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Abstract 

Background: Alterations in MET exon 14 (METex14) and its flanking intronic regions have been identified in 
a variety of cancers. Patients with METex14 alterations often benefit from MET inhibitors such as crizotinib. 
Given the unique mutation profiles of Chinese lung cancer patients, it is necessary to investigate the prevalence 
of METex14 alterations in a large cohort of cancer patients. 
Patients and methods: Cases carrying METex14 alterations were screened from 26,391 Chinese cancer 
patients by next-generation sequencing (NGS), and the clinicopathologic and molecular characteristics were 
reviewed. 
Results: Compared to Western population (~3%), the frequency of METex14 alterations is much lower in 
Chinese cancer patients (0.7%, n=184) and lung cancer patients (1.1%, n=175). Seventy-eight distinct METex14 
alterations, including several novel alteration types were detected. Concurrent MET copy gain and non-exon14 
MET mutations were also found. EGFR copy gain (11%) and mutations (8%), KRAS (5%) and PIK3CA (5%), 
appeared in a mutually exclusive pattern. Female patients contain much less TP53 mutations than male patients 
(65% vs. 24%, FDR = 0.01). Co-amplification of CDK4 and MDM2, CDK6 and EGFR were identified, which 
indicated cell cycle dysregulation and EGFR alteration are important co-occurring features in patients with 
METex 14 alteration. Of 9 tissue specimens having PD-L1 immunohistochemistry (IHC) results, 5 of them 
(55.5%) were found PD-L1 positive, which is comparable to other types of tumor. In 14 crizotinib-treated 
patients, the median progression free survival (mPFS) was 7 months. Upon resistance to crizotinib, two patients 
acquired secondary mutations in MET and one patient acquired BRAF p.K601E that can be a novel resistance 
mechanism. 
Conclusion: Chinese cancer patients have a relatively lower frequency of METex14 alterations compared to 
Western patients. Patients with METex14 alterations showed distinct molecular characteristics and the 
representative case study showed responses to MET tyrosine kinase inhibitor (TKI). 
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Introduction 
The hepatocyte growth factor (HGF) receptor, 

encoded by the MET oncogene, is a receptor tyrosine 
kinase that activates a wide range of cellular signaling 
pathways to mediate cell proliferation, survival and 
motility, and subsequently induces cancer 
development and progression [1, 2]. Pathologic 
activation of MET were frequently caused by point 
mutations in tyrosine kinase domain, gene copy gains 
and protein overexpression [3, 4], and less frequently, 
by alterations affected the splicing of exon14, which 
resulted in MET exon14 (METex14) skipping after 
translation. Besides, loss of p.Y1003 in exon 14, a 
critical binding site for Cbl (an E3 ubiquitin ligase) 
will also disrupt MET ubiquitination and 
degradation, leading to the overactivation of MET 
signaling [5, 6]. METex14 skipping has been identified 
in a wide variety of human cancers with an incidence 
of around 3% in all cancer types [7]. The alterations 
are highly diversified, including point mutations at 
splicing sites, in-frame deletion of intronic region 
around splicing sites at various lengths and the large 
fragment deletion to remove the entire exon 14 [8, 9]. 

Preclinical and clinical evidences suggest that 
tumors with METex14 are sensitive to small molecule 
tyrosine kinase inhibitors (TKIs), including non- 
selective inhibitor crizotinib [10], and several selective 
inhibitors, such as tepotinib, savilitinib and capmati-
nib [11-13]. In 2020, FDA approved the first targeted 
therapy capmatinib for METex14-positive patients 
with locally advanced or metastatic non-small cell 
lung cancer (NSCLC). 

With the advanced parallel sequencing 
technologies, it becomes much easier to screen for 
novel alterations in METex14 and comprehensively 
analyze the concurrent genomic alterations, thereby 
expand the number of druggable patients and 
uncover the intrinsic or acquired resistant 
mechanisms to TKI treatment. In this study, we 
retrospectively screened genomic data of 26,391 
Chinese cancer patients and identified 184 cases with 
METex14 alterations in 10 different cancer types, 
among which 175 were lung cancer patients. Seventy- 
eight unique METex14 alterations were identified, 
including novel alterations c.2888-90_2899del, c.2888- 
55_2928del. comprehensively, genomic profiling also 
revealed concurrent and exclusive gene alterations in 
these patients. Clinical responses were observed in 14 
patients who received crizotinib treatment and 
potential drug-resistance mechanisms were analyzed. 

Materials and methods 
Patients and samples 

Genomic profiling results of 26,391 malignant 
tumors were screened and only samples with 
alterations in MET exon 14 or intron 13 and 14 that 
could potentially cause MET exon 14 skipping or the 
loss of MET p.Y1003 residue were analyzed. Genomic 
profiling of these samples was performed on 
formalin-fixed paraffin-embedded (FFPE) tumor/ 
plasma biopsy specimens that were obtained from 
patients signed written informed consent. 

Next-generation sequencing (NGS) 
DNA extraction and sequencing library were 

prepared according to the protocols described 
previously [14, 15]. To be specific, 104 and 80 cancer 
samples were tested with 139-gene panel and 
425-gene panel respectively, both of which cover the 
whole MET exon 14 and the adjacent intron regions, 
and all essential lung-cancer related genes. All 
samples were sequenced in a Clinical Laboratory 
Improvement Amendments (CLIA)- and College of 
American Pathologists (CAP)-certified genomic 
testing facility (Nanjing Geneseeq Technology Inc., 
Nanjing, China). Different types of genetic alterations 
were called using an internally-validated 
bioinformatics analysis pipeline [16]. Clinical 
information, including age at diagnosis, sex, disease 
stage, and treatment history was extracted from the 
medical records provided by physicians during the 
service order. Informed written consent was acquired 
from each patient at the time of sample submission. 
The study methodologies conformed to the standards 
set by the Declaration of Helsinki and was approved 
by the ethics committee. 

Immunohistochemistry (IHC) staining of 
PD-L1 

Eleven tissue biopsies of this study were 
performed IHC staining of PD-L1 expression with 
22C3 anti-PD-L1 antibody (Dako) according to the 
protocol reported previously [17]. PD-L1 IHC was 
evaluated by a pathologist based on the tumor 
proportion score (TPS) with membranous and/or 
cytoplasmic staining, and divided into three groups: 
no-expression (<1% of tumor cells), low expression 
(1%-49%) and high expression (≥50%). 

Data analysis and statistics 
All statistical tests were conducted in R version 

3.6.1. The concurrent mutations and exclusive/ 
concurrent analysis were conducted with the 
SomaticInteraction function in Maftools package of R 
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[18] and a p-value below 0.05 was considered as 
significant. 

Results 
Various METex14 alterations were identified in 
different cancer types 

METex14 alterations were identified in 184 of 
26,391 (0.7%) patients from 9 cancer types 
(Supplementary Fig. S1), including lung cancer 
(1.1%, 175/18112, Table 1), neuroendocrine tumor 
(NET, 1/85), bladder cancer (BLCA, 1/68), breast 
cancer (BRCA, 1/3639), colorectal cancer (CRC, 
2/2551), pancreatic cancer (PACA, 1/661), esophageal 
cancer (ESCA, 1/549), cholangiocarcinoma (CHOL, 
1/547) and melanoma (1/179). The frequency of 
METex14 alterations in Chinese patients is lower than 
3% in Western countries [19]. In lung cancer patients 
with METex14 alterations, 79.4% (139/175) were non- 
small-cell lung cancer (NSCLC), including adeno-
carcinoma (ADC, 114/139, 82.0%), adenosquamous 
carcinoma (ASC, 9/139, 6.5%), squamous cell 
carcinoma (SCC, 8/139, 5.8%), large cell carcinoma 
(LCC, 1/139, 0.7%) and subtype-undetermined 
NSCLC (7/326, 2.1%) (Table 1). Thirty-six patients 
(36/175) were histologically undetermined. 

METex14 alterations comprise base substitution, 
insertion, and large fragment deletion spanning the 
entire or partial region of exon 14. We identified 78 
distinct METex14 alterations and classified them into 
8 subgroups according to the alteration types and 
locations (Fig. 1A and Supplementary Table S1). 
Base substitutions at the splicing donor sites were the 
most common alterations (42% of all METex14 
alterations), represented by c.3082G > T/A/C 
(39/184, 21.2%), c.3082 + 1G > C/A/T (33/184, 
17.9%), c.3082 + 2T > A/C/G (11/184, 6.0%) and 
c.3082 + 3A > T/C/G (14/184, 7.6%) (Fig. 1B, 
Supplementary Table S1). We also identified a great 
amount of indel alterations spanning the ~50 bp 
intronic upstream region of the splice acceptor site 
(28%), and base substitutions immediately adjacent to 
the splice donor site (8%, Fig. 1A and 1B). Three cases 
have large fragment deletion that removed the entire 
METex14 (Fig. 1C). There are also three 
insertion/deletions (indels) within METex14 that 
directly disrupt the ubiquitin ligase site (p.Y1003), 
including MET p.E999_P1008del, p.T1006_ 
P1008del and p.D1002_Y1003del (Supplementary 
Table S1). Additionally, three patients harbored two 
different METex14 alteration types respectively 
(Supplementary Table S2). 

Clinical characteristics and genomic profiling 
of lung cancer with METex14 alterations 

The prevalence of METex14 alterations was 
much higher in ASC (6.25%) than other subtypes, 
including LCC (2.7%), ADC (1.0%) and SCC (0.7%) 
(Table 1). The median age of lung cancer patients 
with METex14 was 68 (range from 39 to 94), and 
females and males take up 48.6% (n=86) and 47.4% 
(n=84), respectively. 

Genomic profiling of 175 lung cancer tumors 
revealed the high prevalence of TP53 alterations (43%) 
and relatively low co-occurrence of other cancer 
driver alterations, such as EGFR alterations (19%, 
Supplementary Fig. S2), which is much less than 
40~60% in Asian lung cancer patients [20, 21]. The 
secondary MET alterations were detected in 15% of 
patients and 11% of them have MET copy gain 
(Supplementary Fig. S2). For 71 cases that were 
examined with the 425-gene panel, mutation 
frequencies of different genes were comparable 
between females and males, except that male patients 
were significantly more enriched with TP53 
alterations than females (65% vs. 24%, FDR = 0.01, Fig. 
2A). We observed a subpopulation that were 
prevalent with gene copy gains in MDM2 (24%), 
CDK4 (14%), MCL1 (13%), TERT (13%), MYC (11%) 
and CDK6 (6%), and showed a tendency of 
co-occurrence, e.g. MDM2 with TERT and CDK4 (p < 
0.05, Fig. 2). Moreover, CD274 (PD-L1), the biomarker 
for immunotherapy, was also found to be amplified in 
7% of cases and mostly co-existed with MCL1 copy 
gain (p < 0.05, Fig. 2B). EGFR copy gain and mutations 
were also identified in 13% and 15% patients, which is 
higher than previously reported frequency in Western 
lung cancer patients [9]. POT1, a component that 
binds and protects telomere [22], was mutated in 11% 
of cases and likely to co-occur with TP53 alterations (p 
< 0.05, Fig. 2B). The only significantly exclusive gene 
pair was TP53 and MDM2, a negative regulator of 
TP53 (p < 0.05). These data suggested the 
dysregulation of cell cycle and EGFR signaling 
pathway in tumorigenesis of patients with METex 14 
alteration. 

Comparatively, gene alterations in 9 non-lung 
cancer cases revealed a different mutational spectrum, 
including a much higher occurrence of TP53 
alterations (89%), and the absence of MDM2/CDK4 
amplification. Moreover, KRAS mutations and 
non-METex14 alterations were found in 44% of cases 
(Supplementary Fig. S3), suggesting the companion 
mutations might be different across cancer types. 

Potential treatment strategies for patients 
with METex14 alterations 

It has been reported that MET amplification was 
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associated with increased PD-L1 expression [23]. For 9 
tissue biopsies having available PD-L1 IHC staining 
results, 5 samples were PD-L1 positive, including two 
high-expression samples and three low-expression 

samples (Fig. 3), and the frequency is comparable to 
the overall positive ratio in lung cancer [24], which 
shows no correlation between METex14 alteration 
and PD-L1 overexpression. 

 

 
Figure 1. Various METex14 alterations and their schematic locations around exon 14. A) Pie chart shows the frequency of different METex14 alterations that were 
grouped by the locations and mutation types. B-C) Schematic view of each METex14 alteration on human genome build GRCh37/hg19. The frequency of each METex14 are 
indicated with * for two and the number of cases for greater than two, as labeled behind. 

 
Figure 2. Comprehensive genomic profiling of 71 lung cancer patients sequenced by 425-gene panel. A) Co-mutation plot of clinically relevant and frequently 
altered genes. B) Concurrence and exclusive analysis of gene alterations. A p-value < 0.05 is considered statistically significant. 

Table 1. Clinical and molecular characteristics of lung cancer patients harboring METex14 skipping 

 Total lung cancer NSCLC Lung cancer with unknown 
histological subtype ADC SCC ASC LCC Subtype-undetermined NSCLC 

Cases with MET Exon14 
skipping, n/N (%) a 

175/18112 (1.1) 114/11208 (1.0) 8/1133 (0.7) 9/144 (6.25) 1/37 (2.7) 7/326 (2.1) 36/4851 (0.7) 

Median age (range), y 67 (39-94) 68 (43-94) 74 (55-81) 70 (39-83) 61 (61-61) 64 (56-73) 74 (49-87) 
Sex, n (%)             
Male 71 (51.1) 58 (50.9) 4 (50.0) 5 (55.6) 0 4 (57.1) 15 (41.7) 
Female 68 (48.9) 56 (49.1) 4 (50.0) 4 (44.4) 1 (100.0) 3 (42.9) 21 (58.3) 
Stage, n (%)             
I-II 9(6.5) 8(7.0) 0 1 (11.1) 0 0 1 (2.7) 
III 7 (5.0) 5 (4.4) 0 1 (11.1) 0 1 (14.3) 0 
IV 29 (20.9) 24 (21.1) 1 (12.5) 2 (22.2) 0 3 (42.9) 4 (11.1) 
Unknown 94 (67.6) 77 (67.5) 7 (87.5) 5 (55.5) 1 (100.0) 3 (42.9) 31 (86.1) 
Smoking history, n (%)             
Yes 5 (3.6) 3 (2.6) 0 1 (11.1) 0 1 (14.3) 2 (5.6) 
No 17 (12.2) 15 (13.2) 0 1 (11.1) 0 1 (14.3) 3 (8.3) 
Unknown 117 (84.2) 96 (84.2) 8 (100.0) 7 (77.7) 1 (100.0) 5 (71.4) 31 (86.1) 

a, n/N represents the occurrence of MET exon 14 skipping and the total number of patients in each subcategory. 
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Figure 3. Tumor proportion score of PD-L1 in nine cases with PD-L1 immunohistochemistry staining results available. At 20x magnification, no expression of 
PD-L1 is defined as <1% of tumor cells in the sample, while low expression and high expression are defined by 1%-49% of tumor cells and ≥50% of tumor cells, respectively. 

 
Clinical treatment records showed that 14 

patients have received crizotinib treatment, and the 
median progress-free survival (mPFS) was 7 months 
with the longest PFS of 17 months (Fig. 4). Four 
patients (P06, P09, P10, P14) with METex14 alterations 
in the intronic region adjacent to splice acceptor site 
showed durable response to crizotinib treatment, 
suggesting the loss of exon 14 by these alterations 
(Fig. 4). Acquired secondary mutations, including 
MET p.Y1230N, p.D1228N and BRAF p.K601E were 
identified in the available post-treatment tumors from 
three patients (P05, P12, P14, Fig. 4, Supplementary 
Table S3). 

Patient P05 was a 60-year-old female diagnosed 
with advanced lung adenocarcinoma, and was 
carrying a METex14 skipping mutation (c.3028+ 
1G>C). After 4 months of crizotinib treatment, the 
disease progressed and a BRAF p.K601E mutation 
was identified. BRAF p.K601E is an activating 
mutation occurred in 0.15% of all NSCLC patients and 
showed low sensitivity to BRAF-targeted therapy in 
clinical studies [25-29], which could mediate 
crizotinib resistance in treatment. 

Patient P12 was a 65-year-old female diagnosed 
with stage IV lung adenocarcinoma and underwent 
surgery after diagnosis. Disease was relapsed with 

bone metastasis after 12 months and a METex14 
skipping alteration (c.2888-88_2901del) was detected. 
The patient was subjected to crizotinib treatment for 
13 months, and a secondary mutation MET p.Y1230N 
was identified in plasma sample after resistance. 

Patient P14 was a 61-year-old female and 
diagnosed with stage IV non-small cell lung cancer. 
She harbored MET c.2888-22_2888-8del and was 
subjected to crizotinib for 17 months. Post-treatment 
sample was detected with MET p.D1228N mutation. 

Discussion 
This is the largest cohort study of METex14 

alterations in a variety of cancer types. The incidence 
of METex14 alterations in Chinese lung cancer 
patients was 1.1%, which is lower than 3% in Western 
countries [8, 9], but its frequency in lung adeno-
squamous carcinoma is higher (6.5% vs 2.8%) [8], 
suggesting different mutation frequency of METex14 
between Asian and Western lung cancer patients. We 
also identified an LCC patient carried METex14 
alteration, which has not been reported. There is no 
significant difference of sex in our data, differing from 
the Western people (male vs. female=39.6% vs 60.4%) 
[9]. 
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Figure 4. Response of crizotinib-treatment in 14 patients with METex14 skipping. The x-axis showed the patient ID and the y-axis showed the progression-free 
survival (PFS) in months.  

 
Seventy-eight unique METex14 alterations were 

identified and some of them have not been reported 
before. Aside from base substitutions of splice 
acceptor and donor sites [9, 19], insertion/deletions 
within/across intron13, exon 14 and intron 15 at 
different lengths were observed. In our data, the 
frequency of patients with deletion of entire METex14 
is higher than the Western countries (2% vs. 0.7%) [8, 
9] . A number of patients were also carrying other 
driver mutations, such as copy gain of MET and 
EGFR, non-exon14 MET mutations and EGFR 
mutations, suggesting that other driving forces in 
addition to METex14 alteration might be required for 
tumor initiation and evolvement. 

Similar as previous reports, we observed copy 
gain of MDM2, CDK4, TERT, MYC and MCL1 at 
different frequencies, but with a tendency of 
co-occurring. MDM2 is a negative regulator of TP53 
by mediating TP53’s degradation [30], and its 
amplification has been identified in a variety of 
cancers at a frequency of ~3%, which might have a 
potential role in treatment resistance of prostate 
cancer, neuroblastoma and lung cancer [31-33]. Here, 
we found that MDM2 amplification is likely to be 

exclusive with TP53 alterations, possibly because the 
functional overlap between these two genes. We also 
observed co-occurrent of copy number gain of MDM2 
with cell cycle-dependent kinase CDK4. MDM2 and 
CDK4 are frequently co-amplified in NSCLC [34] and 
sarcomas, and play crucial roles in tumorigenesis via 
increasing cell growth and migration [35]. There are 
statistically significant associations between copy 
number gain of EGFR and CDK6, which is consistent 
with a previous study in glioma [36]. These data 
suggest cell cycle dysregulation and EGFR alteration 
are important co-occurring features in patients with 
METex 14 alteration. Since inhibitors to cell cycle are 
approved or clinically tested for therapy, patients 
with METex 14 alteration may have better outcome 
from treatment targeting both MET and cell cycle. 
Studies have shown that the down-regulation of 
CD274 (PD-L1) and the apoptosis gene MCL1 is 
synchronized [37]. Our data shows here a 
co-occurrence of copy number amplification between 
PDL1 and MCL1, suggesting that there may be some 
positive regulatory relationship between the two 
genes. 
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Lastly, in 14 patients who were treated with 
crizotinib, the PFS varied from 4 months to as long as 
17 months. Two patients acquired secondary MET 
mutations, including MET p.Y1230N and p.D1228N, 
which have been reported as the potential resistance 
mechanisms after treating METex14 skipping with 
crizotinib [38-40]. Additionally, acquired BRAF 
p.K601E was found in another crizotinib-resistance 
patient with only 4-month PFS. Similar to BRAF 
p.V600E, BRAF p.K601E is also an activating mutation 
of BRAF resulting in continuous activation of MEK/ 
ERK signaling pathway [41, 42], therefore can be 
considered as a bypass resistance mechanism. 

Conclusion 
The incidence of METex14 skipping was lower in 

Chinese cancer patients than Western cancer patients, 
but its prevalence in lung adenocarcinoma is higher 
than Western patients. The alteration is highly 
diversified and deep into the intron region. Therefore, 
it requires precaution when choosing the right test for 
it. We observed treatment efficacy of crizotinib in 
some patients and reported potential resistance 
mechanisms in a few cases. Several MET inhibitors, 
including crizotinib, are currently under evaluation 
for the treatment of NSCLC patients with METex14 
skipping and capmatinib was recently approved by 
FDA to treat this alteration in NSCLC. Along with the 
increased use of these small molecule TKIs in 
treatment, more acquired resistance mechanisms will 
be investigated. 

Supplementary Material  
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http://www.jcancer.org/v12p0644s1.pdf  
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