolones (crpP), b-lactams (blaOXA-396, blaOXA-486, and blaPAO), aminogly-
cosides [aph(39)-llb], phenicols (catB7), and fosfomycin (fosA). With CRISPRfinder (https://
crispr.i2bc.paris-saclay.fr) (17), we found three clustered regularly interspaced short palin-
dromic repeat (CRISPR) arrays. The genome of P. aeruginosa strain LV may facilitate
understanding and exploration of metabolic pathways in the search for potential bioac-
tive compounds.

Data availability. This whole-genome shotgun project has been deposited in
DDBJ/ENA/GenBank under the accession no. CP058323 (BioProject no. PRJNA450135,
BioSample no. SAMN08930812, and SRA accession no. SRR13065837). The version
described in this paper is the first version.
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