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Abstract: Free radicals are important antimicrobial effectors that cause damage to DNA, membrane
lipids, and proteins. Professional phagocytes produce reactive oxygen species (ROS) and reactive
nitrogen species (RNS) that contribute towards the destruction of pathogens. Toll-like receptors
(TLRs) play a fundamental role in the innate immune response and respond to conserved microbial
products and endogenous molecules resulting from cellular damage to elicit an effective defense
against invading pathogens, tissue injury, or cancer. In recent years, several studies have focused on
how the TLR-mediated activation of innate immune cells leads to the production of pro-inflammatory
factors upon pathogen invasion. Here, we review recent findings that indicate that TLRs trigger a
signaling cascade that induces the production of reactive oxygen and nitrogen species.
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1. Introduction

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are recognized for their dual
role as both deleterious and beneficial species. The overproduction of ROS/RNS results in damage to
cell structures, including lipids and membranes, proteins, and DNA, inhibiting their normal function.
In contrast, the salutary effects of ROS/RNS occur at low/moderate concentrations in cellular responses,
including in defense against infectious agents, in the function of a number of cellular signaling pathways,
and the induction of a mitogenic response [1]. The subtle balance between beneficial and harmful
effects of ROS/RNS is a very important aspect of living organisms and is achieved by a mechanism
called “redox regulation” which maintains cellular “redox homeostasis” using the antioxidants
system [2]. ROS and RNS are generated using several different processes including (i) irradiation by
UV light, X-rays, and gamma-rays; (ii) as products of metal-catalyzed reactions; (iii) by neutrophils and
macrophages during inflammation; and (iv) as products of mitochondria-catalyzed electron transport
reactions [3]. An important potential source of oxidizing agents is the phagocytic leukocytes within
the body. Neutrophils, monocytes, and macrophages are the most prominent immune cell types
that release various pro- and anti-inflammatory mediators for both host defense and inflammatory
responses [4]. Oxidation intermediates are also involved in these processes. The cumulative production
of ROS/RNS from either endogenous or exogenous sources is termed oxidative stress. Oxidation
intermediates are essential activators of oxidative stress. This is because low levels of free radicals,
including ROS and RNS, form a stressful oxidative environment that can clear invading pathogens and
maintain physiological homeostasis [5]. Although innate immunity is the first line of defense against
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pathogens, Toll-like receptors (TLRs) also play a crucial role in the early host defense mechanism [6].
In recent years, there have been a significant number of discoveries regarding how the TLR-mediated
activation of innate immune cells leads to the production of pro-inflammatory factors upon pathogen
invasion. In this review, we discuss recent research findings on TLR activities, with a particular focus
on TLR-mediated signaling pathways that are activated during nitroxidative stress.

2. Nitroxidative Stress

2.1. Formation of Nitroxidative Stress

Nitroxidative stress is a cellular condition that reflects a physiological imbalance where excessive
reactive nitrogen and reactive oxygen species are present. Under this condition, an excessive production
of ROS and RNS occurs, exceeding a level that the body’s antioxidant mechanisms can cope with.
Examples of ROS species include the superoxide anion (O2

�−), hydrogen peroxide (H2O2), and
hydroxyl radicals (•OH) [7]. RNS include nitric oxide (NO�), nitrogen dioxide (NO2), and the powerful
oxidant peroxynitrite (ONOO−) [8]. During microbial infections, excessive NO� produced has varying
functions, ranging from anti-microbial and anti-inflammatory host defense and cell protection to
proinflammatory and cytotoxic activities [9]. The NO� produced in inflamed tissues during infection
or inflammation are affected by the concomitant production of oxygen radicals, particularly O2

�− and
H2O2. The interaction of NO� with reactive oxygen species causes the formation of several reactive
nitrogen oxides, these reactive nitrogen intermediates have a great possibility of causing oxidative
and nitrative stress through the oxidation and nitration of biological molecules [10]. A study in mice
shows that O2

�− was produced by neutrophils and macrophages in the liver, which is associated
with prolonged granulomatous lesions in infected with Salmonella typhimurium. The inhibition of
O2
�− generation by in vivo superoxide dismutase (SOD) treatment results in a reduction in the area of

liver lesions, simultaneously accelerating bacterial growth in the liver. The result suggests that O2
�−

may be involved in the host defense mechanism against S. typhimurium infections [11]. Granulocyte
peroxidases, such as myeloperoxidase, play an important role in oxidative stress [12]. In neutrophils,
H2O2 produced by O2

�− is metabolized by myeloperoxidase into a strong oxidant, hypochlorous
acid (HOCl), in the presence of chloride ions. HOCl plays an important role in host defense and
inflammatory tissue injury. In addition, myeloperoxidase generates reactive nitrogen species in vivo
only when nitrite and nitrate are available [13]. Overproduced ROS and RNS can easily and rapidly
react with intracellular macromolecules, causing oxidative damage to cellular structures that result in
progressive physiological dysfunction, which is associated with many pathological conditions. ROS
are the major causative factor in steatohepatitis and insulin resistance [14]. Various neurodegenerative
diseases, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), and
amyotrophic lateral sclerosis (ALS), can be the result of oxidative stress [15].

2.2. Antioxidant Systems

There are two types of antioxidant systems in the body. The first one is formed by antioxidant
enzymes, which includes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase
(GSH-Px). The other is formed by non-enzymatic antioxidants which includes vitamin C, glutathione
(GSH), melatonin, and trace elements [16]. Antioxidant substances catalyze the formation of active
oxygen intermediates, scavenge free radicals, and terminate peroxidation. ROS is mainly produced
by Nicotine adenine dinucleotide phosphate (NADPH) oxidase [17]. When stimulated, NADPH
oxidase induces electron transmembrane transport and generates O2

�−. As O2
�− is unstable, it is

rapidly converted into H2O2, which can then be transformed into H2O and O2
•− or other active

oxide derivatives.
RNS family members are derived from NO� through the action of nitric oxide synthase

(NOS). NOS is a multidomain enzyme that contains binding sites for the cofactors NADPH, flavin
adenine dinucleotide (FAD), flavin mononucleotide (FMN), and (6R-)5,6,7,8-tetrahydrobiopterin (BH4).
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It catalyzes the production of NO� and L-citrulline from L-arginine. The availability of L-arginine is one
of the rate-limiting factors in cellular NO� synthesis and secretion. There are three members of the NOS
family: neuronal NOS (nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS). As nNOS and
eNOS are constitutively expressed and not inducible, they are not associated with the inflammatory
response [18]. The iNOS isoform is upregulated by inflammatory stimulating factors [19] and can be
activated by phagocytes after stimulation with PRR agonists, IFN-γ, and proinflammatory cytokines [20].
In turn, the produced NO� is able to stimulate the expression of the transcription factor NF-E2-related
factor-2 (Nrf2) in macrophages, upregulate ferroportin (FPN), and contribute to nutritional immunity
in macrophages [21]. Nrf2 plays a key role in anti-inflammation and oxidation stress and triggers the
expression of the downstream target genes catalase (CAT), superoxide dismutase (SOD), glutathione
S-transferase alpha 1 (GSTα1), quinone oxidoreductase 1 (NQO1), γ-glutamylcysteine synthetase
(γ-GCS), and heme oxygenase-1 (HO-1).

Phosphoinositide 3-kinase (PI3K) and MAPK signaling pathways regulate activation of the
Nrf2-antioxidative response element pathway [22]. Oxidative stress activates NF-κB and induces
inflammatory responses. Together, Nrf2 and NF-κB cooperatively regulate the oxidative stress
response [23]. Oxidation intermediates exert antimicrobial actions against a broad range of pathogens.
Indeed, chronic granulomatous disease (CGD) patients that are deficient in oxidation intermediates are
susceptible to extracellular bacterial infections [24]. CGD is characterized by inherited defects
in the innate immune system resulting from mutations in the genes encoding any of the five
components of the NADPH oxidase complex, including gp91-phox, p22-phox, p40-phox, p47-phox,
and p67-phox [25]. However, some bacteria have devised strategies to escape killing using oxidation
intermediates. Mycobacterium tuberculosis binds to macrophage-expressed complement receptor 1
(CR1) and complement receptor 3 (CR3) to overcome reactive oxygen intermediates (ROI) and
reactive nitrogen intermediates (RNI) production. This allows for the safe access of pathogens to
their intracellular habitat. Staphylococcus aureus releases adenosine to overcome oxidative killing
in phagocytes and produces the enzymes SOD and CAT to eliminate oxidation intermediates [26].
Mitochondria are major sources of ROS production in cells [27]. Mice with reduced macrophage ROS
levels (through the overexpression of CAT in their mitochondria) showed an impaired ability to kill
intracellular bacteria following intraperitoneal infection with Salmonella typhimurium. This confirms
that ROS play a key role in bactericidal activity [28].

3. TLRs and Their Signaling Pathway

3.1. An Introduction on TLRs

Microbial structures and molecules are crucial for their survival and virulence. Pathogen-associated
molecular patterns (PAMPs) are highly conserved structural components that are uniquely associated
with microorganisms [5]. These include LPS, lipoproteins, carbohydrates, flagellin, and nucleic
acids. Upon long-term exposure to pathogens, the innate immune system provides a faithful
mechanism to rapidly sense and respond to PAMPs using a number of structurally unrelated host
proteins called pattern recognition receptors (PRRs) [6]. PRRs play important intracellular roles to
eliminate infection and initiate inflammatory responses [29]. To date, four different classes of PRR
families have been identified, including C-type lectin receptors (CLRs), RIG-I-like receptors (RLRs),
nucleotide-binding-domain and leucine-rich-repeat-containing receptors (NLRs), and TLRs [30]. PRRs
are strategically distributed in the cell to enable the recognition of both extracellular and intracellular
pathogens. For example, TLRs and CLRs localize to plasma or endosomal membranes, whereas
RLRs and NLRs are cytosolic [31]. TLRs are type I integral membrane glycoproteins that are
characterized by an N-terminal extracellular domain with leucine-rich repeats (LRRs) that recognize
PAMPs, a transmembrane region, and a cytoplasmic Toll/IL-1R homology (TIR) domain that mediates
downstream signaling [30]. TLRs are one of the most-investigated PRR families and are able to detect
a wide range of PAMPs, including bacterial lipopolysaccharides (LPS), lipoproteins, flagellin, and
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nucleic acids. Many structural studies on TLRs, including X-ray crystallography, have been undertaken
to investigate the basis of their ligand recognition [5]. In zebrafish (Danio rerio), 19 putative TLR
variants, the orthologs of mammalian TLR 2–5 and 7–9, a fish specific receptor type group, and three
putative splice variants have been identified [32]. Some studies on oxidative stress in the zebrafish
model have been done, including a study evaluating the effects of dietary supplementation with the
probiotic Bacillus amyloliquefaciens R8, which has a heterologous expression of xylanase from rumen
fungi, on zebrafish. The result shows it improved expression levels of oxidative stress-related genes in
the fish liver [33]. Zebrafish embryo exposure to Triclocarban (TCC) at environmental concentrations
significantly affects the expression of immune-response-related genes following oxidative stress and the
release of proinflammatory mediators through the Toll-like receptor signaling pathway [34]. Thirteen
TLRs have been discovered in mammals to date [35]. TLR1-9 is present in both humans and mice.
Mouse TLR10 is nonfunctional owing to a retroviral insertion. Human TLR11 is a pseudogene,
and TLR12 and TLR13 are absent from the human genome. Studies with TLR-knockout mice have
demonstrated that each TLR subgroup recognizes distinct PAMPs and initiates a particular immune
response (Table 1) [36]. Studies of Drosophila TLRs also support the fact that distinct TLRs may differ
in their signaling ability. In Drosophila, toll and 18-wheeler sharing homologous cytoplasmic domains
activate different and nonoverlapping gene expressions when faced with fungi and bacteria. TLRs
are expressed in a variety of cells and tissues, including dendritic cells, mononuclear macrophages,
and granulocytes. Immune cells are capable of recognizing distinct molecular patterns to elicit a
specific response against pathogens or endogenous factors released as a result of cellular damage.
TLRs can recognize PAMPs in different cell compartments, including the plasma membrane, endosomes,
lysosomes, and endocytic lysosomes. However, the TLRs must be appropriately localized in cells to
recognize their ligands. This is also important for self-tolerance and downstream signal transduction.
When TLR4 interacts with myeloid differentiation factor 2 (MD2) and CD14, an LPS receptor is then
combined with a ligand [37]. This alerts the immune system to the presence of invading organisms,
so that an immediate response can be configured to contain the pathogen. Later, during the start of
acquired immunity, the recognition event is provided information about the nature of the invading
microorganism. From this information, it is determined whether T helper (Th) 1 cells differentiate into
Th1 cells that promote cell-mediated immunity or Th2 cells that promote humoral responses [38].
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Table 1. TLR Recognition of Microbial Components [36,39,40].

TLR Usage Expression Patterns in Leucocytes Cellular
Localization Microbial Component Recognized by the Receptor

TLR1 T-Lymphocytes Cell surface Triacyl lipopeptides
B-Lymphocytes

Natural killer cells
PMNs

Mononuclear phagocytes
Dendritic cells (DCs)

TLR2 T-Lymphocytes Cell surface Triacyl lipopeptides
PMNs Diacyl lipopeptides

Mononuclear phagocytes Lipoteichoic acid
DCs Peptidoglycan

Porins
Lipoarabinomannan
Phospholipomannan

Glucuronoxylomannan
tGPI-mutin

Hemagglutinin protein
Not determined

Zymosan
TLR3 DCs Endosome dsRNA
TLR4 PMNs Cell surface Mannan

Mononuclear phagocytes Glucuronoxylomannan
DCs Glycoinositolphospholipids

T-Lymphocytes Envelope proteins
Heat-shock protein 60,70

Fibrinogen
TLR5 PMNs Cell surface Flagellin

Mononuclear phagocytes
DCs

TLR6 T-Lymphocytes Cell surface Diacyl lipopeptides
B-Lymphocytes lipoteichoic acid

Mononuclear phagocytes Zymosan
DCs

TLR7 T-Lymphocytes Endolysosome ssRNA
B-Lymphocytes Imidazoquinoline

DCs
TLR8 T-Lymphocytes Endolysosome Loxoribine

Mononuclear phagocytes ssRNA
DCs Imidazoquinoline

TLR9 T-Lymphocytes Endolysosome Bropirimin
B-Lymphocytes DNA

Mononuclear phagocytes CpG-DNA
DCs Hemozoin

TLR10 B-Lymphocytes Cell surface not determined
DCs

TLR11 Cell surface Profilin-like molecule
not determined

TLR12 not determined
TLR13 not determined

3.2. Signaling Pathway of TLRs

TLRs generally function as homodimers. However, TLR2 exists as a heterodimer with another TLR
molecule, for example TLR2/TLR1 and TLR2/TLR6. TLR2 recognizes lipoteichoic acid, lipopeptides,
peptidoglycan, and Zymosan [41], whereas TLR4 homodimers specifically recognizes lipopolysaccharides
(LPS) from Gram-negative bacteria heat-shock proteins [42] and viral components such as the fusion protein
from respiratory syncytial virus (RSV) [24]. TLR5, TLR9, and TLR3 recognize the flagellin component
of bacterial flagella, genomic DNA, and the viral replication intermediate dsRNA, respectively [43–46].
All TLRs except TLR3 utilize MyD88 to activate NF-κB and MAPK and induce an overproduction of
inflammatory cytokines [47]. This pathway is called the MYD88-dependent pathway. Toll-interleukin1
receptor (TIR) domain containing adaptor protein (TIRAP) assists the recruitment of MyD88 to the surfaces
of TLR2 and TLR4. TIRAP has a lipid-binding region that binds to PI (4,5) P in the plasma membrane and
PI (3) P on the endosome, allowing the formation of functional signaling complexes at their respective
positions [48]. In MYD88-independent pathways, TRIF is recruited to TLR3 and TLR4, which results in
the activation of interferon regulatory factor 3 (IRF3), nuclear factor kappa-light-enhancer of activated B
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cells (NF-κB), and mitogen-activated protein kinase (MAPK) to induce the production of type I interferons
and inflammatory cytokines. TRAM is selectively recruited to TLR4 to link TRIF and TLR4. Although
TLR3 is able to bind directly to TRIF, this interaction requires the phosphorylation of two tyrosine residues
in the cytoplasmic region of TLR3 [49,50].

Two distinct TLR signaling pathways have been identified based on the availability of adaptor
molecules. Both pathways activate downstream signaling molecules that lead to the secretion of
inflammatory cytokines, type I interferon (IFN), chemokines, and antimicrobial peptides [51]. These
instigate neutrophil recruitment, macrophage activation, and the induction of IFN-related genes, which
directly kill pathogens. In addition, the activation of the TLR signaling pathway leads to the maturation
of dendritic cells (DCs) and contributes to adaptive immunity (Figure 1).

Figure 1. MYD88-dependent pathway (left). MYD88-independent pathways (right) [52].

4. TLRs and Nitroxidative Stress

Under normal conditions, TLRs are maintained at relatively stable levels by intracellular
modulation (such as alternative splicing) and degradation by ubiquitination and deubiquitination.
Transgenic animals overexpressing TLRs and TLR knockouts have been studied to determine the role of
TLRs during bacterial infection in vivo. S. typhimurium is a Gram-negative bacterium that replicates in
macrophages and has PAMPs that are detectable by at least four TLRs: lipoprotein (TLR2), LPS (TLR4),
flagellin (TLR5), and CpG-DNA (TLR9) [53]. In this review, we will focus on data obtained for the TLR2
and TLR4 signaling pathways in mammalian immune cells, which are linked to nitroxidative stress.

Molecules found in nitroxidative stress, such ROS and NO�, are found in response to microbial
invasion during the neutrophil and macrophage respiratory burst. Both oxidative stress and infective
stress can share the same TLR signaling pathways [54]. TLRs interact with adaptor molecules such as
MyD88 and TRIF to activate downstream signaling through NF-κB, AP-1, and interferon-regulatory
factor-3 (IRF-3). The expression of inflammatory mediators is upregulated; involve notably pro-oxidant
enzymes such as NOX and iNOS, producing high levels of ROS [55]. To examine whether TLR signaling
could enhance ROS production, a study in RAW 264.7 macrophages shows the use of all kinds of TLRs
agonist. The production of ROS was triggered only upon signaling from the cell-surface TLRs (TLR1,
TLR2 and TLR4), the same as exposure of cells to rotenone and antimycin A, compounds known to
increase mitochondrial O2

�– generation, and increased cellular H2O2 [28].
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4.1. TLR2 and Nitroxidative Stress

TLR2 recognizes Gram-positive bacteria, including mycobacteria, and viruses and their products.
Most Gram-positive bacteria, such as Bacillus anthracis, S. aureus, and Clostridium tetani, cause a wide
range of diseases in both immunocompetent and immunocompromised hosts [43]. TLR2 is widely
expressed in innate immune cells and epithelial cells and is highly expressed in peripheral blood
monocytes. TLR2 was found to induce neutrophil activation and its expression is upregulated when
it recognizes its corresponding PAMP. This results in the production of NO� and pro-inflammatory
cytokines, including tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6, and chemokines. TNF-α
and IL-1β are both able to stimulate the production of monocyte chemotactic protein-1 (MCP-1).
MCP-1 expression is also induced by oxidative stress [56]. TLR-2 relies on the MyD88 signaling
pathway to activate the NF-κB and MAPK pathways. Phosphorylated MAPK then activates the
transcription factor activator protein-1 (AP-1) and the PI3K/protein kinase B (Akt) signaling pathway
to induce immune responses. AP-1 is a transcription factor that mediates pro-inflammation through
core components including c-Jun and c-Fos. Overexpression of c-Jun induces the production of
inflammatory mediators [57].

During pathogen infection, inflammation is accompanied by an anti-inflammation reaction. Native
CD4+ cells differentiate into Th1 and Th2 cells. The Th1 response produces IL-12 to promote the
production of IFN-γ, which functions to inhibit the differentiation of Th2 cells. The Th2 response is
characterized by low IFN-γ levels and high IL-4 levels, as well as the production of IL-6 and IL-10.
IL-6 produced by Th2 cells acts as a mediator of the acute phase response. It is able to accelerate the
infiltration of inflammatory cells [58] but, at later phases, can increase anti-inflammatory cytokine
expression to prevent an immune overreaction [59]. IFN-γ levels are low during the Th2 response as it is
able to inhibit Th2 cells and the production of IL-10 to decrease the levels of Th1-related cytokines. Mice
deficient in TLR2 experienced strong immune reactions and were susceptible to S. aureus [60]. Another
study revealed that TLR2 signaling contributes to high mortality during polymicrobial intra-abdominal
sepsis. This suggests that a novel therapeutic approach to treat severe sepsis would be to specifically
target the TLR2 signaling pathway [61].

A previous study reported that mice challenged with Pam3CSK4, a TLR2 agonist, had reduced
infiltration of chemokines and inflammatory cells within their tissues [62]. Furthermore, a study by
our laboratory revealed that Pam3CSK4 could activate monocytes/macrophages. An overexpression of
TLR2 in transgenic goats caused early expression of the pro-inflammatory cytokines’ TNF-α and IL-1β,
followed by a continuous increase in the expression of the anti-inflammatory factor IL-4. In addition,
TLR2 overexpression induced the expression of Th1 type cytokines. A skin inflammation experiment
showed that TLR2 overexpression accelerated the inflammatory process in transgenic goats [63].

Free radicals are necessary for the host defense against microbial invasion and inflammatory
injury. Following macrophage activation by TLR2, high levels of NOS and ROS are released, in
addition to NO� and H2O2, to the area of inflammation under oxidative stress. Intriguingly, a study
using RAW264.7 cells indicated that NF-κB activation was significantly enhanced upon exposure to
NO [64]. Even relatively low levels of NO� are able to trigger downstream pathways and maintain
the correct functioning of the defense mechanism. However, NF-κB activation is inhibited by high
concentrations of NO� or the overexpression of antioxidants. The inhibition of NF-κB activation has
been shown to decrease the inflammatory response and prevent tissue damage. GSH, SOD, and CAT
are key anti-oxidative substances in a host organism. Activated NF-κB can induce the secretion of
pro-inflammatory factors and also reduce cellular SOD activity. As described earlier, NO� levels are
regulated by iNOS. Activated Nrf2 can induce the expression of the proinflammatory gene COX-2
by inhibiting NF-κB activity, which reduces iNOS expression [65]. Furthermore, Nrf2 activation can
directly regulate c-Jun signaling activity and suppress COX-2 expression. COX-2 overexpression was
found to inhibit PI3K activity and the Nrf2-mediated anti-oxidation reaction [30]. A study of healthy
people and coronary artery disease (CAD) patients shows the activation of the Nrf2 pathway as an
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antioxidant response mechanism in monocyte-derived macrophages (MDMs) [66]. The activation of
Nrf2 protects human coronary artery endothelial cells against oxidative challenge [67].

AP-1 family members include Jun and Fos. Jun subclasses include c-jun and JunB. Fos subclasses
include c-fos and FosB. Different types of AP-1 transcription factor dimer combinations have different
functions in gene expression regulation. Increased levels of c-Fos and c-Jun subunits negatively regulate
the expression of the anti-oxidation genes NAD(P)H: quinone oxidoreductase 1 (NQO1), GSTα1,
SOD1, and CAT. HO-1 is a rate-limiting enzyme that participates in anti-inflammatory reactions and
is induced in response to oxidative stress. HO-1 gene activation has been demonstrated to inhibit
AP-1 activity [68]. The activity of AP-1 was observed to increase in Nrf2 knockout cells throughout
the JNK/c-Jun pathway, leading to the upregulation of HO-1 expression [69]. Our laboratory results
indicate that Nrf2 upregulation, through the overexpression of TLR2 in transgenic goats, inhibited
COX-2 expression and increased the expression of the c-Jun gene in monocytes/macrophages by TLR2
ligand stimulation. In addition, lower levels of anti-oxidation stress enzymes were observed in cells
overexpressing TLR2 compared with wild-type cells. This, in turn, improved the activity of GSH,
and the GSH consumed could be rapidly resynthesized [63]. TLR2 overexpression also upregulates
PI3K and increases HO-1 gene expression. However, the concentrations of malondialdehyde (MDA),
a marker of lipid peroxidation, and NO� in cells overexpressing TLR2 remained relatively low and
were maintained at stable levels (Figure 2). In combination, these data indicate that tissue damage can
be prevented through TLR2 overexpression.

Figure 2. The TLR2 signal pathway involved in oxidative stress [48,55]. The TLR2 signaling pathway
activates the MYD88 pathway to activate the NF-κB and MAPK pathways under the action of the ligand
Pam3CSK4. Phosphorylation of MAPK then activates transcription factor activator protein-1 (AP-1)
and PI3K/protein kinase signaling pathways to induce an immune response. AP-1 is a transcription
factor that mediates pro-inflammatory factors, and NO� levels are regulated by iNOS. Nrf2 can induce
the expression of pro-inflammatory factors by inhibiting the expression of pro-inflammatory NF-κB,
which is a rate-limiting enzyme involved in the anti-inflammatory reaction and can induce oxidative
stress. GSH, SOD, and CAT are all in a key antioxidant in the host organism. Activated NF-κB reduces
cellular SOD activity.
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4.2. TLR4 and Nitroxidative Stress

A specific ligand is mediated by the TLR4/MD2 complex, together with the co-receptor CD14, then
recruits downstream adaptors to activate the MyD88- and TRIF-dependent pathways [58]. By activating
these two pathways, TLR4 participates in innate immunity in the host’s defense against Gram-negative
bacterial infections, as well as in many inflammatory and autoimmune diseases. The TLR4 signaling
pathway is activated upon the invasion of animal cells by pathogenic microorganisms. This triggers
a cascade of reactions to promote the production and release of inflammatory cytokines, which
induces the chemotactic aggregation of macrophages. However, recently, an interesting study has
demonstrated palmitate-stimulated CD11b + F4/80 low hepatic infiltrating macrophage ROS generation
by dynamin-mediated endocytosis of TLR4 and NOX2, independent from MyD88 and TRIF [14].

Several studies have demonstrated that TLR4-mutant enterocytes have a decreased sensitivity
to LPS compared with wild-type cells [70]. Moreover, TLR4-mutant mice exhibit a suppressed
inflammatory response [71]. This is because TLR4-deficient mice are unable to secrete IL-1 or IL-12
and express IL-6 at lower levels when stimulated with LPS [72]. Mice with targeted deletions of
multiple inflammatory immune and antioxidant genes are susceptible to oxidative lung injuries [73].
Overexpression of TLR4 in mice amplifies the host response to LPS and provides a survival advantage
of increased disease resistance [74]. LPS recognition stimulates TLR4 signaling pathways that lead
to the activation of multiple downstream signaling pathways. In research on TLR4 overexpressing
ovine macrophages, TLR4 initially promoted the production of proinflammatory cytokines TNFα and
IL-6 by activating TLR4-mediated IRAK4-dependent NF-κB and MAPK (JNK and ERK1/2) signaling.
This was later impaired due to the increased internalization of TLR4 into the endosomal compartment
of macrophages. Then, the overexpression of TLR4 triggered TBK1-dependent interferon-regulatory
factor-3 (IRF-3) expression, leading to the induction of IFN-β and IFN-inducible genes. The bacterial
burden after infection with live S. typhimurium in these macrophages was decreased significantly [75].

TLR4 has also been shown to be involved in the phagocytosis of various bacterial species via its
interaction with MAPK, Janus kinase 2 (Jak2), PI3K, and various receptors [76]. The expression of these
factors was observed to increase following S. typhimurium infection of transgenic TLR4-overexpressing
sheep. Ovine monocytes/macrophages overexpressing TLR4 were able to phagocytize higher numbers
of bacteria and also showed a higher phagocytic ability at an early stage, even when infected with
a lower bacterial dose. This suggests that TLR4 overexpression causes an increase in scavenger
receptor expression. In addition, TLR4 overexpression increased the number of bacteria that could
adhere to individual monocytes/macrophages, as well as the number of monocytes/macrophages
able to participate in bacterial adhesion. In contrast, the inhibition of TLR4 reduced S. typhimurium
internalization, actin polymerization, scavenger receptor expression, and the adhesive capacity of
immunocytes. These findings are consistent with previous data using PI3K inhibitors, suggesting
that TLR4 interacts with PI3K to enable S. typhimurium phagocytosis through the regulation of
scavenger receptor expression, actin polymerization, and the alteration of the adhesive capacity of
monocytes/macrophages [77]. In the infection experiment of Escherichia coli in a TLR4-overexpressing
transgenic (Tg) sheep model, monocytes of Tg sheep could phagocytize more bacteria and exhibited
higher adhesive capacity. Using specific inhibition of p38 MAPK, c-Jun N-terminal kinase (JNK), or
extracellular signal-regulated kinases (ERKs), the TLR4-dependent E. coli internalization in sheep
monocytes was reduced. p38, JNK, and ERK are all mitogen-activated protein kinases (MAPKs), which
are important downstream signaling molecules of TLR4. These results provide valuable insight into
the bacterial internalization mechanisms in sheep [78].

Our research laboratory generated transgenic sheep overexpressing TLR4 that had two TLR4 copies
inserted into germ cells. About 90–95% of Gram-negative bacteria are considered to be harmful to their
hosts. Many intracellular bacteria, such as Brucella, Tubercle bacilli, and Salmonella, are pathogenic to both
animals and humans and they can be transmitted from animals to humans. As China has a large sheep
breeding industry, the most harmful of these infections are brucellosis caused by Brucella melitensis.
It not only brings huge economic losses but also causes security risks. The design of TLR4 expression
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sheep provides an important theoretical basis for transgenic disease-resistant breeding. LPS stimulation
of these transgenic sheep enhanced the inflammatory response, which aids the clearance of pathogens.
This could cause excessive oxidative stress that would cause tissue damage [79]. However, TLR4 is able
to tightly regulate oxidative stress throughout these processes. Upon bacterial invasion, TLR4 triggers
the activation of inflammatory factors such as NF-κB and AP-1. The mechanism by which TLR4
mediates the production of ROS involves the membrane-associated enzyme complex NADPH oxidase.
Mouse peritoneal macrophages activated by LPS resulted in an increase in the functional activity of
NADPH oxidase [80]. The NADPH oxidase inhibitor, apocynin, protected mice from LPS-induced
lethality by decreasing the expression level of inflammatory cytokines in vivo [81]. Research using a
yeast two-hybrid and glutathione S-transferase pull-down assay model has suggested that there may
be a direct interaction between TLR4 and NADPH oxidase in mediating the LPS-induced production
of ROS. The carboxy-terminal region of Nox4, a subunit of NADPH oxidase, interacted directly with
the Toll/IL-1 receptor (TIR)-domain of TLR4 after LPS stimulation [82]. Intriguingly, another study on
neutrophils shows that the synthesis of NADPH oxidase was also controlled by TLR4 through the
interleukin-1 receptor-associated kinase 4 (IRAK4) pathways. Phosphorylation of the cytosolic factor
p47 phox is essential for the activation of NADPH oxidase. The data shows that p47 phox is a substrate
for IRAK-4 [83].

In addition, TLR4 can trigger the transcription of the iNOS gene, which promotes NO� production.
Furthermore, iNOS produces peroxide and O2

�− radicals. NO� synthesis not only requires L-arginine
as a substrate but also several cofactors for its catalytic activity [84]. BH4 is an essential co-factor for
all NOSs. BH4 bioavailability is a critical factor in regulating the balance between NO� and O2

�−

production [85]. This has been demonstrated when diabetic mice underwent transgenic over-induction
of BH4 synthesis to preserve NO�-mediated endothelial function [86]. ROS such as O2

�− and ONOO−

are able to rapidly oxidize BH4, leading to BH4 catabolism and depletion [87]. The oxidation of BH4
results in the formation of dihydrobiopterin (BH2), which binds to NOS and generates O2

�–, but
not NO� [88]. Guanosine triphosphate cyclohydrolase I (GCHI) is a rate-limiting enzyme in BH4
synthesis. A novel study investigating the relationship between activated GCHI with BH4 revealed
that GCHI-transgenic mice stimulated with LPS showed a marked increase in the expression of renal
iNOS and NO� production (Figure 3) [89].

ROS can induce NF-κB activation and upregulate the cytokine-induced iNOS gene, resulting in the
release of excessive amounts of NO�. Our research revealed that these inflammatory factors accelerate
the inflammatory response by reducing SOD activity and increasing MDA production. SOD is depleted
during the clearance of oxygen free radicals. Therefore, tissues can then be subsequently damaged
by ROS accumulation [90]. Inflammatory events are often accompanied by oxidative stress, which
generates lipid peroxidation products such as 4-hydroxy-2-nonenal (4-HNE). The study in primary
neuronal cultures from TLR4 mutant mice and wild-type control mice show that TLR4 expression
increases in neurons when exposed to the HNE, and TLR4 signaling increases the vulnerability
of neurons to oxidative stress. This indicates that TLR4 signaling may play a role in Alzheimer’s
disease (AD) pathogenesis, possibly being activated by membrane-associated oxidative stress [91].
Another study found that 4-HNE blocks TLR4-mediated macrophage activation, gene expression,
and phagocytic functions. This is done at least partly by suppressing receptor dimerization [92].
The expression of the anti-inflammatory enzyme HO-1 was found to increase in sheep overexpressing
TLR4, which can directly regulate AP-1 expression. Increased HO-1 activity can suppress TLR4-induced
signal transduction [93]. Our data showed that CAT activity was reduced and GSH-Px expression was
increased following the LPS stimulation of sheep overexpressing TLR4. Another study suggested that
GSH-Px acts in the place of CAT to eliminate H2O2 in certain tissues. We predict that GST may play a
critical role in regulating antioxidative enzyme expression. GST transcription can be upregulated and
downregulated with AP-1 and GSH, respectively. ROS-mediated inflammation can be reversed by
adding exogenous GSH, which can be transferred to glutathione disulfide (GSSG) to eliminate free
radicals and avoid oxidative damage to tissues. The overexpression of TLR4 in sheep resulted in a more
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rapid GSH consumption that dramatically increased GSSG and resulted in severe oxidative damage.
Our laboratory showed that TLR4-induced oxidative stress occurred as a result of NO� synthesis.

Figure 3. TLR4 signal pathway in oxidative stress [73,75]. TLR4 interacts with myeloid differentiation
factor 2 (MD2), CD14, and specific ligand LPS receptors, then recruits downstream adaptors to activate
MyD88− and TRIF-dependent pathway-mediated IRAK4-dependent NF-κB, which can trigger the
transcription-promoting NO�. The GCHI-iNOS gene shows a significant increase in the expression of
iNOS and NO, which accelerates the inflammatory response by reducing SOD activity and increasing
MDA production. GSH eliminates free radicals and prevents oxidative damage.

TLR4 and its downstream signaling pathways are involved in the activation of GCHI expression [94].
In turn, GCHI plays an important role in the regulation of iNOS expression. The expression of NADPH
oxidase and iNOS in a group of transgenic sheep overexpressing TLR4 was significantly greater
compared with a WT group at 1 and 8 h, but these returned to normal levels at 48 h. This observation
indicates that TLR4 can regulate the expression of both NADPH oxidase and iNOS. In addition,
overexpressed TLR4 inhibited SOD activity and triggered AP-1 to activate downstream antioxidative
genes that protect against oxidative stress [90].

5. Conclusions

Toll-like receptors (TLRs) act as immune receptors to initiate innate immunity and acquired
immunity. They play an important role in the development of oxidative stress in the body. TLRs
activate cells to produce pro-inflammatory factors in pathogen invasion, which can act as secondary
messengers to regulate oxidative stress. Furthermore, TLRs can produce antioxidant mechanisms that
interact to regulate oxidative stress. Our study shows that under the stimulation of LPS, transgenic
overexpressing TLR4 sheep can rapidly trigger the TLR4 signaling pathway and upregulate the
expression of cytokines in a short time, thus reducing the inflammatory reaction time, which is of
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great significance for improving the disease resistance of sheep. Positive individuals can significantly
increase the adhesion of bacteria, which plays an important role in the timely removal of pathogens.
Next, we will further evaluate the phagosome clearance ability of our transgenic sheep during an
infection of phagocytic bacteria.
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