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STROKE IN PRETERM AND TERM NEWBORNS

Perinatal stroke occurs between the 20th week of gestation and the 28th day after birth (Nelson,
2007). Brain injury within this period can also lead to conditions such as neonatal encephalopathy
or to encephalopathy of prematurity. Considering the complex diagnosis and limited data available,
the incidence of 1/2,300 live births is a likely underestimation (Nelson and Lynch, 2004; Lee
et al., 2005). Nevertheless, these numbers are comparable to those in the elderly (Fernández-López
et al., 2014). The most common subtypes are arterial ischemic stroke (Fernández-López et al.,
2014), which induces a focal lesion similar to adult stroke, and cerebral sinovenous thrombosis
(Govaert et al., 2009). Focal interruption of arterial or venous cerebral blood flow is usually
secondary to thrombosis or embolism, with a multifactorial pathophysiology. Importantly, in the
fetal circulatory system, placental or systemic venous emboli may pass through a patent ductus
arteriosus or foramen ovale directly to the left carotid artery and subsequently to the left MCA,
facilitating occlusion (Gunny and Lin, 2012). Confirmation by imaging or neuropathological
studies is always mandatory (Govaert et al., 2009). Different risk factors have been recognized
for perinatal stroke (Supplementary Table 1; Kurnik et al., 2003; Mirabelli-Badenier et al., 2012;
Kasdorf and Perlman, 2013; Basu, 2014; Fernández-López et al., 2014; Kratzer et al., 2014; Machado
et al., 2015; Buerki et al., 2016) but inflammation seems to be a prevalent underlying mechanism
(Vexler and Yenari, 2009; Hagberg et al., 2015). For instance, chorioamnionitis, a bacterial infection
of the amniochorionic membranes (Kasdorf and Perlman, 2013; Buerki et al., 2016) often leads
to a longer labor period and worse prognosis (Vexler and Yenari, 2009). Nevertheless, although
there is a substantial number of studies concerning neonatal encephalopathy (or hypoxic-ischemia
encephalopathy), human data on perinatal stroke can be disparate; some authors found a positive
correlation with pro-inflammatory polymorphisms, others did not (Hagberg et al., 2015).

Adult and perinatal stroke also cause distinct presenting symptoms: adults tend to present
unilateral symptoms and only 3% have seizures; seizures are one of themost common presentations
after perinatal stroke (Fernández-López et al., 2014). Hemiplegic cerebral palsy is also the most
frequent long-term motor outcome of the latter (Nelson, 2007). However, several aspects delay
the suspicion of diagnosis, since (i) newborns with seizures may appear clinically well-between
episodes; (ii) initially, newborns may present discrete non-specific symptoms like lethargy, apnea,
difficult feeding and impaired chewing; (iii) and some cases may be asymptomatic, presenting
lateralized symptoms only around the 5th month. In fact, lateralized symptoms are rare in neonates
(Nelson, 2007; Fernández-López et al., 2014). In 2011, Harbert and colleagues conducted the first
human study demonstrating the positive effect of therapeutic hypothermia on perinatal stroke:
active whole-body cooling via a blanket cooling device led to a significantly lower frequency
of seizures (Harbert et al., 2011). Since these symptoms are associated to a worse prognosis,
the risk of long-term neurologic disability is likely reduced. Given the complex pathophysiology
and difficulty in obtaining an early and accurate diagnosis, new therapies are being tested, alone
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or in combination with hypothermia, to improve global outcome.
Some include administration of growth factors, anticoagulant
and antiplatelet agents, blood uric acid lowering medication,
antioxidant and anti-inflammatory molecules, stem cells-based
therapy and electrical stimulation (Cnossen et al., 2009; Gonzalez
and Ferriero, 2009; Mirabelli-Badenier et al., 2012; Basu, 2014;
Fernández-López et al., 2014; Kratzer et al., 2014).

IN VITRO APPROACHES

In vitro models resort to oxygen and glucose deprivation
(OGD), followed by reoxygenation and nutrient replenishment.
Since oxygen levels should be kept preferably under 2%, to
represent the ischemic core, and around 7% if studying the
ischemic penumbra (Tornabene and Brodin, 2016), these models
can be very relatable while allowing easy assessment of cell
activity, protein expression and release, and barrier properties
of particular cell type(s). We have exposed either individualized
cells or brain tissue, namely organotypic brain slice cultures
(OSC), to very low O2 rates (0.1%; Ferreira et al., 2016; Machado-
Pereira et al., 2017). These tissue cultures provide unique
characteristics and several advantages over cell models, since they
preserve whole organ structure and maintain neuronal activity
and synapse circuitry. OSC also maintain integrity in vitro for
over 2 weeks allowing a series of pharmacological studies. Other
advantages include the possibility of using younger animals if
needed (e.g., 1–3-day-old mice), the refinement of experimental
doses/conditions and the reduction of the number of animals
for in vivo models. To the best of our knowledge only one
group has used OSC, from P8-10 rats (Leonardo et al., 2009).
A considerable drawback from OSC, and cell cultures, is the
absence of blood flow and infiltrating immune cells. Nevertheless,
they provide a snapshot of the neurovascular unit up to the time
of brain isolation if a lesion and/or treatment is applied a priori.
Younger animals such as 2-day-old mice still grant the ability
to inject a therapeutic agent via the temporal vein, which is still
visible at this age, to study its protective value (Machado-Pereira
et al., 2018). Subsequently, therapeutic agents and stimuli can
be further administered over tissue to evaluate their impact on
neurovascular and glial activity.

ANIMAL MODELS OF PERINATAL STROKE

Experimental models are important to understand mechanisms
of disease. Parameters like injury onset and duration, area
of penumbra, reperfusion or therapeutic window are clearly
defined, and symptoms can be easily identified and monitored.
However, reproducing all the complex pathophysiological aspects
of stroke in an otherwise healthy animal is challenging; typically,
a stroke patient is elderly and has more than one health
condition. One of the most frequently used adult models is
induced by transient occlusion of the middle cerebral artery
(MCA) with an intraluminal monofilament, blocking cerebral
blood flow (usually 60min) and causing reproducible infarcts
in this territory (Carmichael, 2005; Sommer, 2017). A transient
model allows the study of the significant effects of reperfusion.

Regarding the perinatal period, themost commonmethodologies
use unilateral ligation of the common carotid artery followed
by hypoxia, or direct exposure to hypoxia alone. Table 1 briefly
describes procedures using rodents, rabbits, pigs and lambs.
Animal models employing pigs, lambs or rabbits, are costly
in terms of maintenance, in the sense that they have longer
gestation periods and smaller litter size, while offering higher
genetic dissimilarity with humans, comparing with mice (Leong
et al., 2015). Importantly, most models use O2 rates much higher
(5–12%) than those believed to occur after an ischemic event.
Only one group used a lower percentage (3.5–4%), albeit on rats
of an age range comparable to a term and up to 2-years-old infant.
In fact, normal brain tissue pO2 is 33.8 ± 2.6 mmHg, which
corresponds to 4.4± 0.3%O2 in the microenvironment (Carreau
et al., 2011). Three of the models used between 6 and 12% O2:
a fraction of inspired oxygen (FiO2) of 0.06–0.12. Considering
that atmospheric air is 21% O2 or the equivalent to a FiO2

of 0.21, these animals would be subjected to a third to a half
O2 available. Are lower O2 rates fatal? Moreover, most models
use 7-days-old or older animals, which offer a more reasonable
size for surgery than younger pups. A week old rat, the most
commonly used species, would represent a 2-months-old infant
(well-beyond the 28th day post-birth) if considering peripheral
organ systems (Sengupta, 2013; Titomanlio et al., 2015), and
a term infant, if considering brain development (Titomanlio
et al., 2015), raising further challenges on what age range to
choose.

Age is very important, since the extent of ischemic injury
is largely influenced by brain maturity (Sheldon et al.,
1996; McQuillen et al., 2003; Webber et al., 2009). In
preterm newborns, oligodendrocyte progenitor cells (OPC) are
particularly more sensitive to ischemia (Back et al., 2002). Global
ischemia, as in hypoxic-ischemia encephalopathy, disrupts OPC
maturation, causing delayed or disrupted myelination, largely
contributing to neuronal loss and periventricular white matter
diffuse injury (periventricular leukomalacia; Back et al., 2007;
Webber et al., 2009). Several experimental models have also
been proposed to study this particular condition (Shen et al.,
2010). For this reason, OPC constitute a potential target for the
development of protective therapies focusing on the reduction
of white matter loss in premature infants (Back et al., 2007).
Subplate neurons, a transient neuronal population important
for the formation of mature neuronal networks, are another
vulnerable target. Additionally, interneuron migration to the
neocortex is only completed at birth, in a process modulated
by microglia activity (Leviton and Gressens, 2007; Xu et al.,
2011). In term newborns, gray matter is focally affected, greatly
impacting on motor function (Back et al., 2001; Fernández-
López et al., 2014; Luhmann et al., 2016). The immature
brain is also more susceptible to excitotoxicity and to free
radicals considering the higher expression of receptors that
signal for excitatory neurotransmitters and lower levels of
anti-oxidant enzymes (Johnston, 2005; Lafemina et al., 2006).
Overall, choosing the “right” age pertains to the fact that the
perinatal period encompasses different stages of the circulatory
and immune systems (Titomanlio et al., 2015; Lange et al.,
2016). Accordingly, the therapeutic value of an agent directed at
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TABLE 1 | Perinatal and neonatal animal models for ischemic injury, specifically rat, pig, mouse, rabbit, and lamb.

RAT

P5-P17 8 Exposure to hypoxia (3.5–4% O2 in N2) until apnea or heart rate below 20% of

baseline

Jensen, 1995

P10 8 Exposure to hypoxia (7, 5, 4% O2 in N2) for 8, 6, and 1min, respectively Dunn et al., 2017

P10 8 Left MCAO for 90min by inserting a 6-0 nylon filament into the internal carotid artery;

unilateral ligation of right CCA followed by hypoxia (8% O2 in N2) for 90min

Ashwal et al., 2007

P7 ♀ MCAO for 180min by inserting a 6-0 coated filament into the internal carotid artery Fernández-López et al., 2013

P7 8 Unilateral ligation of right CCA followed by hypoxia (8% O2 in N2) for 60min Jantzie and Todd, 2010

P7 8 Unilateral ligation of CCA followed by hypoxia (8% O2 in N2) for 30, 60, 90, or 120min Silverstein and Johnston, 1984

P7 8 Unilateral ligation of left CCA followed by hypoxia (8% O2 in 92% N2) for 90min Bae et al., 2012

P7 8 Unilateral ligation of right CCA followed by hypoxia (8% O2 in N2) for 180min Jantzie et al., 2005

P7 8 Unilateral ligation of left CCA followed by hypoxia (8% O2 in N2) for 120min Lubics et al., 2005

P7 8 Unilateral ligation of CCA followed by hypoxia (8% O2 in N2) for 60–240min Vannucci and Vannucci, 2005

P4 ♂ Exposure to hypoxia (11% O2 in N2) for 360min per day for 5 days Schaeffer et al., 2013

P4 8 Exposure to hypoxia (11% O2 in N2) for 360min per day for 5 days Fendt et al., 2008

P2 8 Exposure to hypoxia (12% O2 in N2) for 14 days Deruelle et al., 2006

P1 ♂ Exposure to hypoxia (12% FiO2 ) for 10 days Del Duca et al., 2009

P1 8 Unilateral ligation of right CCA followed by hypoxia (8% O2 in N2) for 210min Girard et al., 2009

P1 8 Exposure to hypoxia (5% O2 in N2) for 60 or 75min Slotkin et al., 1995

Newborn ♂/♀ Unilateral ligation of right CCA followed by hypoxia (8% O2 in N2) for 120min Kartal et al., 2016

PIG

P3-P7 8 Exposure to a gas mixture (10% FiO2) for 40min, followed by 5min of reoxygenation

and 7min of anoxia by clamping the endotracheal tube

Ni et al., 2011

P1-P4 ♂ Exposure to a gas mixture (FiO2 6–8%) until hearth rate decreased to 60 beats/min

(bradycardia) or mean arterial blood pressure decreased to 15 mmHg (severe

hypotension)

Faa et al., 2012

P1-P3 8 Exposure to a gas mixture (12% O2 in N2) for 120min to achieve a pO2 of 30–40

mmHg

Stevens et al., 2008

Newborn 8 Exposure to a gas mixture (8% O2 in N2) until the mean arterial blood pressure

decreased to 20 mmHg or base excess reached −20 mmol/L

Garberg et al., 2017

MOUSE

P9 8 Unilateral ligation of left CCA followed by hypoxia (10% O2 in N2) for 60min Kichev et al., 2014

P7 ♂ Exposure to hypoxia (10% O2 in N2) for 360min per day (3 sessions of 120min

separated by 45min intervals) for 6 days

Kameda et al., 2013

RABBIT

E22 8 Uterine ischemia for 40min, via arterial embolectomy catheter inserted through the

maternal left femoral artery into the descending aorta

Yu et al., 2011

LAMB

E126-141 8 Intrauterine hypoxia by induced maternal hypotension via infusion of trimetaphan

camsylate glucose solution into a polyethylene catheter placed in the maternal

femoral vein, for 60–90min

Gersony et al., 1976

Rodent models usually resort to exposure to hypoxia alone (3.5–12% O2 ) or to unilateral ligation of the common carotid artery, followed by hypoxia (8% O2 ), in animals of varying ages.

Pig models use exposure to a gas mixture ranging from 6 to 12% O2 while lamb and rabbit models induce intrauterine ischemia. ♀, female; ♂, male; 8 undisclosed sex; CCA, common

carotid artery E, embryonic days; MCAO, middle cerebral artery occlusion; min, minutes; P, post-natal days.

perinatal stroke would be better assessed using younger animals.
Fundamentally, the brain vasculature during development is
formed through two distinct processes: (i) vasculogenesis, in
which angioblasts differentiate into endothelial cells forming the
perineural vascular plexus, which in turn functions as a substrate
for (ii) angiogenesis, the process of generating new vessels
from pre-existing ones (Vasudevan and Bhide, 2008; Lee et al.,
2009; Tam and Watts, 2010). These processes are consolidated
by migrating mural cells, formation of an extracellular matrix
and establishment of tight and adherens junctions that regulate
permeability and transcellular transport (Lee et al., 2009; Tam

and Watts, 2010). With increasing age, blood-brain barrier
(BBB) functionality is less maintained after stroke since the
expression of several of these proteins (e.g., occludin, claudins,
zonula occludens proteins; Kratzer et al., 2014) that support
the integrity of tight junctions is also changed. Another reason
for a higher resistance of the BBB to ischemic injury in
the early stages could be the maturation-dependent interplay
between leukocytes and the endothelium and the less active
pathophysiological role of the inflammatory process (Titomanlio
et al., 2015). A restricted BBB opening may also account for
limited neutrophil recruitment/infiltration. While regulatory T
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cells seem to play a neuroprotective role, microglia cells promote
phagocytosis and tissue recovery, or white matter damage,
depending on the adopted phenotype (Hagberg et al., 2015). In
fact, microglia migrate to the brain even before blood vessel
formation possibly impacting on the development of these
structural elements (Rymo et al., 2011; Arnold and Betsholtz,
2013). Hence, in the perinatal period, the neuroinflammatory
response has a preponderant role in stroke outcome (and to
diffuse pattern of injury), relying more on the activation of
microglia than on the extrinsic recruitment of inflammatory cells
such as macrophages and neutrophils (Hagberg et al., 2015).
A more mature brain offers a BBB more vulnerable to ischemic
injury and to immune cell infiltration, and therefore, these
cells assume a greater role and become associated to a focal
pattern of injury. Consequently, several pro-/anti-inflammatory
molecules and growth factors are released and have been studied
as part of the impactful secretome unleashed by ischemia.
Vascular endothelial growth factor (VEGF) is responsible for
several processes upon ischemic stroke, including disruption
of endothelial cell junctions and endothelial cell endocytosis,
followed by increased BBB permeability, and consequently
intracranial hemorrhage and intracranial hypertension (Angelo
and Kurzrock, 2007; Lange et al., 2016; Suzuki et al., 2016).
However, VEGF also promotes endothelial cell proliferation
and migration, and enhances perfusion (reduced infarct volume
and penumbra were associated to increased neuroprotection,
including in neonatal stroke; Titomanlio et al., 2015; Lange
et al., 2016; Suzuki et al., 2016). There are other cell types
responsible for the development, regulation and maintenance
of central nervous system angiogenesis and BBB integrity such
as pericytes and astrocytes (Tam and Watts, 2010). These
cells control the production and release of several factors
that regulate the aforementioned processes (Lee et al., 2009;
Tam and Watts, 2010; Arnold and Betsholtz, 2013). Therefore,
diminished quantities of pericytes and astrocytes alongside
blood vessels are associated to a higher susceptibility to
ischemic injury (Fernández-López et al., 2014; Kratzer et al.,
2014).

On a final note, rodent strains may display different levels
of vulnerability to injury. For instance, CD1 mice are more
vulnerable to damage induced by 30min of hypoxia, than
C57BL/6 and 129Sv mice, with the latter being the most
resistant strain (Sheldon et al., 1998). Other murine strains (BDF,
CFW, and BALB/C) display varying infarct volumes following
24 h of focal ischemia possibly because of differences in the
anatomy of the posterior communicating arteries. BALB/C mice
showed a more significant infarct volume and were proposed
as the most suitable strain to conduct pharmacological studies
in cerebral ischemia (Barone et al., 1993). In addition to
differences in vascular anatomy, humans and other animals also
display significantly different nutrient and oxygen metabolism,
hemodynamics, and neural cell population density/activity
(Dirnagl et al., 1999).

An interesting but poorly studied subject is the fact that
perinatal stroke appears to be gender-dependent with male

neonates and children being more commonly affected and with
poorer outcomes (Turtzo and McCullough, 2010; Fernández-
López et al., 2014). Turtzo and McCullough have extensively
reviewed the role of gender and sex hormones in the perinatal,
infant and adult periods. Although in vitro data from female
pups suggest higher protection from OGD, and neuronal cells
from males seem more susceptible to hypoxic injury (Heyer
et al., 2005; Li et al., 2005), clinical studies and mechanisms
of action remain inconclusive. Overall, ischemic cell death
occurs via a caspase-independent pathway in males, while
this process is caspase-dependent in females; ultimately, both
pathways lead to mitochondrial dysfunction. The protection
provided by female sex hormones, such as estrogen and
progesterone, is a possible explanation. However, estrogen and
progesterone administration to post-menopausal women were
found to raise the risk of stroke (Turtzo and McCullough, 2010).
To further investigate this issue in the perinatal period, it is
possible to divide pups, even after birth, by a distinct physical
trait: male mice have a visible pigment spot on the scrotum
(Wolterink-Donselaar et al., 2009).

CONCLUSIONS

In vitro models are useful for assessing the potential of a
therapeutic agent and constitute an inescapable stepping stone
for in vivo models. However, current animal models still hold
key limitations regarding the level of hypoxia and extent of
focal injury, age and costs associated to the selected animal
species/strain, as well as their basic anatomy. Importantly and
understandably, all fail to reproduce the exact mechanisms
of injury that occur specifically in perinatal stroke. Hence,
it is urgent to continue advancing newer (and multifactorial)
experimental models to attain more efficient therapies to treat
this complex vascular condition and long-term sequela.
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